Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цветных металлов и материаловедения (ИЦМиМ) Кафедра металлургии цветных металлов

7	′ТВЕРЖДАЮ
Заведую	щая кафедрой МЦМ
	_ Н.В. Белоусова
подпись	инициалы, фамилия
(()	> 2021 г.

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА в форме магистерской диссертации

Автоматическое определение положения анодной рамы и анодного кожуха

Металлургия цветных металлов (22.04.02.02)

Руководитель д-р хим. наук, профессор Белоусова Н.В.

Выпускник Меркулов Е.И. Менеджер ДЭ ПАО "РУСАЛ Братск", Ножко С.И.

Консультанты канд. эконом. наук, доцент Твердохлебова Т.В.

Нормоконтролер Белоусова Н.В.

Аннотация

На сегодняшний день определение положения анодной рамы и анодного кожуха на алюминиевых электролизерах с самообжигающимся анодом производят обычной линейкой. Обзор предлагаемых методов измерений показал, что в настоящее время нет полностью автоматизированных решений, исключающих участие технического персонала в этой процедуре

В работе разработано полностью автоматизированное устройство для непрерывного мониторинга положения анодной рамы и кожуха, способное проводить непрерывные измерения без участия технического персонала.

Способ является бесконтактным, предполагает использование специальных датчиков, обработку данных контроллером на базе Atmel и сбор информации в облачной среде Blynk.

Также в работе представлен новый способ оценки производительности электролизеров с самообжигающимся анодом и верхним токоподводом.

В экономическом разделе рассчитаны затраты на оборудование и экономическая выгода от внедрения предлагаемого решения в производство.

Ключевые слова: электролизер, самообжигающийся анод, техникоэкономические показатели, автоматизация измерений, анодная рама, газосборный колокол

Содержание

Вв	едениеError! Bookmark not defined.
1.	Конструкция анодного устройства и обслуживание Error! Bookmark
not defin	ed.
2.	Анализ способов определения положения анодного кожуха и
аноддой	рамы в автоматическом режимеError! Bookmark not defined.
3.	Описание устройства для определения положения анодной рамы и
кожуха в	автоматическом режимеError! Bookmark not defined.
4 C	Способы определения уровня металла в электролизере Error! Bookmark
not de	fined.
4.1	Измерение уровня металла с помощью ломика Error! Bookmark not
define	d.
4.2	Измерение положения анода относительно внешней точки Error!
Bookn	nark not defined.
4.3	Вывод по оценке производительности из существующих способов
опреде	еления наработки металла в электролизерах Error! Bookmark not
define	d.
4.3	Автоматическое определение положения анодного кожуха Error!
Bookn	nark not defined.
5 P	асчёт экономического эффектаError! Bookmark not defined.
5.1	Экономический эффект от мониторинга положения рамы Error!
Bookn	nark not defined.
5.2	Эффект от внедрения стабилизации положения анодного кожуха Error!
Bookn	nark not defined.
Сп	исок используемой литературы

Список используемой литературы

- 1. Производство алюминия : справочник металлурга по цветным металлам / А. А. Костюков [и др.] ; под ред.: Ю. В. Баймаков. Москва : Металлургия, 1971. 560 с.
- 2. Пат. 2155825 МПК С25С 3/12 Анодное устройство электролизера с самообжигающимся анодом с верхним токоподводом / А. П. Спиридонов ; патентообладатель : Акционерное общество открытого типа «Всероссийский аоюминиево-магниевый институт» № 97120590/02 ; заявл. 11.12.1997 ; опубл. 10.09.2000
- 3. Пат. RU2266984C1 МПК C25C 3/10Устройство для прорезки периферии самообжигающегося анода алюминиевого электролизера / А. Г. Маркунин ; патентообладатель Открытое акционерное общество «ВОЛГОГРАДСКИЙ АЛЮМИНИЙ» № 2004118647/02 ; заявл. 18.06.2004 ; опубл. 27.12.2004, Бюл. № 36
- 4. Пат. RU2177054C2 МПК C25C 3/12 Установка для подачи анодной массы в электролизер для получения алюминия / Ю. М. Сотников ; патентообладатель Открытое акционерное общество «Братский алюминиевый завод» № 99102231/02 ; заявл. 04.02.1999 ; опубл. 20.12.2001
- 5. Пат. RU2486293C1 МПК C25C 3/22 (2006.01) Способ перестановки штырей на алюминиевом электролизера с верхним токоподводом / Э. М. Гильдебрандт; патентообладатель Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Сибирский федеральный университет» № 2011154398/02; заявл. 29.12.2011; опубл. 27.06.2013, Бюл. № 18
- 6. Технологическая инструкция "Электролитическое получение алюминия-сырца" ПАО «РУСАЛ-Братск» ТРП №440.01.01.07 редакция 15
- 7. Технологическая инструкция "Электролитическое получение алюминия-сырца" ПАО «РУСАЛ-Братск» КПВО №440.01.01.16.02

- 8. Пат. RU152438U1 МПК C25C 3/22 (2006.01). Газосборный колокол алюминиевого электролизера с самообжигающимся анодом / Е. С. Голоскин ; патентообладатель Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" № 2014147231/02 ; заявл. 24.11.2012 ; опубл. 27.05.2015, Бюл. № 15
- 9. Пат. SU1089175A1 МПК C25C 3/06 (2006.01). Способ определения удельного расхода углерода анода / А. А. Ревазян; патентообладатель Научно исследовательский и проектный институт цветной металлургии № 3500623/02-22; заявл. 18.10.1982; опубл. 30.04.1984, Бюл. № 16
- 10. Власов А. А. Использование глинозема песчаного типа для производства алюминия / А. А. Власов // Вестник иркутского государственного технического университета 2017. Т. 21, № 6. С. 111–118.
- 11. Пат. RU2517623C1 МПК C25C 3/12 (2006.01). Способ обслуживания алюминиевого электролизера с самообжигающимся анодом / В.В. Пингин ; патентообладатель Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" № 2012158363/02 ; заявл. 29.12.2012 ; опубл. 27.05.2014,Бюл. № 15
- 12. Пат. RU2690903C1 МПК C25C 3/10(2006.01)C25C 7/06(2006.01). машина для перетяжки анодных рам алюминиевого электролизера / Д.А. Купин ; патентообладатель Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" № 2018135901 ; заявл. 16.03.2016 ; опубл. 06.06.2019,Бюл. № 16
- 13. Пат.RU2631074C1 МПК C25C 3/20(2006.01). способ автоматической стабилизации положения анодного кожуха алюминиевого электролизера и устройство для его осуществления / А.В. Своевский ; патентообладатель Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" № 2000123486/02 ; заявл. 22.06. 2016 ; опубл. 18.09.2017, Бюл. № 26

- 14. Пат.RU2213164C2 МПК C25C 3/20(2006.01). способ автоматической стабилизации положения анодного кожуха электролизера для получения алюминия / В.Н. Деревягин; патентообладатель Открытое акционерное общество "Красноярский алюминиевый завод" № 2016125084; заявл. 11.09. 2000; опубл. 27.09.2003
- 15. Пат. SU827603A1 МПКС25С 3/20(2006.01). Устройство для измерения перемещения анода алюминиевого электролизера / З.М. Туринский; патентообладатель Всесоюзный научно исследовательский и проектный институт алюминиевой, магниевой и электродной промышленности и Днепровский алюминиевый завод 2790411, 1979.06.11; заявл. 11.06.1979; опубл. 07.05.1981
- 16. Сорокина, А. А. Разработка парктроника на базе arduino uno : сборник статей Международной научно-практической конференции/ А.А.СОРОКИНА. Уфа: 2020.- 62-66с.
- 17. Bohn, D. A. Effects of environment on accuracy of ultrasonic sensor operates in millimeter range / D. A. Bohn // Perspectives in Science.2016. -vol. 8. PP. 574—576
- 18. Лексин, К. А. Мобильная система для оптимального построения 2-D схемы замкнутого пространства с препятствиями на МК Arduino : дис. ... канд. тех. наук 02.03.03 / Лексин Кирилл Александрович. Белгород, 2018. 71 с.
- 19. Кульков, А. В. Математическая модель зависимости значения распространения скорости звука в воздухе от его физических характеристик / А.В. Кульков / Современные тенденции в науке и образовании : сб. науч. тр. Нефтекамск : Научно издательский центр «Мир науки», 2017. С. 21–25.
- 20. Калинкин, А. И. Компенсация ошибки измерения импульсных ультразвуковых дальномеров по показаниям датчиков температуры, атмосферного давления и относительной влажности воздуха / А.И. Калинкин //

Вестник Рязанского государственного радиотехнического университета. - 2015, - N_{\odot} 52 – C. 125- 130.

- 21. Калинкин, А. И. Калибровка импульсных ультразвуковых дальномеров по показаниям датчиков температуры, атмосферного давления и относительной влажности воздуха на отладочном макете плис altera de1 board / А. И. Калинкин // Многоядерные процессоры, параллельное программирование, плис, системы обработки сигналов. 2015. Т. 1. № 5. С. 33-38
- 22. Могильный, С. Б. Разработка системы управления роботизированной платформой с ультразвуковым радаром HC-SR04 / С. Б. Могильный // Вісник національного технічного університету україни київський політехнічний інститут. серія: радіотехніка. радіоапаратобудування, 2017. № 68. С. 43–47
- 23. Ультразвуковой датчик измерения расстояния hc-sr04 / B. A. Жмудь [идр.] // Автоматика и программная инженерия, 2017. № 4 (22). C. 18 26.
- 24. Колотухина, К. И. Изучение микроконтроллеров: подключение ультразвукового дальномера к Arduino / К. И. Колотухина / Инновационные технологии в науке и образовании. Пенза: Наука и Просвещение, 2017 С. 197-199.
- 25. Джереми Б. Инструменты и методы технического волшебства / Б. Джереми Спб.:БХВ-Петербург, 2015. 336 с.
- 26. Петин В. А. Проекты с использованием контроллера Arduino (+коды) / В. А. Петин СПб.: БХВ Санкт-Петербург, 2014. –400 с.
- 27. Техническая документация на микроконтроллер ARDUINO UNO Режим доступа: https://store.arduino.cc/usa/arduino-uno-rev3 (16.03.2020)
- 28. Техническая документация на ультразвуковой датчик HC-SR04 Режим доступа: https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf (16.03.2020)
- 29. Разбираемся с ARDUINO IDE Режим доступа: https://alex.gyver.ru/lessons/arduino-ide/ (20.03.2020)

- 30. Толстошеев, В. В. Цифровой измеритель температуры на arduino / В. В. Толстошеев // Молодежь XXI века шаг в будущее : Материалы XXI региональной научно-практической конференции. Благовещенск: Дальневосточный государственный аграрный университет, 2020. С. 226-227.
- 31. Айнакулов, Ж. Ж. Подключение датчика температуры и влажности DHTXX к контроллеру APM на базе платы Arduino для использования на мультикоптерах / Ж. Ж. Айнакулов / Проблемы оптимизации сложных систем Алматы: Институт информационных и вычислительных технологий МОН РК. 2018. –С. 79-91.
- 32. Абдрахманов, В. X Разработка средств автоматизации с использованием wi-fi модулей esp8266 и lpwan технологий. / В. X. Абдрахманов// Электротехнические и информационные комплексы и системы 2017.— Т. 13, № 4. С. 98-108.
- 33. Кухтик, М. П. Проектирование интерфейса системы управления "умный дом" на базе платформы blynk / М. П. Кухтик // Известия волгоградского государственного технического университета. 2020. № 1 (236). С. 65 67.
- 34. Филимонов, Н. Е. Разработка системы автоматизации "умный дом" на базе платформы для "интернета вещей" blynk / Н. Е. Филимонов/ Смотрконкурс научных, конструкторских и технологических работ студентов волгоградского государственного технического университета. Волгоград: Волгоградский государственный технический университет. 2019. С. 49—50.
- 35. Перелыгин, Ю. П. Зависимость катодного выхода по току металла при электролизе расплавов от режимов электролиза / Ю.П. Перелыгин // Альманах современной науки и образования. 2013, № 6 (73) С. 125- 127.
- 36. Пат. RU2018660874. ПО APM «СМиТ» («Старшего мастера и технолога» / Н.М. Кухтенко ; патентообладатель Общество с ограниченной ответственностью «Объединённая Компания РУСАЛ Инженерно-

- технологический центр» № 2018660874 ; заявл. 24.07.2018 ; опубл. 29.08.2018 Бюл. №9
- 37. Пат. RU19835U1 МПК C25C 3/12 (2000.01). Устройство для измерения уровня металла и электролита в ванне алюминиевого электролизера / Ю.А. Щербаков ; патентообладатель Открытое акционерное общество "Сибирский научно-исследовательский, конструкторский и проектный институт алюминиевой и электродной промышленности" № 2001107237/20 ; заявл. 20.03.2001 ; опубл. 10.10.2001
- 38. Добрынина, Н. Ю. Электрохимия расплавов : учебное пособие / Н.
 Ю. Добрынина, Т. М. Барбина, А. Н. Ватолин. Екатеринбург : Издательство Уральского университета, 2018. 104 с.
- 39. Пат. RU2425178C2 МПК C25C 3/06 (2006.01). Способ измерения уровней расплавов металла и электролита на электролизере для производства алюминия / С. И. Ножко; патентообладатель С. И. Ножко № 2009125370/02; заявл. 02.07.2009; опубл. 27.07.2011 Бюл. № 21
- 40. Лондонская биржа металлов: LME Алюминий Режим доступа: https://www.lme.com/en-GB/Metals/Non-ferrous/Aluminium#tabIndex=0 (дата обращения 01.06.2021)
- 41. Сафиев, X. О механизме протекания электродных процессов на угольном аноде при электролитическом производстве алюминия / X.Сафиев // Доклады академии наук республики Таджикистан. 2012, №2 (55). С. 156-162.
- 42. Пискажова, Т.В Анализ расхода анодной массы и электроэнергии для электролизеров Надвоицкого алюминиевого завода методами многомерной статистической обработки / Т.В Пискажова // Журнал сибирского федерального университета. Серия : Техника и технологии. -2012, № 5 (5). С. 538 553.
- 43. Прайс на требуемое оборудование Режим доступа: https://store.arduino.cc/usa/other-shields/components-sensors(дата обращения 01.10.2020)

- 44. Поляков, П.В. Пути снижение удельного расхода энергии при электролитическом получении алюминия / П.В. Поляков :Материалы III Международной научно-технической конференции, посвященной 75-летию кафедры металлургии легких металлов Екатеринбург : УрФУ. 2014. С. 91-96.
- 45. Николаев, А. Ю. Расчет цеха электролитического получения алюминия: электронное текстовое издание: учебно-методическое пособие / А. Ю.Николаев, А. В. Суздальцев Екатеринбург: Информационный портал УрФУ, 2015. 45 с.
- 46. Терентьев, В. Г. Производство алюминия : пособие для специалистов / В. Г. Терентьев, Р. М. Школьников Новокузнецк : НП "Алюминий". 2000. 338с.
- 47. Криворученко, В. В. Тепловые и энергетические балансы алюминиевых и магниевых электролизеров : учеб. пособие для студентов / В.В.Криворученко, М.А. Коробов. Москва : Металлургиздат, 1963. 320с.
- 48. Скуратов, А. П. Увеличение энергоэффективности алюминиевого электролизера на основе математического моделирования / А. П. Скуратов, А. А. Пьяных, С. Д. Скуратова // Вестник КрасГАУ. 2009. № 5(32). С. 163-168.
- 49. Великанова, И. А. Электрохимический синтез и гидроэлектрометаллургия : Сборник задач / И. А. Великанова, Н. П. Иванова, И. М. Жаринский. Минск : БГТУ, 2013. 105 с.
- 50. Иркутскэнергосбыт Режим доступа: https://sbyt.irkutskenergo.ru/qa/6825.html (дата обращения 01.03.2021)

Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цветных металлов и материаловедения (ИЦМиМ) Кафедра металлургии цветных металлов

УТВЕРЖДАЮ

Заведующая кафедрой МЦМ

подпись

06 2021 г.

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

в форме магистерской диссертации

Автоматическое определение положения анодной рамы и анодного кожуха

Металлургия цветных металлов (22.04.02.02)

Руководитель

21 01 21 д-р хим. наук, профессор,

Белоусова Н.В.

Н.В. Белоусова

Выпускник

14.06.21. Меркулов Е.И.

Рецензент

менеджер ДЭ ПАО"РУСАЛ Братск",

15.08.21

Ножко С.И.

Консультанты:

канд. экон. наук, доцент. © . 27 Твердохлебова Т.В.

Нормоконтролер

Белоусова Н.В.