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Abstract. The rotation algebra Aθ is the universal C∗-algebra generated by unitary operators U, V

satisfying the commutation relation UV = ωV U where ω = e2πiθ. They are rational if θ = p/q with
1 6 p 6 q−1, othewise irrational. Operators in these algebras relate to the quantum Hall effect [2,26,30],
kicked quantum systems [22,34], and the spectacular solution of the Ten Martini problem [1]. Brabanter
[4] and Yin [38] classified rational rotation C∗-algebras up to ∗-isomorphism. Stacey [31] constructed
their automorphism groups. They used methods known to experts: cocycles, crossed products, Dixmier-
Douady classes, ergodic actions, K–theory, and Morita equivalence. This expository paper defines Ap/q

as a C∗-algebra generated by two operators on a Hilbert space and uses linear algebra, Fourier series
and the Gelfand–Naimark–Segal construction [16] to prove its universality. It then represents it as the
algebra of sections of a matrix algebra bundle over a torus to compute its isomorphism class. The
remarks section relates these concepts to general operator algebra theory. We write for mathematicians
who are not C∗-algebra experts.
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1. Uniqueness of universal rational rotation C∗-algebras

N, Z, Q, R, C and T ⊂ C denote the sets of positive integer, integer, rational, real, complex
and unit circle numbers. For a Hilbert space H let B(H) be the C∗-algebra of bounded operators
on H. All homomorphisms are assumed to be continuous. We assume famliarity with the material
in Section 4.

Fix p, q ∈ N with p 6 q − 1 and gcd(p, q) = 1, define σ := e2πi/q and ω := σp, and let
Cp/q be the set of all C∗-algebras generated by a set {U, V } ⊂ B(H) satisfying UV = ωV U.

Since {U, V } = {V,U}, C(q−p)/q = C(q−p)/q. Mq and the circle subalgebra of L2(T) generated by
(Uf)(z) := zf(z) and (V f)(z) := f(ωz) belong to C(q−p)/q. The circle algebra is isomorpic to
the tensor product C(T)⊗Mq.

Definition 1. A ∈ Cp/q generated by {U, V } ⊂ B(H) satisfying UV = ωV U is called universal
if for every A1 ∈ Cp/q generated by {U1, V1} ⊂ B(H1) satisfying U1V1 = ωV1U1, there exists a
∗-homomorphism Ψ : A 7→ A1 satisfying Ψ(U) = U1 and Ψ(V ) = V1.

Lemma 1. If A,A1 ∈ Cp/q are both universal, then they are isomorphic.
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Proof. Let U, V, U1, V1 be as in Definition 1. There exists ∗-homomorphisms Ψ : A 7→ A1 and
Ψ1 : A1 7→ A with Ψ1 ◦ Ψ(U) = U, Ψ1 ◦ Ψ(V ) = V, Ψ ◦ Ψ1(U1) = U1, Ψ ◦ Ψ1(V1) = V1. Since
{U, V } generates A, Ψ1 ◦ Ψ is the identity map on A. Similarly, Ψ ◦ Ψ1 is the identity map on
A1. Therefore Ψ is a ∗-isomorphism of A onto A1 and A is ∗-isomorphic to A1. 2

2. Construction of universal rational rotation C∗-algebras

Define the Hilbert space Hq := L2(R2,Cq) consisting of Lebesgue measurable v : R2 7→ Cq

satisfying
∫
R2

v∗v <∞, equipped with the scalar product < v,w > :=
∫
R2

w∗v. Define Pq to be the

subset of continuous a : R2 7→ Mq satisfying

a(x1, x2) = a(x1 + q, x2) = a(x1, x2 + q), (x1, x2) ∈ R2 (1)

and regarded as a C∗-subalgebra of B(Hq) acting by (av)(x) := a(x)v(x), a ∈ Pq, v ∈ Hq. The
operator norm of a ∈ Pq satisfies

||a|| = max
x∈[0,q]2

||a(x)||. (2)

Define U, V ∈ Pq by

U(x1, x2) := e2πix1/qU0, V (x1, x2) := e2πix2/qV0, (3)

where U0, V0 ∈ Mq are defined by (7), and define Ap/q to be the C∗-subalgebra of Pq generated
by {U, V }. Choose r ∈ {1, . . . , q − 1} such that pr = 1 mod q. Then r is unique, gcd(r, q) = 1.

Define σ := e2πi/q and ω := ωp. Then ωr = σ.

Theorem 1. If a ∈ Ap/q then

a(x1 + 1, x2) = V −r
0 a(x1, x2)V

r
0 and a(x1, x2 + 1) = Ur0a(x1, x2)U

−1
0 . (4)

Conversely, if a ∈ Pq satisfies (4), then a ∈ Ap/q.

Proof. (3) and (8) give V −rUV r = σU and UrV U−r = σV. If a = UmV n, then

a(x1 + 1, x2) = σma(x1, x2) = V −r
0 a(x1, x2)V

r
0 ; a(x1, x2 + 1) = σna(x1, x2) = Ur0a(x1, x2)U

−r
0 .

The first assertion follows since span{UmV n : m,n ∈ Z} is dense in Ap/q. Conversely, if a ∈ Pq,
then (1), Lemma 3, and Weierstrass’ approximation theorem implies that there exist unique
c(m,n, j, k) ∈ C with

a(x1, x2) ∼
∑

(m,n)∈Z2

q−1∑
j,k=0

c(m,n, j, k) e2πi(mx1+nx2)/q U j0V
k
0

where ∼ denotes Fourier series. Then (4) gives c (m,n, j, k)σm = c (m,n, j, k)σj and
c(m,n, j, k)σn = c(m,n, j, k)σk. Since σq = 1, c(m,n, j, k) = 0 unless j = m mod qand k = n

mod q. Define c(m,n) := c(m,n,m mod q, n mod q). Then a ∈ Ap/q since

a ∼
∑

(m,n)∈Z2

c(m,n)UmV n.

Representations ρ1, ρ1 : A 7→ B(H) of a C∗-algebra A are unitarily equivalent if there exists
U ∈ U(H) such that ρ2(a) = Uρ1(a)U

−1, a ∈ A. 2

– 599 –



Wayne M.Lawton Tutorial on Rational Rotation C∗-algebras

Theorem 2. If A ∈ Cp/q is generated by {U, V } with UV = ωV U and ρ : A → B(H) is an
irreducible representation then:

1. dim H = q so B(H) = Mq,

2. there exist z1, z2 ∈ T such that ρ = ρz1,z2 where ρz1,z2(U jV k) := zj1z
k
2U

j
0V

k
0 .

3. ρz′1,z′2 is unitarity equivalent to ρz1,z2 iff (z′1/z1)
q = (z′2/z2)

q = 1.

Proof. Boca gives a proof in ([1], p. 5, Lemma 1.8, p. 7, Theorem 1.9). We give a proof based on
Schur’s lemma. Let C ⊂ A be the C∗-subalgebra generated by {Uq, V q}. Since ρ is irreducible and
ρ(C) commmutes with ρ(A), there exists a ∗-homomorphism γ : C 7→ C such that ρ(c) = γ(c)I,
c ∈ C. Choose h ∈ H\{0} and define H1 := span {ρ(U jV k)h; 0 6 j, k 6 q − 1}. Since H1

is closed, ρ-invariant, H1 ̸= {0}, and ρ is irreducible, H = H1. Since dimH 6 q2, ρ(V ) has
an eigenvector b with eigenvalue λ ∈ T and ||b|| = 1. Define z2 := λω. Choose z1 ∈ T so
zq1 = γ(Uq) and define bj := zj1ρ(U

−j)b, 1 6 j 6 q. Then ρ(V )bj = z2ω
j−1bj , j = 1, . . . , q, and

ρ(U)b1 = z1bq, and ρ(U)bj = z1bj−1, 2 6 j 6 q. Therefore {b1, . . . , bq} is a basis for H, and (7)
implies that ρ(U) = z1U0, and ρ(V ) = z2V0 with respect to this basis. This proves assertions 1
and 2. Assertion 3 follows since the set of eigenvalues of ρ(U) is {z1ωj , 0 6 j 6 q − 1}, the set
of eigenvalues of ρ(V ) is {z2ωj , 0 6 j 6 q − 1}, and the set of eigenvalues determines unitary
equivalence. 2

Theorem 3. Ap/q ⊂ B(H) is the universal C∗-algebra in Cp/q.

Proof. Assume that B ∈ Cp/q. Then there exists a Hilbert space H1 and U1, V1 ∈ B(H1)

with U1V1 = ωV1U1 and B is generated by {U1, V1}. It suffices to construct a continuous
∗-homomorphism φ : Ap/q 7→ B satisfying φ(U) = U1 and φ(V ) = V1. Define dense ∗-subalgebras

Ãp/q := span {U jV k : j, k ∈ Z} ⊂ Ap/q, B̃ := span {U j1V k1 : j, k ∈ Z} ⊂ B,

and a ∗-homomorphism φ̃ : Ãp/q 7→ B̃ by φ̃(U jV k) := U j1V
k
1 . To extend φ̃ to ∗-homomorphism

φ : Ap/q 7→ B it suffices to show that for every Laurent polynomial of two variables p(u, v) the
following inequality is satisfied ||p(U1, V1)|| 6 ||p(U, V )|| since p(U1V1) = φ̃(p(U, V )). Then ( [13],
Corollary I.9.11), which follows directly from the Gelfand-Naimark-Segal construction, implies
that there exists an irreducible representation ρ1 : B 7→ Mq and v ∈ H1 with ||v|| = 1 such that
||p(U1, V1)|| = ||ρ1(p(U1, V1))v||. Theorem 2 implies that ρ1(U1) = z1U0 and ρ1(V1) = z2V0 for
some z1, z2 ∈ T. Let ρ : Ap/q 7→ Mq be the irreducible representation defined by Theorem 2 so
ρ(U) = z1U0 and ρ(V ) = z2V0. Since ρ1 ◦ φ̃ = the restriction of ρ to Ãp/q, (2) and (3) imply that

||p(U1, V1)|| = ||ρ1(p(U1, V1))v|| 6 ||ρ(p(U, V ))|| 6 ||p(U, V )||

which concludes the proof. 2

3. Bundle topology and isomorphism classes

Define E1 to be the Cartesian product [0, 1]2 ×Mq with the identification

(1, x2,M) = (0, x2, V
−r
0 MV r0 ), x2 ∈ [0, 1], M ∈ Mq

and
(x1, 1,M) = (x1, 0, U

r
0MU−r

0 ), x1 ∈ [0, 1], M ∈ Mq
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and define the algebra bundle π1 : E1 7→ T2 by

π1(x1, x2,M) = (e2πix1 , e2πix2), (x1, x2,M) ∈ E1.

A map s : T2 7→ E1 is called a section if it is continuous and π1 ◦ s = I where I denotes the
identity map on T2. Since for every p ∈ T2, the fiber π−1

1 (p) = Mq, the set of sections under
pointwise operations is a C∗-algebra. The theorems above show that this algebra is isomorphic
to Ap/q. Furthermore, since points in T2 correspond to unitary equivalence classes of irreducible
representations, isomorphism of algebras induces homeomorphisms of T2. In order to compute
isomorphism classes of universal rational rotation C∗-algebras it is convenient to use a slightly
different bundle representation of Ap/q. Define W ∈ Pq

W (x1, x2) :=


1 0 0 0

0 e2πix1/q 0 0

0 0
. . . 0

0 0 0 e2πi(q−1)x1/q


and A ′

p/q :=WAp/qW
−1, which is ∗-isomorphic to Ap/q. Then A ′

p/q is represented as the algebra
of sections of the algebra bundle π2 : E2 7→ T2 where E2 is the Cartesian product T× [0, 1]×Mq

with the identification

(z1, 1,M) = (z1, 0, G
rMG−r), z1 ∈ T, M ∈ Mq

and

G(z1) :=


1 0 0 0 0

0 1 0 0 0

0 0
. . . 0 0

0 0 0 1 0

0 0 0 0 z1

 U0.

Gr is the clutching function of the bundle. Let Gin : T 7→ Aut∗q be the map defined by conjugation
by G. Using the arguments for vector bundles in [18], it can be shown that the isomorphism classe
of Ap/q is determined the homotopy class of Grin : T 7→ Aut∗q . Since π1(Gin) = −1, π1(G

r
in) = −r

which gives:

Theorem 4. Ap/q is isomorphic to Ap ′/q ′ iff q ′ = q and either p ′ = p or p ′ = q − p.

4. Requisite results

4.1. Hilbert spaces and adjoints

H is a Hilbert space with inner product < ·, · >: H × H 7→ C, norm ||v|| := √
< v, v >,

and metric d : H ×H → [0,∞) defined by d(v, w) := ||v − w||. B(H) is the Banach algebra of
bounded operators on H (continuous linear maps from H to H) with operator norm

||a|| := sup{ ||av|| : v ∈ H, ||v|| = 1 }.

The dual space H∗ is the set of continuous linear functions L : H 7→ C. For w ∈ H define
Lw ∈ H∗ by Lwv :=< v,w >, v ∈ H.
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Lemma 2. If L ∈ H∗ then there exists a unique w ∈ H such that L = Lw.

Proof. Rudin gives a direct proof ( [28], Theorem 4.12). If B is an orthonormal basis for H and
w :=

∑
b∈B

Lb b, then since for every v ∈ H, v =
∑
b∈B

< v, b > b, it follows that

Lv =
∑
b∈B

< v, b > Lb =

⟨
v,

∑
b∈B

Lb b

⟩
=< v,w >= Lw v.

Lemma 2 ensures the existence of adjoints. For a ∈ B(H) define its adjoint a∗ ∈ B(H) by
La∗w := Lw ◦ a, w ∈ H where ◦ denotes composition of functions. Therefore

< a v,w >=< v, a∗w >, v, w ∈ H.

Clearly a∗∗ = a, (ab)∗ = b∗a∗, and the Cauchy–Schwarz inequality gives

||a∗|| = sup{ | < a∗v, w > | : v, w ∈ H, ||v|| = ||w|| = 1} =

= sup{ | < v, aw > | : v, w ∈ H, ||v|| = ||w|| = 1} = ||a||

and

||a∗a|| = sup{ | < a∗av, w > | : v, w ∈ H, ||v|| = ||w|| = 1} =

= sup{ | < av, aw > | : v, w ∈ H, ||v|| = ||w|| = 1} = ||a||2.
(5)

(5) is called the C∗-identity. It makes B(H) equipped with the adjoint a C∗-algebra. The identity
operator I ∈ B(H) is defined by Iv := v for all v ∈ H.

U(H) := {U ∈ B(H) : UU∗ = U∗U = I},

the set of unitary operators, is a group under multiplication. A subalgebra A ⊂ B(H) is a
C∗-algebra if it is closed in the metric space topology on B(H) and a∗ ∈ A whenever a ∈ A. The
intersection of any nonempty collection of C∗-subalegras of B(H) is a C∗-algebra. If S ⊂ B(H)

the intersection of all C∗-subalgebras of B(H) that contain S is the C∗-algebra generated by S.
2

4.2. Matrix algebras

For m,n ∈ N, Cm×n denotes the set of m by n matrices with complex entries and Cn := Cn×1.

The adjoint of a ∈ Cm×n is the matrix a∗ ∈ Cn×m defined by a∗j,k := ak,j . Cn is a Hilbert space
with scalar product < v,w > := w∗v, v, w ∈ Cn. Clearly

B(Cn) = Mn

where for a ∈ Mn the adjoint of a as an operator corresponds to the adjoint of a as a matrix.
In denotes the n by n identity matrix whose diagonal entries equal 1 and other entries equal 0.
The operator norm of a ∈ Mn is ||a|| =

√
spectral radius a∗a where the spectral radius is the

largest moduli of the eigenvalues of a matrix. Thus Mn is a C∗-algebra. It is also a Hilbert
space a Hilbert space of dimension n2 with inner product

< a, b >:= Trace b∗a (6)
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and orthonormal basis ej,k := matrix with 1 in row j and column j with all other enties = 0.

Fix p, q ∈ N with p 6 q − 1 and gcd(p, q) = 1. Define U0, V0 ∈ Mq by

U0 :=


0 1 0 0
... 0

. . .
...

0 0 0 1

1 0 0 0

 , V0 :=


1 0 0 0

0 ω 0 0

0 0
. . . 0

0 0 0 ωq−1

 , (7)

Lemma 3. {(1/√q)U j0V k0 : 0 6 j, k 6 q − 1} is an orthonormal basis for Mq with the scalar
product defined by (6). Furthermore,

U0Vo = ωV0U0. (8)

Proof. (8) is obvious. The first assertion follows since

< U j0V
k
0 , U

m
0 V

n
0 > Trace V −n

0 U−m
0 U j0V

k
0 = Trace U j−m0 V k−n0 =

{
q if j = m and k = n,

0 otherwise.

Define the groups of unitary matrices Un := U(Cn) and special unitary matrices Sn := {a ∈
Un : det a = 1}. Clearly U0 and V0 are unitary. Since detU0 = detV0 = (−1)q−1, they are
special unitary iff q is odd. A map ψ : Mn 7→ Mn is a homomorphism if it is linear and
satisfies ψ(ab) = ψ(a)ψ(b) for all a, b ∈ Mn and an automorphism if is also a bijective. An
automorphism ψ is a ∗-automorpism if ψ(b∗) = ψ(b)∗ for all b ∈ Mn. Autn, Aut

∗
n denote the

group of all automorpisms, ∗-automorphisms of Mn. ψ ∈ Autn is called inner if there exists an
invertible a ∈ Mn such that ψ(b) = aba−1 for every b ∈ Mn.

Theorem 5 (Skolem–Noether). Every ψ ∈ Autn is inner.

Proof. The algebra Mn is simple, meaning it has no two-sided ideals othe that itself ( [29], 11.41),
so the result follows from the classic Skolem–Noether theorem. An elementary constructive proof
is given in [32]. 2

Theorem 6. If ψ ∈ Aut∗n then there exists a ∈ Un such that ψ(b) = aba∗ for every b ∈ Mn.

Proof. Every ψ ∈ Aut∗n induces an irreducible representation ψ : Mn → B(Cn) so Theorem 2
implies that there exists a basis {b1, . . . , bn} with respect to which ψ(U0) has the matrix rep-
resentation z1U0 and ψ(V0) has the representation z2V0. Since Un0 = V n0 = I, zn1 = zn2 = 1 so
without loss of generality this basis can be chosen to make z1 = z2 = 1 and then ψ(a) = aba−1−1

where aej = bj and {e1, . . . , en} is the standard basis for Cn. This theorem can also be derived
as a corollary of of Theorem 5. Clearly ψ(In) = In. Theorem 5 implies that there exists an
invertible a ∈ Mn such that ψ(b) = aba−1 for all b ∈ Mn. Since ψ is a ∗-homomorphism
ab∗a−1 = (aba−1)∗ = (a−1)∗b∗a∗ hence a∗ab∗ = b∗a∗a for every b ∈ Mn which implies that
a∗a = c In for some c > 0. Replacing a by a/

√
c gives the conclusion.

Corollary 1. Let Tn ⊂ T be the subgroup of n-th roots of unity. Tn In ⊂ Sn is isomorphic to
Z/nZ. Aut∗n is isomorphic to the quotient group Sn/Tn In. The fundamental group π1(Aut∗n) is
isomorphic to Z/nZ.

Proof. Assertion one is obvious. Define ζ : Un 7→ Aut∗n by ζ(a)(b) := aba∗. ζ is a
∗-homomorphism, kernel ζ = T In, and Corollary 1 implies that ζ is onto. The first homo-
morphism theorem of group theory ( [33], 7.2) implies that Aut∗n is isomoprhic to Un/T In. Since
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Sn = (TIn)((TnIn) and Tn In = Sn ∩ (TIn), the second isomorphism theorem of group theory
( [33], 7.3) implies that Aut∗n is isomporphic to Sn/TnIn. Sn is simply connected ( [17], Proposi-
tion 13.11) hence since TnIn is discrete Sn is the univeral cover of Sn∩(TIn) hence the discussion
in ( [18], 1.3) implies the last assertion.

4.3. Spectral Decomposition Theorem for Unitary Operators

E ∈ B(H) is called a projection if E∗ = E and E2 = E. Then P : H 7→ PH is orthog-
onal projection. A collection of projections {Eφ : φ ∈ [0, 2π] is called a spectral family if
Eφ1Eφ2 = Eφ2Eφ1 = Eφ1 whenver φ1 6 Eφ2.

Let A,P,N ∈ B(H). A is self–adjoint if A∗ = A. P ∈ B(H) is positive if < Pv, v >> 0

for all v ∈ H. N ∈ B(H) is called normal if AA∗ = A∗A. Clearly self-adjoint and unitary
operators (or transformations) are normal. Furthermore eigenvalues of self–adjoint operators
are real and eigenvalues of unitary operators have modulus 1. If dim H < ∞, then H admits
an orthonormal basis of eigenvectors ([29], Theorem 9.33). Therefore every unitary matrix in
Mn can be diagonalized and its diagonal entries have modulus 1. The following result, copied
verbatim from the classic textbook by F.Riesz and B. Sz.-Nagy ( [27], p. 281), extends this
diagonalization to unitary operators on arbitrary Hilbert spaces.

Theorem 7. Every unitary transformation U has a spectral decomposition

U =

∫ 2π

−0

eiφdEφ,

where {Eφ} is a spectral family over the segmen 0 6 φ 6 2π. We can require that Eφ be continuous
at the point φ = 0, that is, E0 = 0; {Eφ} will then be determined uniquely by U. Moreover, Eφ
is the limit of a sequence of polynomials in U and U−1.

Proof. The authors of [27] reference 1929 papers by von Neumann [25] and Wintner [37],
1935 papers by Friedricks and Wecken, and a 1932 book by Stone. They observe that the
theorem can be deduced from the one on symmetric transformation ( [27], p. 280 ) (since
U = A + iB where A := (U + U∗)/2 and B := −i(U − U∗)/2 are symmetric) or from
the theorem on trigonometric moments ( [27], Section 53), but they give a direct three page

proof. We sketch their proof. For every trigomometric polynomial p(eiφ) =
n∑
−n
cke

ikφ we as-

sociate the transformation p(U) :=
n∑
−n
ckU

k. This gives a ∗-homomorphism of the algebra of

trigonometric polynomials (where ∗ means complex conjugation) into the subalgebra of B(H)

generated by U and U∗ = U−1. Clearly if p(eiφ) is real–valued then p(U) is self-adjoint. If
p(eiφ) > 0 the Riesz–Fejer factorization Lemma ( [27], Section 53) implies that there ex-
ists a trigonometric polynomial q(eiφ) with p(eiφ) = q(eiφ)q(eiφ) hence p(U) = q(U)q(U)∗.

Therefore < p(U)v, v >=< q(U)v, q(U) >> 0, v ∈ H, hence p(U) is a positive operator.
For 0 6 ψ 6 2π let eψ be the characteristic function of (0, ψ] extended to a 2π periodic
function on R. Let pn be a monotonically sequence of positive trigonometric functions with
limn→∞ pn(U)v = Eψv, v ∈ H (pn(U) converges to Eψ ∈ B(H) in the strong operator topol-
ogy). Eψ is a projection since E∗

ψ = Eψ and E2
ψ = Eψ, so , and the set {Eφ : φ ∈ [0, 2π]

is a spectral family. Since the functions eψ are upper semi–continuous limχ→ψ,χ>ψ Eχ = Eψ.
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Given ϵ > 0 choose 0 < ψ0 < ψ1 < · · · < ψn = 2π with max (ψk+1 − ψk) 6 ϵ and choose
φk ∈ [ψk−1, ψk], k = 1, . . . , n. Then for φ ∈ (ψk−1, ψk]∣∣∣∣∣eiφ −

n∑
k=1

eiφk [eψk
− eψk−1

]

∣∣∣∣∣ = |eiφ − eiφk)| 6 |φ− φk| 6 ϵ

with a similar inequality for φ = 0. Since this inequality holds for all φ ∈ [0, 2π]∣∣∣∣∣
∣∣∣∣∣U −

n∑
k=1

eiφk (Eψk
− Eψk−1

)

∣∣∣∣∣
∣∣∣∣∣ 6 ϵ

A subspace H1 ⊂ H is called proper if H1 ̸= {0} and H1 ̸= H. The following is an immediate
consequence of Theorem 7

Corollary 2. If U ∈ U(H) then either U = γI for some γ ∈ T or there exists a projection
operator E : H 7→ H satisfying

1. E is the limit in the strong operator topology on B(H) of polynomials p(U,U−1).

2. EH is a proper closed U -invariant subspace of H.

4.4. Irreducible representations and Schur’s lemma

A representation of a C∗-algebra A on a Hilbert space H is a ∗-homomorphism ρ : A 7→ B(H).

A subspace H1 ⊂ H is called ρ-invariant if ρ(a)H1 ⊂ H1 for every a ∈ A. ρ is irreducible iff it H
has no closed proper ρ-invariant subspaces. The following result extends Shur’s lemma for finite
dimensional representations ( [29], 11.33) for unitary operators.

Theorem 8 (Schur’s Lemma). If ρ : A 7→ B(H) is an irreducible representation and U ∈ U(H)

commutes with ρ(a) for every a ∈ A, then there exists γ ∈ T with U = γI.

Proof. If the conclusion does not hold then Corollary 2 implies that there exists a projection E

satisfying conditions (1) and (2). Condition (1) implies that Uρ(a) = ρ(a)U for every a ∈ A.
The EH ⊂ H is closed and ρ-invariant since for every a ∈ A, ρ(a)EH = Eρ(a)H. Condition (2)
asserts that EH is a proper subspace thus contradicting the hypothesis that ρ is irreducible, and
concluding the proof.

Corollary 3. If A is an commutative C∗-algebra generated by a set of unitary operators and
ρ : A 7→ B(H) is irreducible then dim H = 1 and there exists a ∗-homomorphism Γ : A → C with
ρ(a) = Γ(a)I for every a ∈ A.

Proof. Follows from from Theorem 8 since if u ∈ A is unitary the ρ(u) ∈ U(H) and ρ(u)

commutes with ρ(a) for every a ∈ A.

5. Remarks

We relate concepts introduced to explain rational rotation algebras to general C∗-algebra
theory, especially two breakthrough results obtained by teams of computer scientists.

Remark 1. Dauns [14] initiated a program to represent C∗-algebras by continuous sections over
bundles over their primitive ideal spaces (kernels of irreducible representations equipped with
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the hull-kernel topology). The primitive ideal space of rational rotation algebras is homemorpic
to the torus T2.

Remark 2. Bratteli, Elliot, Evans, and Kishimoto [5] represent fixed point C∗-subalgebras of
Ap/q by algebras of sections of Mq-algebra bundles over the sphere S2, which is the space of
orbits of T2 under the map g 7→ g−1.

Remark 3. Elliot and Evans [15] derived the structure of irrational rotation algebras. They
proved that if p/q < θ < p ′/q ′, then Aθ can be approximated by a C∗-subalgebra isomorphic to
C(T)⊗Mq ⊕C(T)⊗Mq ′ . This approximation, combined with the continued fraction expansion
of θ, represents Aθ as an inductive limit of these subalgebras.

Remark 4. Williams [36] gives an extensive explanation of crossed product C∗-algebras, which
include rotation algebras.

Remark 5. Kadison and Singer [21] formulated a problem about extending pure states. Such an
extension is used in the Gelfand–Naimark–Segal construction which we used to prove Theorem 3.
This problem was shown to be equivalent to numerous problems in functional analysis and signal
processing [6], dynamical systems [23, 24], and other fields [3]. Weaver [35] gave a discrepancy–
theoretic formulation that was proved in a seminal paper by three computer scientists: Marcus,
Spielman, and Shrivastava [19].

Remark 6. Courtney [8, 9] proved that the class of residually finite dimensional C∗-algebras,
those whose structure can be recovered from their finite dimensional representations, coincides
with the class of algebras containing a dense set of elements that attain their norm under a finite
dimensional representation, this set is the full algebra iff every irreducible representation is finite
dimensional (as for rational rotation algebras), and related these concepts to Conne’s embedding
conjecture [7]. Her publications [10–12] cite many references that discuss equivalent formulations
of this conjecture.

Remark 7. In January 2020 five computer scientists: Ji, Natarajan, Vidick, Wright and Yuen
submitted a proof that the Conne’s embedding conjecture is false. As of November 2021 their
paper is still under peer review. However, the editors of the ACM decided, based on the enormous
interest that their paper attracted, to publish it [20].
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Учебник по рациональному вращению C∗-Алгебры

Уэйн М. Лоутон
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Алгебра вращений Aθ — это универсальная C∗-алгебра, порожденная унитарными
операторами U, V , удовлетворяющими коммутационному соотношению UV = ωV U , где ω = e2πiθ.

Они рациональны, если θ = p/q с 1 6 p 6 q − 1, в противном случае иррациональны. Операторы
в этих алгебрах связаны с квантовым эффектом Холла [2, 26, 30], квантовыми системами [22, 34]
и эффектным решением проблемы Тена Мартини [1]. Брабантер [4] и Инь [38] классифицировали
C∗-алгебры рационального вращения с точностью до ∗-изоморфизма. Стейси [31] построила свои
группы автоморфизмов. Они использовали известные специалистам методы: коциклы, скрещен-
ные произведения, классы Диксмье-Дуади, эргодические действия, К-теорию и эквивалентность
Мориты. Эта пояснительная статья определяет Ap/q как C∗-алгебру, порожденную двумя опера-
торами в гильбертовом пространстве, и использует линейную алгебру, ряды Фурье и конструкцию
Гельфанда–Наймарка–Сигала [16] для доказательства его универсальности. Затем он представля-
ет его как алгебру сечений расслоения матричной алгебры над тором для вычисления его класса
изоморфизма. Раздел примечаний связывает эти концепции с общей теорией операторной алгебры.
Мы пишем для математиков, не являющихся экспертами в C∗-алгебре.

Ключевые слова: топология расслоения, конструкция Гельфанда–Наймарка–Сигала, неприво-
димое представление, спектральное разложение.
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