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Abstract. The development of modern engineering, technology, science and education is impossible
without the use of computer mathematics systems. Nowadays, an engineer should be equally proficient
in both methods of mathematical modeling of technical objects and processes using theoretical models
and methods of simulation modeling in computer mathematics systems. This article focuses on a labo-
ratory class, in which students are suggested to perform mathematical modeling of a production process
considering it as a Markov process, based on Kolmogorov equations. Students are asked to implement
the theoretical solution to the model for specific numerical data and to carry out the computer model-
ing of the process of searching for the limiting probabilities of system states using the authors’ virtual
laboratory complex. This complex was developed on the platform for simulation of business systems
AnyLogic, offering the three approaches to modelling: discrete event, agent based and system dynam-
ics. The authors’ lab-based system allows real-time modeling of such production process parameters as
workload, equipment downtime, location of agents on attractors, etc. The article suggests the imple-
mentation of 2D and 3D production process visualization, which greatly simplifies the management and
decision-making process.
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Introduction

The most important trend in the development of modern society is the digitalization of eco-
nomic and production processes. In the context of active innovative changes taking place in
science and technology, an engineer is required to have integrative creative skills, readiness to
carry out multifunctional research activities based on mathematical and computer modeling with
the use of digital tools.
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The process of science and technology development based on modeling requires the improve-
ment of mathematical foundations that make it possible to: model, develop algorithms, use the
computer technology apparatus, evaluate models reliability in quantitative estimation, analyze
and optimize. All this means that teaching mathematical modeling, based on the integration
of mathematical and applied science, in combination with information technology, is a current
trend in the development of modern engineering education. This corresponds to the fact that a
significant part of the mathematical activity of a person in general and an engineer in particular,
is associated with work in the field of information technology [1, 2].

Mathematical modeling, along with natural experiments, is the main way of research and
obtaining new knowledge in various fields of natural science. The active use of mathematical
modeling in various fields of human activity is due to many factors, the main of which are the
complication of the class of problems under study, the study of which requires the creation of
new expensive experimental facilities or model objects; the need to address environmental, social
and other problems; the impossibility of carrying out full-scale (physical, chemical, economic,
etc.) modeling (in this case, mathematical modeling is the only possible one) [3].

Analyzing the practice of teaching engineering students, it should be noted that mainly the
process of studying such disciplines as Mathematics, Probability Theory, Applied Mathematics,
Mathematical Programming, Operations Research, etc., is based on the use of the mathemati-
cal packages (Mathematica, Maxima, Maple, Derive, MathCad, Matlab), which are classified as
engineering programs for computer-based design [4–6]. They make it possible to perform such
routine operations as converting expressions, finding roots of equations, derivatives and indefi-
nite integrals, etc., with little or no user intervention. However, this is not enough to study the
modeling process, since many mathematical models cannot be solved due to their complexity and
unsolvability in an analytic form. Therefore, simulation modeling becomes a universal tool in
engineering education. By simulation modeling we usually mean the values calculation of some
characteristics of a process, developing over time, by reproducing the course of this process on
a computer using its mathematical model, and it is either impossible or extremely difficult to
obtain the required results in other ways [7, 8]. Reproduction of the process on the computer
with the help of a mathematical model is commonly called a simulation experiment.

The modeling process with the use of simulation models includes such stages as making a
model, programming, conducting simulation experiments, processing and interpreting simulation
results [9]. With the advent of simulation models, the concept of modeling has changed, which
is now considered as the only process of building and researching models, that has a software
support.

In the 90-s of the last century, simulation environments appeared (Arena, Extend, MicroSaint,
Enterprise Dynamics, etc.) containing a non-programming user interface, input and output an-
alyzers, and the ability to animate simulation. Such environments do not require programming
in the form of a sequence of commands. Instead of compiling a program, the user builds the
model by transferring ready-made blocks from the library to the working field and establishing
links between them. Visual modeling packages enable the user to enter the modeled system
description in a natural for the application area and mainly graphical form, as well as visually
present the simulation results, for example, in the form of diagrams or animation [10].

One of the main advantages of simulation modeling systems is that they enable the user
not to worry about the model software implementation as a sequence of executable statements.
Thus they create some extremely convenient environment on the computer in which you can
create virtual parallel systems and conduct experiments with them. The graphical environment
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becomes similar to a physical test bench, but instead of heavy metal boxes, cables and real mea-
suring equipment, oscillographs and recorders, the user deals with their images on the display
screen [11]. Besides, the user can see and evaluate the simulation results during the experiment
and, if neces-sary, actively intervene in it.

An interesting direction in computer modeling is virtual reality. The term "virtual reality"
appeared in the late 70-s of the twentieth century (the so-called three-dimensional macro mod-
els of reality, which were created on a computer and gave the effect of a person’s presence in
the virtual world) [12]. Virtual reality is a highly developed form of computer simulation that
allows users to immerse themselves in a virtual world and immediately act in it using special
touch-sensitive devices. Such devices (virtual reality helmet, glasses, gloves, capsules, etc.) as-
sociate the user’s movements with audiovisual effects. The user’s visual, auditory, tactile and
motor sensations are replaced by their computer-generated imitation. As studies by domestic
and foreign authors have shown, the alternative world is attractive to many precisely because of
its "virtuality" [13].

Thus, modern mathematical education of engineering students should be based on the inte-
gration of mathematical and computer simulation modeling. At the same time, it is necessary to
pay more attention to the design of methodological strategies for teaching mathematical model-
ing [14–17].
The introduction of innovative teaching methods based on the integration of mathematical and
computer modeling into the process of mathematical training of future engineers is one of the
ways to increase the efficiency of the mathematical component of engineering education, which
enables to form in future engineers both mathematical and digital competencies that they need
in their future professional activities.

The purpose of the article is to show the implementation of a mathematical model in the
form of the Markov process based on the Kolmogorov equations in the production process as an
integration of mathematical and computer modeling, using the example of laboratory work for
engineering students.

1. Materials and methods

The range of problems to be solved determined the methods of the present study.
The first group of methods is connected with solving problems of teaching higher and applied

mathematics to engineering students. In the theory and methodology of teaching mathematics,
the most important teaching methods are search methods. One of these methods is mathematical
modeling, which contributes to the development of all mathematical activity components of a
future engineer in students:

1. actual knowledge, skills determined by the educational program;

2. mental operations and methods inherent in mathematical activity;

3. mathematical style of thinking;

4. mastering the methods of modeling real processes, including computer simulation [7, 18–20].

This method is implemented by solving professionally-oriented problems, the condition and
requirement of which deal with engineering activity objects. Such problems are aimed at master-
ing the techniques of mathematical modeling through reaching the following stages of solution:
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• examining the object of modeling, formalizing the problem data;

• conceptual setting of the modeling problem, determining the functioning patterns of the
modeling object;

• mathematical setting of the original problem, reducing it to the solution of the mathemat-
ical problem;

• choice and substantiation of the method for solving the obtained mathematical problem;

• solution of the mathematical model of the modeling object;

• analysis of the obtained solution, validation of the model [20].

The second group of methods is related to the tasks of developing digital competencies of
future engineers [21, 22]. Computer technology is constantly changing and fundamentally altering
mathematics education [23]. Therefore, in teaching mathematical disciplines, it is necessary to
use simulation modeling methods, which presuppose, on the basis of a mathematical model,
creating a simulation model of a process or a simulation object. These methods make it possible to
analyze the mathematical model in action, to study processes and make changes to the simulation
model in the course of work, to better analyze the operation of the system and quickly solve the
problem [11]. Such models, developed with the help of special software, reproduce the events
occurring in a real system step by step [24]. The simulation models advantage is the ability to
replace the process of changing events in the system under study in real time with an accelerated
process of changing events at the program pace.

The simulation models development is possible on the AnyLogic platform, a tool that offers
the possibility of multi-method simulation using all three modern approaches: discrete event,
agent based and system dynamics. These three methods can be used in any combination on
the basis of one software to model a system of any complexity. AnyLogic has different visual
modeling languages: process diagrams, state diagrams, block diagrams, stock and flow diagrams.

We used the AnyLogic platform to develop a virtual laboratory complex that contains labo-
ratory works on the topics listed in Tab. 1 and is focused on training road transport engineers
majoring in fields: "Traffic Organization", "Transport technologies", "Organization of trans-
portation and management in road transport". For example, in road transport engineers’ pro-
fessional activity there arise tasks related to optimal management of traffic flows, organization
of traffic in road transport and ensuring its safety. Such problems can be solved using linear,
dynamic and stochastic programming methods.

The virtual laboratory complex suggested is used in teaching Applied Mathematics to en-
gineering students of any specialization.

As an example of a virtual laboratory work from the laboratory complex developed by us,
let us consider the one on the topic "Markov processes", in which systems designed for multiple
use in industry are modeled using the queuing theory.

Such systems play an important role in many areas of economy, finance, production and ev-
eryday life. Systems such as computer networks, systems for collecting, storing and processing
information, transport systems can be considered as a kind of QS. Each QS includes in its struc-
ture a certain number of service devices, which are called service channels (devices, lines).

The mathematical analysis of the queuing systems operation is considerably simplified if they
are considered as a Markov process or a stochastic process with no consequence. An example of
a Markov process is any technological process related to transportations and traffic management,
logistics, etc.
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Table 1. Topics and content of the virtual laboratory complex

Number Topic of laboratory work Modeled processes and methods
1. Graphical methods of

solving linear program-
ming problems

Integer linear programming model. Cutting plane
method

2. Simplex method for solv-
ing linear programming
problems

Optimization of logistics processes in transport. Go-
mory method

3. Methods for solving the
transport problem

Method of potentials as applied to transport infras-
tructure models

4. Dynamic programming Bellman’s principle of optimality. Finding the most
reliable route in relation to transport infrastructure
models

5. Equipment replacement
tasks

Finding optimal terms for equipment replacement in
transport and technological models

6. Bellman equations Allocation of funds between branches for n years in
transport infrastructure models

7. Assignment model The Hungarian method for solving assignment prob-
lems

8. Network models Problem of the maximum flow in relation to the ur-
ban traffic optimization model

9. Floyd model Model of optimizing the route network of goods and
passengers transportation

10. Combinatorial models Branch-and-Bound method of implementing the
“travelling salesman” problem

11. Probability models Deterministic and stochastic models of inventory
management

12. Elements of game theory Game models 2×2. Solving games in mixed strategies
13. Game models 2× n Graphical solution of games with a given payoff ma-

trix 2× n
14. Solving matrix games Typical model for solving matrix games using linear

programming methods
15. Decision making under

uncertainty
Decision-making models in transport systems based
on Laplace, minimax, Savage, Hurwicz criteria

16. Markov stochastic pro-
cesses

Practical implementation of Markov processes study
in transport systems modeling

17. Queuing systems (QS) The process of death and reproduction. Multichan-
nel system with failures (Erlang problem)

The article deals with a virtual laboratory work on the topic "Markov processes" and studies
the practical implementation of the investigation of queuing systems in industrial systems model-
ing. In the paper, students are asked to build a mathematical description of the system based on
the Kolmogorov equations on the basis of a given state graph of a certain technological process
associated with road transport. Then they model the same process using a simulation model, in
which such parameters of the production process as workload of workplaces, equipment down-
time, location of agents on attractors, etc., vary in the model time mode. Moreover, it becomes
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possible to use 2D and 3D visualization of production process, which significantly simplifies the
management and decision-making. This approach to the educational process organization is a
mixed form of education that is being actively implemented in many educational organizations
[25, 26].

2. Results

In the laboratory work under consideration, students are asked to determine the optimal
operating mode of a motor industrial enterprise, for example transport, that has two conditional
workplaces (for example, a warehouse for finished products, a garage, a repair shop, etc.), which
ensures minimal loss of time while meeting the needs of a certain production process. The
simulated production process is considered as a queuing system, described using Markov process
[27], the labeled state graph of which is shown in Fig. 1.

Fig. 1. Labeled system state graph, where Si — system state; λij — flow of events intensity

It is assumed that the system has four states, which can be conditionally described as: S0

(both workplaces are occupied or not available), S1 (workplace 1 is available when workplace 2
is not available), S2 (workplace 1 is not available when workplace 2 is available), S3 (both work-
places are not occupied, i.e. available). Flow of events intensities λij represents the frequency of
transitions from state Si to state Sj .

The modeling is carried out step by step. Let us describe these steps.

Step 1. Drawing up a mathematical model of the queuing system under consideration. At this
stage, group educational work is carried out with students, which can be described with the help
of the following reasoning.

Ideally, we assume that the process considered in the system is Markov process, and also that
all system transitions from state Si to state Sj are influenced by the simplest flows of events
with intensities λij .

If we consider, for example, warehouse terminals as workplaces, then the transition from one
state to another is influenced by the flow of events — the arrival of machines for unloading, which
causes the occupancy of workplaces, and therefore their unavailability to other machines. The
reverse transition takes place when the terminal is free from the unloaded machine, which makes
the workplace available for other machines (Tab. 2).

The pi(t) is the probability that at time t the system will be in state Si, i = 0, 1, 2, 3.

The mathematical description of the simulated Markov random process with discrete states and
continuous time is the system of Kolmogorov differential equations for probabilities of states.
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Table 2. Interpretation of system states

Workplaces state System
state

Production situation Symbol

Both workplaces are functioning S0 Both terminals are occupied for
unloading

(+,+)

Workplace 1 is not functioning,
workplace 2 is functioning

S1 Terminal 1 is available, terminal
2 is occupied for unloading the
machine

(−,+)

Workplace 1 is functioning,
workplace 2 is not functioning

S2 Terminal 1 is occupied for un-
loading the machine, terminal 2
is available

(+,−)

Both workplaces are not func-
tioning

S3 Both terminals are not occupied
and available for unloading

(−,−)

Writing out the Kolmogorov equations for the states given in the example under consideration,
we obtain: 

dp0
dt

= λ10p1 + λ20p2 − (λ01 + λ02) p0,

dp1
dt

= λ01p0 + λ31p3 − (λ10 + λ13) p1,

dp2
dt

= λ02p0 + λ32p3 − (λ20 + λ23) p2,

dp3
dt

= λ13p1 + λ23p2 − (λ31 + λ32) p3.

(1)

The Kolmogorov equations make it possible to find all probabilities of states as a function of
time, but the probabilities of system pi(t) in the limiting stationary mode, i.e., at t → ∞, are of
particular interest. They are called limiting probabilities of states, which are to be found.

The limiting probability has a clear meaning: it shows the average relative time the system
spends in this state.

Since the limiting probabilities are constant, replacing their derivatives
dpi
dt

in the Kolmogorov
equations (1) with zero values, we obtain a system of linear algebraic equations describing the
stationary mode: 

(λ01 + λ02) p0 = λ10p1 + λ20p2,

(λ10 + λ13) p1 = λ01p0 + λ31p3,

(λ20 + λ23) p2 = λ02p0 + λ32p3,

(λ31 + λ32) p3 = λ13p1 + λ23p2.

(2)

Thus, a mathematical model in the form of a system of linear equations is obtained.

Step 2. Solution of the mathematical model obtained at step 1. Students are given individual
initial data in the form of numerical values of intensities λij and are asked to simulate the system.
For example, such tasks can include the following: do the following tasks for system S, the state
graph of which is shown in Fig. 2:

• find the limiting probabilities if
λ01 = 1, λ02 = 2, λ10 = 2, λ13 = 2, λ20 = 3, λ23 = 1, λ31 = 3, λ32 = 2;
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• find the total profit from system S operating in the stationary mode, if it is known that
the operation of the first and the second workplaces per time unit brings the income
respectively I1 = 10 monetary units and I2 = 6 monetary units, and their availability
entails costs respectively E1 = 4 monetary units and E2 = 2 monetary units;

• substantiate whether the modernization of the system will be effective if it entails a halving
of the average time of unavailability of each workplace, provided that this entails a doubling
of the expenses of their availability.

Students need to understand that the predictive properties of a model strongly depends on the
values of the model parameters. Identifying adequate model parameters λij (i, j = 0, 1, 2, 3)

is often considered as a delicate task in mathematical modeling. This process is achieved based
either on expert knowledge or inference procedures. Students can participate in this process, for
example, during practical training by conducting a natural experiment.

A student, substituting the given numerical data into the system (2), receives a linear equa-
tions system with respect to the variables pi, i = 0, 1, 2, 3.

3p0 = 2p1 + 3p2,

4p1 = p0 + 3p3,

4p2 = 2p0 + 2p3,

p0 + p1 + p2 + p3 = 1.

(3)

Having solved the system (3), students obtain the values of limiting probabilities p0 = 0.4,

p1 = 0.2, p2 = 0.27, p3 = 0.13. The interpretation of the found values of limiting probabilities is
given in Tab. 3.

Table 3. Interpretation of the limiting probabilities of system states

System
state

Symbol Limiting
probabilities

Production interpretation

S0 (+,+) p0 = 0.4 40% of time both terminals are occupied for un-
loading

S1 (–,+) p1 = 0.2 20% of time Terminal 1 is available, terminal 2
is occupied for unloading the machine

S2 (+,–) p2 = 0.27 27% of time terminal 1 is occupied for unloading
the machine, terminal 2 is available

S3 (–,–) p3 = 0.13 13% of time both terminals are not occupied

Thus, at the second step of modeling, students find a connection between the states of work-
places and the limiting probabilities of the system. Students should pay special attention to the

fact that the sum of the limiting probabilities of states should be equal to 1:
3∑

i=0

pi = 1, which

they can easily verify [28].

Step 3. Calculation of profits and expenses from the functioning of workplaces 1 and 2. The
student is asked to consider elementary events: Ai — i-workplace is functioning, as well as
opposite events: A′

i — i-workplace is not functioning, where i = 1, 2.

The incomes and expenses set in step 2 are associated with the occurrence of these events
(Tab. 4). Then, students are asked to express Si through complementary events Ai and A′

i,
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considering Si as a random events, and write the results in Tab. 5.

Since the condition
3∑

i=0

pi = 1 is satisfied, then the events Si constitute a complete group of

events. The calculation of possible incomes can be made taking into account the reasoning that
students can do on their own or with the help of a teacher.

Table 4. Correspondence of incomes and expenses to the state of workplaces

Event Symbol for
event

Income,
monetary

Expenses,
monetary
units

Workplace 1 is functioning A1 I1 = 10 –
Workplace 2 is functioning A2 I2 = 6 –
Workplace 3 is not functioning A′

1 – E1 = 4
Workplace 4 is not functioning A′

2 – E2 = 2

Table 5. Correspondence of incomes and expenses to the state of workplaces

System state Expression through com-
plementary events

Probability

S0 S0 = A1 ·A2 P (S0) = p0
S1 S1 = A′

1 ·A2 P (S1) = p1
S2 S2 = A1 ·A′

2 P (S2) = p2
S3 S3 = A′

1 ·A′
2 P (S3) = p3

1) Profit from the functioning of workplace 1 can be obtained if the system is in state S0 or
S2. Event B1, consisting in the fact that workplace 1 operates in the system under consideration,
is the sum of events S0 and S2, that is B1 = S0 + S2.

To find the probability of event B1, we use Theorem 2.1 [28] (р. 56):

Theorem 2.1 If events A and B are mutually exclusive, then P (A+B) = P (A) + P (B).

Since events S0 and S2 cannot occur at the same time, they are mutually exclusive. According
to Theorem 1:

P (B1) = P (S0 + S2) = P (S0) + P (S2). (4)

In consideration that P (S0) = p0, P (S2) = p2 and taking into account (4), we can get the
probability of event B1 :

P (B1) = p0 + p2 = 0.4 + 0.27 = 0.67.

2) The probability of event B′
1, opposite to event B1 — workplace 1 does not function in the

system under consideration, can be found according to Theorem 2.2 [28] (р. 58):

Theorem 2.2 If A and A′ are complementary events, then P (A) + P (A′) = 1.

It follows from Theorem 2.2 that P (B1) + P (B′
1) = 1, from which we find

P (B′
1) = 1− P (B1) = 1− 0.67 = 0.33.
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The same probability can be found using Theorem 2.1:

P (B′
1) = P (S1 + S3) = p1 + p3 = 0.2 + 0.13 = 0.33.

3) Considering similarly event B2, consisting in the fact that workplace 2 functions in the
system under consideration, as well as opposite event B′

2 — workplace 2 functions in the system
under consideration, we have:

according to Theorem 2.1: P (B2) = P (S0 + S1) = p0 + p1 = 0.4 + 0.2 = 0.6;

according to Theorem 2.2: P (B′
2) = 1− p(B2) = 1− 0.6 = 0.4;

or according to Theorem 2.1: P (B′
2) = P (S2 + S3) = p2 + p3 = 0.27 + 0.13 = 0.4.

4) Students are asked to calculate economic indicators by filling in Tab. 6.

Table 6. Calculation of economic system indicators before modernization

Economic indicator Formula Value, monetary units
Workplace 1 functioning income P (B1) · I1 0.67 · 10 = 6.7
Workplace 2 functioning income P (B2) · I2 0.6 · 6 = 3.6
Total system income I= P (B1) · I1+P (B2) · I2 I= 6.7 + 3.6 = 10.3
Workplace 1 non-functioning expense P (B′

1) · E1 0.33 · 4 = 1.32
Workplace 2 non-functioning expense P (B′

2) · E2 0.4 · 2 = 0.8
Total system expenses E= P (B′

1)·E1+P (B′
2)·E2 E=1.32 + 0.8= 2.12

Total profit from the system operation P = I − E P = 10.3− 2.12= 8.18

Step 4. Substantiation of possible efficiency of production modernization. To do this, changes
are made to the initial data of the problem. Thus, the necessity to halve the average time of
working places availability will lead to the increase in the frequency of returning to work.

With new data, students deal with the following task:

For the system S, the state graph of which is shown in Fig. 1, find:

• limiting probabilities if the intensities of the inner circle do not change: λ01 = 1, λ02 = 2,

λ10 = 2, λ13 = 2, λ23 = 1, and the intensities of the outer circle of the labeled state graph
shown in Fig. 1 are doubled: λ10 = 4, λ31 = 6, λ32 = 4, λ20 = 6;

• changes in the total profit from operation of system S in the stationary mode, if it is
known that the operation of workplace 1 and workplace 2 per unit of time brings income,
respectively, in I1 = 10 monetary units and I2 = 6 monetary units, and the costs associated
with their availability will double and amount to E′

1 = 2E1 = 8 monetary units and
E′

2 = 2E2 = 4 monetary units for workplace 1 and 2, respectively;

• evaluate the effectiveness of halving the average time of unavailability of each workplace,
while doubling the cost of their availability.

The student, substituting new numerical values of intensities into system (2), obtains a system
of equations:

(1 + 2) · p0 = 4 · p1 + 6 · p2,
(4 + 2) · p1 = 1 · p0 + 6 · p3,
(6 + 1) · p2 = 2 · p0 + 4 · p3,
p0 + p1 + p2 + p3 = 1.

⇔


3 · p0 = 4 · p1 + 6 · p2,
6 · p1 = 1 · p0 + 6 · p3,
7 · p2 = 2 · p0 + 4 · p3,
p0 + p1 + p2 + p3 = 1.

⇔


p0 = 0.6,

p1 = 0.15,

p2 = 0.2,

p3 = 0.05.

(5)
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Step 5. Calculation of the total profit of the system, taking into account the modernization,
connected with the production need. To do this, students can use the reasoning done in Step 3.

As a result, taking into account (5) and formulas from Tab. 2, the following should be calcu-
lated:

• income from the operation of workplace 1 and workplace 2:

P (B1) · I1 = (p0 + p2) · 10 = (0.6 + 0.2) · 10 = 0.8 · 10 = 8,

P (B2) · I2 = (p0 + p1) · 6 = (0.6 + 0.15) · 6 = 0.75 · 6 = 4.5.

• income from availability of workplace 1 and workplace 2:

P (B′
1) · E1 = (p1 + p3) · 8 = (0.15 + 0.05) · 8 = 0.2 · 8 = 1.6,

P (B′
2) · E2 = (p2 + p3) · 4 = (0.2 + 0.05) · 4 = 0.25 · 4 = 1.

• total income and expenditure of the system:

I ′ = P (B1) · I1 + P (B2) · I2 = 8 + 4.5 = 12.5,

E′ = P (B′
1) · E1 + P (B′

2) · E2 = 1.6 + 1 = 2.6.

• total system profit: P ′ = I ′ − E′ = 12.5− 2.6 = 9.9 (monetary units).

Analyzing the feasibility of upgrading production in the context of economic benefits of
changes made to the technological process, students should compare the total profit of the system
before and after the modernization. Since the profit received after the modernization P ′ = 9.9

monetary units is larger than before it P = 8.18 monetary units, we come to the conclusion that
the modernization is economically feasible.

Step 6. Modeling the considered production system using an idealized virtual model of the
Markov process developed on the AnyLogic platform using a discrete-event approach.
Fig. 2 shows the image of the computer screen in the virtual laboratory work developed by us
and the tables with the calculation of expenses and profits for the workplaces’ functioning.

Working with a virtual model students observe that:

1. With an increase in the model time interval, the empirical values of the virtual model tend
to the theoretical values found using the mathematical apparatus;

2. All given numerical values dynamically change over the course of model time in accordance
with built-in functions;

3. Text fields allow an interactive change of the problem condition in order to obtain answers in
dynamics, which is very important in the process of understanding the further development
of production models;

4. State graphs (initial and modernized) have an interactive behavioral coloring of the current
states, dynamically changing when the model time changes.
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Fig. 2. The image of the computer screen in the virtual laboratory work with the calculation of
ex-penses and profits for the workplaces’ functioning

Step 7. Visualization of the considered production system using a simulation model developed
on the AnyLogic platform using an agent-based approach (Fig. 3).

Fig. 4 shows the current 2D dynamic model, but no longer idealized, where transitions from
state to state occur instantly (which is naturally impossible in a real life process). But it is based
on the use of Queue blocks that model the queue of agents, Delay blocks that delay agents for
a specified period of time, as well as Service blocks that capture a specified amount of resources
for the agent, delay them, and then release the resources captured by it. The management of
the working capacity of "workplace 1" and "workplace 2" that corresponds to states S1 and S2,

is achieved with the use of Hold blocks which block (unblock) the flow of agents in a certain
section of the flowchart.

Step 8. Virtual laboratory work also makes it possible to visualize the production site in 3D
mode (Fig. 5).

Fig. 4 shows a working 3D model of the production process modeled in the laboratory work
on the topic "Markov Processes". The student can observe the workload of workplaces S1 and
S2, as well as downtime S3, when S1 and S2 are not working at the same time. It is possible to
do this in the model time mode (the model time can be calculated in seconds, minutes, hours,
years, etc. and can be changed in accordance with the controls). As agents located on attractors
(allows you to set the exact location of agents) — S1, S2 and S3, we chose the figure of a person (in
relation to the production setting), which enables to visually identify the workload of workplaces
and downtime places when the latter do not function.
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Fig. 3. Production 2D model implementation: a) production site; b) system state graph;
c) flowchart of the system management process; d) system model time

Fig. 4. Production 3D model implementation

Thus, when doing each laboratory work included in the laboratory complex developed by us,
students go through the following stages:

1. Drawing up a mathematical model.

2. Solution of the mathematical model for initial data.

3. Variation of initial data and calculations for new values of variables.
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4. Evaluation of the economic efficiency of the initial and modified model.

5. Performing calculations on an idealized model.

6. Working with 2D model of the production process.

7. Process control using a virtual 3D model.

The laboratory complex suggested can be used to organize the work of students in practical
classes, which will contribute to effective mastering of the material in Applied Mathematics.

3. Discussion

The developed virtual laboratory complex is a digital tool for teaching mathematics to future
engineers. Unlike the educational digital simulation tools offered by other researchers [29, 30],
it does not require from engineering students to have programming skills, which enables them
to focus on the formation of mathematical activity techniques and visualization of the studied
pro-cesses using the offered simulation models.

The importance of teaching mathematical modeling to future engineers is noted by many
scientists, for example [7, 11, 17]. We agree with the opinion that mathematical modeling is
both an important tool for professional engineers and a teaching method in engineering educa-
tion [8]. Be-sides, mathematical modeling is a means of forming the professional competence of
an engineer [17]. Many scientists think it is necessary to integrate mathematical and simulation
modeling. They note that a dominant trend today is the interpenetration of all types of mod-
eling, the symbiosis of various information technologies in the field of modeling, especially for
complex applications and complex modeling projects [10].

Our investigations testify to the fact, that only a reasonable combination of traditional teach-
ing methods and educational technologies of knowledge engineering, machine learning methods
will ensure the quality of mathematical education in the future [26].

Mathematical modeling is considered by us as a strategy for preparing students for solving
poorly structured mathematical problems, necessary for the development of critical skills of the
21st century and a productive attitude towards problem setting and problem solving [18].

At present, two types of mathematical modeling are widely used in practice: analytical and
simulation ones. In analytical modeling, mathematical (abstract) models of a real object are
studied in the form of algebraic, differential and other equations, as well as those presupposing
the use of an unambiguous computational procedure leading to their exact solution [16]. The
traditional approach to teaching mathematics to engineering students involves the use of an-
alytical mathematical modeling as one of teaching methods. So, when teaching mathematics
using the activity-based approach, the goals of teaching higher mathematics include mastering
mathematical modeling methods. To achieve these goals, special teaching aids (systems of tasks,
teaching aids) are being developed. They contain systems of professionally oriented tasks, the
solution of which requires the use of the mathematical modeling method [20, 31].

It is also proposed to apply the method of mathematical modeling in combination with
mathematical software for calculations, such as Maple, Derive, MathCad, Mathematica, Mat-
LAB, which make it possible not only to carry out calculations, but to solve the most complex
engineering problems. However, these software tools cannot be used to create simulation models
for teaching mathematics [4–6]. When doing the described laboratory work, students can use
computer mathematics systems to solve a system of linear algebraic equations in case of its high
dimension. At the same time, this does not exclude the use of simulation models in virtual
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laboratory work.
Unlike other researchers [8, 32], who suggest using such simulation environments, as Arena,

Extend, MicroSaint, Enterprise Dynamics, etc., we believe that the AnyLogic environment is
the most convenient for teaching mathematics to future engineers, the advantage of which is the
ability to present simulation models in 2D and 3D, which makes any ideas and concepts more
visual. In contrast to table-based analytics or linear optimization, modeling provides the ability
to observe the behavior of a real system over time with the required level of detail. For example,
it is possible to check the occupancy level of a warehouse on a given date.

The effect of using simulation modeling in teaching mathematics may be enhanced with the
help of heuristic methods of teaching. These methods are used to teach students how to build
search strategies when solving engineering problems. For example, in the described laboratory
work, using the heuristic dialogue method, the teacher can lead students to building a solution
algorithm, designing their own tables for presenting and structuring the values obtained dur-
ing the solution, finding alternative methods for calculating the probabilities of the considered
events. To do this, the teacher can use hints of various levels (hard, algorithmic, soft guidance),
heuristic constructions [24], and organize design heuristic activities [33].

Further research should be aimed at measuring digital and mathematical competencies [19, 22]
in engineering students, which they master by performing virtual laboratory works.

Conclusions

Thus, the introduction of analytical and simulation mathematical modeling methods in teach-
ing engineering students makes it possible to achieve the following didactic goals:

• acquisition of fundamental mathematical knowledge necessary in engineering for mathe-
matical description of technical objects and processes;

• forming the competence of using mathematical apparatus for professional problems solu-
tion;

• mastering digital competences of using software packages to carry out calculations when
solving problems;

• forming the simulation modeling techniques to study complex processes and phenom-ena
in real time;

• developing engineering students’ creative thinking, mathematical style of thinking, as well
as fostering their interest to mathematical models studying.
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Интеграция математического и компьютерного
имитационного моделирования в инженерном
образовании
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Аннотация. Развитие современной техники, технологий, науки и образования невозможно без ис-
пользования систем компьютерной математики. Современный инженер должен владеть в равной
мере как методами математического моделирования технических объектов и процессов с использо-
ванием теоретических моделей, так и методами имитационного моделирования в системах компью-
терной математики. На примере лабораторной работы реализации в производственном процессе
математической модели в виде марковского процесса, построенного на основе уравнений Колмого-
рова, в статье раскрывается интеграция математического и компьютерного моделирования. Сту-
дентам предлагается реализовать теоретическое решение модели для конкретных числовых данных
и осуществить компьютерное моделирование процесса поиска предельных вероятностей состояний
системы с помощью авторского виртуального лабораторного комплекса, созданного на базе плат-
формы для имитационного моделирования бизнес-систем AnyLogic. Такая платформа предлагает
три подхода к моделированию: дискретно-событийный; агентный; системной динамики. Авторский
лабораторный комплекс позволяет в режиме реального времени моделировать такие параметры
производственного процесса, как загруженность рабочих мест, время простоя оборудования, рас-
положение агентов на аттракторах и др. В статье демонстрируется реализация возможности визу-
ализации производственного процесса в 2D- и 3D-формате, что значительно упрощает управление
и процесс принятия решения.

Ключевые слова: математическое моделирование, компьютерное имитационное моделирование,
инженерное образование, марковский процесс.
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