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Abstract. In this paper author introduce and study the new class of paracompact spaces called g∗ωα-
paracompact spaces as a generalization of paracompact spaces. Authors characterize g∗ωα-paracompact
spaces and study their some of their basic properties.
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Introduction

A space P is said to be Paracompact if every open cover of a P has a locally finite
open refinement. Al-Zoubi [1] defined S-Paracompact spaces using semi open sets which are
generalization of paracompact spaces and obtained many interesting properties of S-paracompact
spaces in 2006. P1-paracompact and P2-paracompact spaces were defined by Mashhour et al. [6].

In this paper, we introduce a new class of g∗ωα-paracompact spaces, characterized by the
condition that every open cover of a space P has a g∗ωα-locally finite g∗ωα-refinement. Also,
we define and investigate the properties of g∗ωα-locally finite collections. Further, studied,
g∗ωα-paracompact spaces and investigated their properties. Finally g∗ωα-expandable spaces are
defined by using g∗ωα-open sets and g∗ωα-locally finite collections.

1. Preliminary

Definition 1.1 ([7]). Let A1 ⊂ P . Then A1 is called
(i) g∗ωα-closed if cl(A1) ⊆ U1 whenever A1 ⊆ U1 and U1 is ωα-open in P.

Definition 1.2 ([3]). A space P is said to be submaximal if each dense subset of P is open in P.
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Definition 1.3 ([4]). A collection F1 = {Fα : α ∈ I} of subsets of a space P is locally finite, if
for each p ∈ P, there exists U1p ∈ O(P, p) such that U1p intersects at most finitely many members
of F1.

Theorem 1.4 ([3]). If { U1α : α ∈ I } is a locally finite family of P and V1α ⊆ U1α for each
α ∈ I then the family { V1α : α ∈ I } is locally finite in P.

Lemma 1.5 ([2]). The union of locally finite family of locally finite collection of sets in a space
is locally finite family of a sets.

Lemma 1.6 ([11]). If { U1α : α ∈ I } is a locally finite family of a space P then {cl(U1α) : α ∈ I}
is also a locally finite family of subsets of a space P.

Definition 1.7 ([5]). A space P is expandable if for every locally finite collection F1 = {F1α : α ∈
I } of subsets of P, there exists locally finite collection G1 = { G1α : α ∈ I } of open subsets of
P such that F1α ⊆ G1α for each α ∈ I.

Lemma 1.8. If V1 ∈ O(P ) and A1 ∈ g∗ωα-O(P) then V1 ∩ A1 ∈ g∗ωα-O(P ).

Theorem 1.9 ([7]). The following conditions are equivalent for a space P:
(i) P is submaximal.
(ii) g∗ωα-cl(A1) = A1, where A1 ⊂ P .

Theorem 1.10 ([8]). A function s : P → Q is called
(i) g∗ωα-irresolute if for each V1 ∈ G∗ωαC(P ), s−1(V1) ∈ G∗ωαC(Q).
(ii) pre g∗ωα-closed if for each V1 ∈ G∗ωαC(P ), s(V1) ∈ G∗ωαC(Q).

Definition 1.11 ([10]). A space P is said to be g∗ωα-compact if for every cover {V1α : α ∈ λ}
of P by g∗ωα-open sets, there exists a finite subset λ0 of λ such that P = ∪{V1α : α ∈ λ0}.

Example 1.12. Let P = {p1, p2, p3} and τ = {P, ϕ, {p1}, {p2}, {p1, p2}, {p1, p3}}. Here every
cover of g∗ωα-open sets can be expressed as a finite subcover and so (P, τ) is g∗ωα-compact.

2. g∗ωα-locally finite collection

Definition 2.1. A collection ξ = { F1α : α ∈ I } of subsets of P is said to be g∗ωα-locally finite
if for each p ∈ P, there exists U1 ∈ g∗ωα-O(P, p) and U1 intersects F1α at most finitely many
values of α.

Remark 2.2. Every locally finite collection is g∗ωα-locally finite.

Remark 2.3. In a submaximal space, every g∗ωα-locally finite collection of P is locally finite.
However the converse need not be true follows from the example.

Example 2.4. Let P = {p1, p2, p3} and τ = {P, ϕ, {p1}, {p1, p2}}. Then P is not submaximal,
since the set A1 = {p1, p3} is dense in P but not open. But, P is g∗ωα-locally finite collection
of P .

Lemma 2.5. The following properties holds for a collection ξ = {F1α : α ∈ I}:
(a) if ξ is g∗ωα-locally finite collection and G1α⊂ F1α for each α ∈ I, then G1= {G1α : α ∈I}
is also g∗ωα-locally finite.
(b) ξ is g∗ωα-locally finite if and only if {g∗ωα-cl(F1α) : α ∈ I} is also g∗ωα-locally finite.
(c) if ξ is g∗ωα-locally finite, then ∪ g∗ωα-cl(F1α) = g∗ωα-cl(∪F1α).
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Proof. (a) Follows from Definition 2.1.
(b) Suppose ξ is g∗ωα-locally finite. Then for each p ∈ P , there exists U1p ∈ g∗ωα-O(P, p) which
meets finitely many of the sets F1α , say F1α1

, F1α2
, . . . , F1αn

. Since F1αK
⊆ g∗ωα-cl(F1αK

)
for each k = 1, 2, . . . , n. Thus, U1p meets g∗ωα-cl(F1α1

), g∗ωα-cl(F1α2
), . . . , g∗ωα-cl(F1αk

),
that is U1p meets finitely many values of g∗ωα-cl(F1α). Therefore, { g∗ωα-cl(F1α) : α ∈ I } is
g∗ωα-locally finite.

Conversely, let p ∈ P . Then, there exists U1p ∈ g∗ωα-O(P, p) which meets finitely many
of the sets g∗ωα-cl(F1α), say g∗ωα-cl(F1α1

), g∗ωα-cl(F1α2
), . . . , g∗ωα-cl(F1αn

), implies U1p∩
g∗ωα-cl(F1αk

) ̸= ϕ for each k = 1, 2, . . . , n.
Let q∈U1p and q∈g∗ωα-cl(F1αk

),then for every V1q ∈ g∗ωα-O(P, q) such that V1q ∩ F1λk
̸= ϕ.

But U1p ∈ g∗ωα-O(P, q), so U1p∩ F1λk
̸= ϕ for each k = 1, 2, . . . , n. Hence ξ is g∗ωα-locally

finite.
(c) Suppose ξ is g∗ωα-locally finite, then ∪g∗ωα-cl(F1α) ⊆ g∗ωα-cl(∪F1α). On the other hand,
let p ∈ g∗ωα-cl(∪ F1α). Then every V1p ∈ g∗ωα-O(P, p) such that V1p ∩ (∪F1α) ̸= ϕ. Then
there exists U1p ∈ g∗ωα-O(P, p) which meets finitely many values of the sets F1α , that is F1α1

,
F1α2

, . . . , F1αn
. Thus, for every V1p ∈ g∗ωα-O(P, p), such that V1p ∩ (∪F1αk

) ̸= ϕ for each
k = 1, 2, . . . , n, that is p ∈ g∗ωα-cl(∪ F1αk

) = ∪g∗ωα-cl(F1αk
). Thus, there exists h1 such that

p ∈ g∗ωα-cl(F1αh1
). Thus, p ∈ ∪g∗ωα-cl(F1α) and hence ∪g∗ωα-cl(F1α) ⊆ g∗ωα-cl(∪ F1α). 2

3. g∗ωα-paracompact spaces
We recall that a space P is said to be paracompact if every open cover of P has a locally

finite open refinement.

Definition 3.1. A space P is said to be g∗ωα-paracompact if every open cover of P has a
g∗ωα-locally finite g∗ωα-refinement.

Example 3.2. Let P = {p1, p2, p3} and τ = {P, ϕ, {p1}, {p2, p3}}. Here, every open cover of P
has g∗ωα-locally finite g∗ωα-refinement. Hence P is g∗ωα-paracompact.

Theorem 3.3. Every paracompact space is g∗ωα-paracompact.

Proof. It follows from Remark 2.2. 2

Example 3.4. Let us consider a space P with P = N+∪N− where N+ is the set of all positive
integers and N− is the set of all negative integers.
Consider, the topology τ={U1 ⊆ P : N ⊆ U1}∪{ϕ}. Here, G∗ωαO(P )={A1⊆ P : A1 ∩N ̸= ϕ}.
Consider, {{p} : p ∈ N} ∪ {{p,−p} : p ∈ N} is a g∗ωα-locally finite g∗ωα-open covers of P .
Hence, every open cover of P has a g∗ωα-locally finite g∗ωα-open refinement. Hence (P, τ) is
g∗ωα-paracompact.
However (P, τ) is not paracompact. Since the collection {N ∪ {p} : p ∈ N} which is an open
cover of P , but this collection admits no locally finite open refinement.
Hence (P, τ) is not paracompact.

Remark 3.5. Every compact space is g∗ωα-paracompact.

Lemma 3.6. Let s : P → Q be surjective. Then s is pre g∗ωα-closed if and only if for every q ∈ Q
and every U1 ∈ G∗ωα-O(P, s−1(q)), there exists V1 ∈ G∗ωα-O(Q, q) such that s−1(V1) ⊂ U1.

Proof. Necessity: Let s be pre g∗ωα-closed. Let q ∈ Q and U1 ∈ G∗ωα-O(P ) with
s−1(q) ⊂ U1. Since U1 ∈ g∗ωα-O(P ), then P \ U1 ∈ g∗ωα-C(P ). As s is pre g∗ωα-closed,
then s(P \ U1) ∈ g∗ωα-C(Q). Take V1 = Q \ s(P \ U1). Then V1 ∈ g∗ωα-O(Q) with q ∈ V1 and
s−1(V1) ⊂ U1.
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Sufficient: Let K1 ∈ G∗ωα-C(P ) and q ∈ Q \ s(K1). Then, s−1(q) ⊂ P \K1. From hypothesis,
there exists V1q ∈ g∗ωα-O(Q, q) such that s−1(V11) ⊂ Q\s(K1). Therefore, q ∈ V1q ⊂ Q \ s(K1).
Thus, Q \ s(K1) = ∪{ V1q : q ∈ Q \ s(K1) }. Thus Q \ s(K1) ∈ g∗ωα-O(Q) and so
s(K1) ∈ g∗ωα-C(Q). 2

Theorem 3.7. Let s : P → Q be continuous open and pre g∗ωα-closed surjection with s−1(q)
is g∗ωα-compact for each q ∈ Q. If P is g∗ωα-paracompact, then Q is also g∗ωα-paracompact.

Proof. Let U1 = {U1α : α ∈ I} be an open cover of Q. As s is continuous, s−1(U1) = {s−1(U1α) :
α ∈ I} is an open cover of the g∗ωα-paracompact space P , so it has a g∗ωα-open refinement say
V1 = {V1α : α ∈ I}. As s is pre g∗ωα-closed, then the collection s(V1) = {s(V1α) : α ∈ I} is a
g∗ωα-open refinement of U1. Now, we have to prove that s(V1) is g∗ωα-locally finite in Q.

Let q ∈ Q, then for each q ∈ s−1(q) there exists U1p ∈ g∗ωα-O(P, p) such that U1p intersects
at most finitely many members of V1. The collection {U1p : p ∈ s−1(q)} is g∗ωα-open cover of
s−1(q). Therefore, there exists a finite subset K1 of s−1(q) with s−1(q) ⊂ U1p , p ∈ K1. As s is
pre g∗ωα-closed and by Lemma 3.6, there exists P1q ∈ g∗ωα-O(Q, q) such that s−1(P1q ) ⊂ ∪U1p ,
p ∈ K1. Then s−1(P1q ) intersects at most finitely many members of V1. Thus, P1q intersects
at most finitely many members of s(V1) and so s(V1) is g∗ωα-locally finite in Q. Hence Q is
g∗ωα-paracompact. 2

Theorem 3.8. Let s : P → Q be g∗ωα-irresolute closed surjective function with s−1(q) is compact
for each q ∈ Q. If Q is g∗ωα-paracompact then P is g∗ωα-paracompact.

Proof. Let U1 = {U1α : α ∈ I} be an open cover of P . As s−1(q) is compact, there exists a finite
subset I0 of I such that s−1(q) ⊆ ∪U1α , α ∈ I0. As s is a closed, there exists V1q ∈ O(Q, q) with
s−1(V1q ) ⊆ ∪U1α , α ∈ I0. Therefore {V1q : q ∈ Q} is an open cover of the g∗ωα-paracompact
space Q. Then V1q has g∗ωα-locally finite g∗ωα-refinement say W1 = {W1β : β ∈ B}. As s is
g∗ωα-irresolute, {s−1(W1β ) : β ∈ B} is g∗ωα-locally finite g∗ωα-open cover of P . Then, for each
β ∈ B, there exists q(β) ∈ Q such that W1β ⊆ V1q(β)

. Thus s−1(W1β ) ⊆ s−1(V1q(β)
) ⊆ ∪U1α :

α ∈ I0(q(β)) = F1q(β)
. Let F1 = {s−1(W1β ) ∩ U1α : β ∈ B and α ∈ I(q(β))}. From Lemma 1.8,

F1 is g∗ωα-open subset of P . Then the family F1 is g∗ωα-locally finite g∗ωα-refinement of U1.
Thus P is g∗ωα-paracompact. 2

Definition 3.9 ([9]). A space P is g∗ωα-regular if for each F1 ∈ g∗ωα-C(P ) and each point
q /∈ F1, there exist disjoint U1, V1 ∈ O(P ) with p ∈ U1 and F1 ⊆ V1.

Theorem 3.10. Every g∗ωα-regular submaximal space is regular.

Proof. Let P be g∗ωα-regular submaximal and U1 ∈ O(P, p). Since P is g∗ωα-regular, then
for each p ∈ U1, there exists V ∈ g∗ωα-O(P ) such that p ∈ V1 ⊆ g∗ωα-cl(V1) ⊆ U1. As P is
submaximal, every g∗ωα-closed set is closed [7], that is cl(V1) ⊆ g∗ωα-cl(V1). Thus p ∈ V1 ⊆
cl(V1) ⊆ U1 and so P is regular space. 2

Theorem 3.11. Every g∗ωα-paracompact T2-space is g∗ωα-regular.

Proof. Let A1 ∈ C(P ) and p /∈ A1. Then, for each q ∈ A1, choose Uq ∈ O(Q, q) and x /∈ cl(Uq).
Thus the family V1 = {Uq : q ∈ A1} ∪ {P \ A1} is an open cover of P . Since, P is g∗ωα-
paracompact, V1 has g∗ωα-locally finite g∗ωα-refinement say H1. Put V2 = ∪{h ∈ H1 and
h∩A1 ̸= ϕ}. Then V2 is g∗ωα-open set containing A1 and g∗ωα-cl(V2) = ∪{g∗ωα−cl(h) : h ∈ H1

and h ∩A1 ̸= ϕ} follows from Lemma 2.5(c). Therefore, U1 = P \ g∗ωα-cl(V2) is g∗ωα-open set
containing p such that U1 ∩ V2 = ϕ. Thus P is g∗ωα-regular. 2

Theorem 3.12. Let P be a regular space. Then M is g∗ωα-paracompact if and only if every
open cover V1 of P has a g∗ωα-locally finite g∗ωα-closed refinement U1.
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Proof. Necessity: Let V1 be an open cover of M . Then, for each p ∈ P , choose U1p ∈ V1.
As P is regular, there exists V1p ∈ O(P ) such that p ∈ V1p ⊆ cl(V1p) ⊆ U1p . Thus V1 =
= {V1p : p ∈ P} is an open cover of P . Then P has a g∗ωα-locally finite g∗ωα-closed refinement
say ~ = {hα : α ∈ B}. Let g∗ωα-cl(~) = {g∗ωα-cl(hα) : α ∈ B}, then g∗ωα-cl(~) is g∗ωα-locally
finite collection follows from Lemma 2.5(c). Thus for each α ∈ B, g∗ωα-cl(hα) ⊆ g∗ωα-cl(V1p) ⊆
cl(V1p) ⊆ U1p , that is g∗ωα-cl(~) is a g∗ωα-refinement of V1.
Sufficiency: Let V1 be an open cover of P and U1 be g∗ωα-locally finite g∗ωα-closed refinement
of V1. For each p ∈ P , choose W1p ∈ G∗ωα-O(P ) such that p ∈ W1p and W1p intersects at most
finitely many members U1. Let H1 be a g∗ωα-closed g∗ωα-locally finite refinement of W1 =
= {W1p : p ∈ P}. Then, for each v ∈ U1, V 1

1 = P − {h ∈ H1 : h ∩ V1 = ϕ} and so V 1
1 is

g∗ωα-open, that is {V 1
1 : V1 ∈ U1} is g∗ωα-open cover of P . Finally, for each V1 ∈ U1, choose

U1v ∈ U1 such that V1 ⊆ U1v . Then, the collection {U1v ∩ V 1
1 : v ∈ U1} is g∗ωα-locally finite

g∗ωα-open refinement of V1 follows from Lemma 1.8. Thus P is g∗ωα-paracompact. 2

4. g∗ωα-expandable spaces in topological spaces

Definition 4.1. A space P is g∗ωα-expandable if for every locally finite collection F1 = {F1α :
α ∈ I} ⊂ P , then there exists g∗ωα-locally finite collection G1 = {G1α : α ∈ I} of g∗ωα-open
subsets of P with F1α ⊆ G1α for each α ∈ I.

Example 4.2. From the Example 3.4, we can observe that the space (P, τ) is g∗ωα-expandable
space.

Theorem 4.3. The following conditions are equivalent for a space P:
(i) P is g∗ωα-expandable.
(ii) Every locally finite collection F1 = { F1α : α ∈ I } of closed subsets of P, there exists a
g∗ωα-locally finite collection G1 = { G1α : α ∈ I } of g∗ωα-open subsets such that F1α ⊆ G1α

for each α ∈ I.

Proof. (i) → (ii) Follows from the Definition 4.1.
(ii) → (i) Let F1 = {F1α : α ∈ I} be a locally finite collection of a space P . From Lemma 1.6,
{cl(F1α) : α ∈ I} is also locally finite collection. From hypothesis, there exists g∗ωα-locally
finite collection G1 = {G1α : α inI} of g∗ωα-open subsets of P with cl(F1α) ⊆ G1α . But,
F1α ⊆ cl(F1α) ⊆ G1α , that is F1α ⊆ G1α . Thus P is g∗ωα-expandable. 2

Theorem 4.4. Every g∗ωα-paracompact space is g∗ωα-expandable.

Proof. Let P be a g∗ωα-paracompact space and F1 = {F1α : α ∈ I} be a locally finite collection
of closed subsets P . Let ⊤ be a collection of all finite subsets of I. Then, for each β ∈ ⊤, let
V1β = P \ ∪{F1α : α ̸= β}. As F1 is locally finite, V1β is open and V1β meets only finitely
many members of F1. Let ϑ = {V1β : β ∈ ⊤}, then ϑ is an open cover of P . As P is
g∗ωα-paracompact, ϑ has a g∗ωα-locally finite g∗ωα-refinement, say ω = {W1δ : δ ∈ ∆}. Let
U1α = ∪{W1δ ∈ ω : W1δ ∩ F1α ̸= ϕ}. Hence U1α is g∗ωα-open and so F1α ⊆ U1α .

Now, to show that {U1α : α ∈ I} is g∗ωα-locally finite. Since ω is locally finite, then for each
p ∈ P , there exists U1p ∈ g∗ωα-O(P, p) with U1p intersects at most finitely many members of ω.
Also U1px ∩ U1α ̸= ϕ if and only if U1p ∩W1δ ̸= ϕ and W1δ ∩ F1α ̸= ϕ for some δ ∈ ∆. Again, ω
is a refinement of ϑ, then there exists a member V1β of ϑ containing W1δ of ω. Then W1δ meets
only finitely many members of F1α for each α ∈ I. Thus {U1α : α ∈ I} is g∗ωα-locally finite and
so P is g∗ωα-expandable. 2
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Новая структура паракомпактных пространств
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Аннотация. В данной статье вводится и изучается новый класс паракомпактных пространств, на-
зываемых g∗ωα-паракомпактными пространствами, как обобщение паракомпактных пространств.
Авторы характеризуют g∗ωα-паракомпактные пространства и изучают некоторые их основные
свойства.

Ключевые слова: g∗ωα-замкнутые множества, g∗ωα-локально конечный набор, g∗ωα-пара-
компакт, g∗ωα-расширяемые пространства.
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