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Abstract. Centralizers of finite subgroups in the direct limit of the finite and finitary symmetric groups
via strictly diagonal embeddings is characterized in 2015 by Güven, Kegel and Kuzucuoğlu. In this
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Citation: Ül.B. Güven, Centralizers in the Diagonal Direct Limits of the Symmetric Groups and of the
Monomial Groups, J. Sib. Fed. Univ. Math. Phys., 2022, 15(4), 537–544.
DOI: 10.17516/1997-1397-2022-15-4-537-544.

The class of groups which is constructed as the direct limit of symmetric groups is widely
studied. The concept first introduced by Zaleskiy [7], after that Kegel–Wehrfritz [2] and Kroshko–
Suschansky in [3] studied these class. The classification of limit symmetric groups of diagonal
type is given in [5].

Since the centralizers played an essential role for the classification of finite simple groups, it
is natural to ask: What is the structure of centralizers of elements and finite subgroups in the
locally finite simple groups constructed as the direct limit of symmetric groups?
For the limit groups of strictly diagonal type the answer is given in [1]. In the first section of
this paper, the structure of centralizers of elements and subgroups in the symmetric groups of
diagonal type will be given.

1. Diagonal embeddings
Definition 1. An embedding ϕ of the permutation group (G,X) into the permutation group
(H,Y ) is called diagonal embedding if (ϕ(G),∆) is isomorphic to (G,X) for any orbit ∆ of
G having more than 1 element. In addition, if all orbits of ϕ(G) have more than 1 element, then
the embedding is called strictly diagonal embedding.

Consider the embedding of finite symmetric groups as follows:

d(r, k) : Sn −→ Snr+k.

For any α ∈ Sn, d(r, k)(α) ∈ Snr+k is determined as follows:

((i− 1)r + t)d(r,k)(α) = (iα − 1)r + t where 1 6 t 6 r, 1 6 i 6 n.

Hence, if α =

(
1 2 · · · n
i1 i2 · · · in

)
, then

d(r, k)(α) =
(

1 2 ··· r
(i1−1)r+1 (i1−1)r+2 ··· i1r |

···
··· |

(n−1)r+1 (n−1)r+2 ··· nr
(in−1)r+1 (in−1)r+2 ··· inr

| nr+1
nr+1 | ······ |

nr+k
nr+k

)
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Lemma 2. d(r, k) is a diagonal embedding.

Proof. First let us determine the forms of arbitrary orbits of d(r, k)(Sn) in the set
{1, 2, . . . , nr + k}. Since the action is trivial on the points i where nr + 1 6 i 6 nr + k,
the orbit ∆i = {id(r,k)(α) | α ∈ Sn} = {i}. The non-trivial orbits are of the form
∆i = {i, r+ i, 2r+ i, · · · , (n− 1)r+ i} for all 1 6 i 6 r. Note that the length of the orbits are n.
Define a map, σ : {1, 2, . . . , n} → ∆i where σ(j) = (j − 1)r + i.

Now, the group (Sn, {1, 2, . . . , n}) is permutationally isomorphic to (d(r, k)(Sn),∆i) as fol-
lows:

For any j ∈ {1, 2, . . . , n} and α ∈ Sn,

σ(j)d(r,k)(α) = ((j − 1)r + i)d(r,k)(α) = (jα − 1)r + i = σ(jα).

Hence, the embedding d(r, k) is a diagonal embedding.

For an infinite sequence of integer tuples χ = ⟨(1, k0), (n1, k1), . . .⟩, the sequences of diagonal
maps,

Sk0

d(n1,k1)−→ Sn1k0+k1

d(n2,k2)−→ S(n1k0+k1)n2+k2

d(n3,k3)−→ . . .

will define a direct limit group Sχ.
The construction and the classification of the groups Sχ are done in [5]. Nowadays, these

groups are called limit symmetric groups of diagonal type.
Assume the sequence χ is given. Then for i > 0 set λ(0) := k0, λ(1) = k0n1 + k1 and

λ(i) := λ(i−1)ni+ki. Then the group Sχ is the direct limit of the finite symmetric groups Sλ(i)

and if the image of Sλ(i) in the direct limit group is denoted by S(χ, i), then Sχ =
∞⋃
i=0

S(χ, i).

Remark 3. Note that if each ki = 0 for all i > 0 the embeddings will be strictly diag-
onal. Hence the group Sχ will be isomorphic to limit symmetric group S(ξ) of [1, 3] where
ξ =< k0, n1, n2, . . . >.

1.1. Centralizers of elements in Sχ

In this section, our aim is to obtain the structure of centralizers of arbitrary elements in the
locally finite group Sχ. It turns out that the centralizer contains limit monomial groups.

Finite monomial groups are studied by Ore in [6]. He investigated some properties of mono-
mial groups and determine all finite dimensional normal subgroups of the class. Starting with
the finite monomial groups and using the strictly diagonal embeddings, one can find the limit
monomial groups, which is constructed by Kuzucuoğlu, Oliynyk and Suschansky in [4]. They
classified all the limit monomial groups by using the lattice of Steinitz numbers and find the
structure of centralizer of elements in limit monomial groups.

The monomial group of degree n over a group H is denoted by Σn(H). By [6], the monomial
group is isomorphic to Sn n (H × . . .×H)︸ ︷︷ ︸

n-times

or in the wreath product notation, Σn(H) ∼= H ≀ Sn.

For any sequence ξ consisting of primes, by taking strictly diagonal embeddings of finite monomial
groups Σn(H) we have the limit monomial groups which is denoted by Σξ(H). For the notations
and definitions see [4]. If we take H to be the identity group, then Σξ(1) will be the limit
symmetric group S(ξ). The centralizers of elements in the limit monomial groups are studied
in [4, Theorem 2.6].

Let χ = ⟨(1, k0), (n1, k1), (n2, k2), . . .⟩ and Sχ =
∞⋃
i=0

S(χ, i). For any element α in Sχ, we have

a smallest integer n such that α ∈ S(χ, n).
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Definition 4. For α ∈ Sχ =
∞⋃
i=0

S(χ, i), let n be the smallest integer such that α ∈ S(χ, n).

Then the principal beginning α0 of α is the element in the finite symmetric group Sλ(n) of
which the image in the group Sχ is α.

Note that the definition of principal beginning is similar to the case of limit symmetric groups,
see [1, p.1922].

Definition 5. The short cycle type of an element α0 ∈ Sn is t(α0) = (r1, . . . , rt) where ri
is the number of i-cycles appearing in the cycle decomposition of α0 for 1 6 i 6 t 6 n and t is
taken to be the biggest cycle length that appears in the decomposition.

Theorem 6. Let α ∈ Sχ, χ = ⟨(1, k0), (n1, k1), . . .⟩ and let α0 ∈ Sλ(l−1) be the principal beginning
of α and t(α0) = (r1, r2, . . . , rk) be the short cycle type of α0. Then the centralizer of α in Sχ;

CSχ(α)
∼=

k

Dr
i=2

Σξi(Ci)× Sχ′

where ξi = (ri, nl, nl+1, . . .), for all i > 2, χ′ = ⟨(1, r1), (nl, kl), . . .⟩ and Ci is the cyclic group
of order i.

Proof. Let α0 ∈ Sλ(l−1) be the principal beginning of α. Now we know the cycle type of α0 and
there are ri many i cycles and r1 many fixed points.

Note that, since α0 = x1,0x2,0 . . . xk,0 where xi,0 is the product of i-cycles in the cycle de-
composition of α0, and α = x1x2 . . . xk where the principal beginning of xi is xi,0 for 1 6 i 6 k,
by using the same method as in [1], we have

CSχ
(α) =

k

Dr
i=1

CSχ
(xi).

Therefore, it is enough to find the centralizer of an element with a fixed cycle type.
Observe that for any element x with principal beginning x0 ∈ S(χ, l − 1) which is a product

of i-cycles i > 2, the embedding of x0 into S(χ, l) is strictly diagonal. So by [1, Theorem 3]
and [4, Corollary 2.7], we have CSχ

(xi) = Σξi(Ci) where ξi = (ri, nl, nl+1 . . .) and Σξi(Ci) is the
limit monomial group over the cyclic group Ci of order i.

For the centralizer of x1 which is identity but is formed with the fixed points of α0 in level l, we
have r1 many fixed points and any element in symmetric group, Sr1 , on r1 points will commute
with α0. The embedding of Sr1 into S(χ, l) is diagonal and the image is isomorphic to a subgroup
of the symmetric group, Sr1nl+kl

. Continuing like that we will have the diagonal embeddings of
finite symmetric groups which is isomorphic to Sχ′ where χ′ =< (1, r1), (nl, kl), . . . > . Hence,

CSχ
(α) ∼=

k

Dr
i=2

Σξi(Ci)× Sχ′

where ξi = (ri, nl, nl+1, . . .), for all i > 2, χ′ = ⟨(1, r1), (nl, kl), . . .⟩.

Corollary 7. If k0 = 1, ki = 0 for all i > 0, then as Sχ = S(ξ) we get

CS(ξ)(α) ∼=
k

Dr
i=1

Σξi(Ci)

where ξi = (ri, nl, nl+1, . . .), for all i > 1.

For a finite group F 6 Sχ, with a similar argument conducted in [1, Theorem 6], one may
obtain the structure of the centralizer CSχ(F ).
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2. Construction of an infinite group via diagonal
embeddings of monomial groups

In this section we will construct a new class of infinite groups by embedding monomial groups
via diagonal embeddings of previous section. This new type is a generalization of limit monomial
groups of strictly diagonal type, see [4].

Let H be an arbitrary subgroup. Consider the general linear group GL(n,Z[H]) over the
integral group ring Z[H]. A monomial substitution corresponds to a matrix such that it has
only one non-zero component from the group H in each row and column. In other words, if
{x1, . . . xn} are basis elements, then a monomial substitution over H is represented as

ρ =

(
x1 x2 · · · xn

h1xi1 h2xi2 · · · hnxin

)
.

If η =

(
x1 x2 · · · xn

k1xj1 k2xj2 · · · knxjn

)
is another substitution, then with the multiplication

ηρ =

(
x1 x2 · · · xn

h1ki1xji1
h2ki2xji2

· · · hnkinxjin

)
and the inverse

ρ−1 =

(
xi1 xi2 · · · xin

h−1
1 x1 h−1

2 x2 · · · h−1
n xn

)
monomial substitutions forms a subgroup which is isomorphic to the wreath product H ≀Sn where
Sn is the symmetric group on n letters. This subgroup H ≀ Sn is called complete monomial
group, see [4]. Since H ≀Sn

∼= H ×H . . .×H︸ ︷︷ ︸
n-times

oSn, every monomial substitution can be written

uniquely as a product

ρ =

(
x1 x2 · · · xn

h1xi1 h2xi2 · · · hnxin

)
= [h1, h2, . . . hn]

(
x1 x2 · · · xn

xi1 xi2 · · · xin

)
where [h1, h2, . . . hn] is called multiplication and

π =

(
1 2 · · · n
i1 i2 · · · in

)
=

(
x1 x2 · · · xn

xi1 xi2 · · · xin

)
is called permutation.

Let H ≀ Sn be the complete monomial group. Consider the embedding

d(r, k) : Σn(H) = H ≀ Sn −→ Σnr+k(H) = H ≀ Snr+k

which sends any element of the form [h1, h2, . . . hn]π in H ≀ Sn to the element in H ≀ Snr+k,

[h1, . . . , h1︸ ︷︷ ︸
r-times

, . . . , hn, . . . , hn︸ ︷︷ ︸
r-times

, 1, . . . , 1︸ ︷︷ ︸
k-times

]d(r, k)(π)

where d(r, k)(π) is the diagonal embedding used in Section 1 for constructing Sχ.

We will show the map is also a homomorphism from Σn(H) to Σnr+k(H). Let u = [h1, . . . hn]π
and v = [k1, . . . kn]σ be two elements of Σn(H). The image equals to

d(r, k)(uv) = d(r, k)([h1k1π , . . . , hnknπ ]πσ) =

= [h1k1π , . . . , h1k1π︸ ︷︷ ︸
r-times

, . . . , hnknπ , . . . , hnknπ︸ ︷︷ ︸
r-times

, 1, . . . , 1︸ ︷︷ ︸
k-times

]d(r, k)(πσ). (∗)
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On the other hand,

d(r, k)(u)d(r, k)(v) =

= [h1, . . . , h1︸ ︷︷ ︸
r-times

, . . . , hn, . . . , hn︸ ︷︷ ︸
r-times

, 1, . . . , 1︸ ︷︷ ︸
k-times

]d(r, k)(π)[k1, . . . , k1︸ ︷︷ ︸
r-times

, . . . , kn, . . . , kn︸ ︷︷ ︸
r-times

, 1, . . . , 1︸ ︷︷ ︸
k-times

]d(r, k)(σ) =

= [h1k1d(r,k)(π) , . . . , h1k1d(r,k)(π)︸ ︷︷ ︸
r-times

, . . . , hnknd(r,k)(π) , . . . , hnknd(r,k)(π)︸ ︷︷ ︸
r-times

, 1, . . . , 1︸ ︷︷ ︸
k-times

]d(r, k)(πσ). (∗∗)

To show d(r, k) is a homomorphism on the wreath products, it is enough to show the equality
of components of multiplication parts. Note that when we write kid(r,k)(π) we mean the action of
d(r, k)(π) on the indicies of the multiplication i.e.

[k1, . . . , k1︸ ︷︷ ︸
r-times

, . . . , kn, . . . , kn︸ ︷︷ ︸
r-times

, 1, . . . , 1︸ ︷︷ ︸
k-times

] = [k′1, k
′
2, k

′
3, . . . k

′
nr, 1, . . . , 1]

where for all 1 6 i 6 n when t runs through the set {1, . . . r}, the equality k′(i−1)r+t = ki holds.
For 1 6 i 6 n the ((i− 1)r+ t)th component of the multiplication part of v is the same as ki

where t runs through {1, . . . r}. Since ((i− 1)r + t)d(r,k)(π) = (iπ − 1)r + t, we get

k′((i−1)r+t)d(r,k)(π) = k′(iπ−1)r+t = kiπ .

Hence (⋆) and (⋆⋆) equals.

Lemma 8. d(r1, k1)d(r2, k2) = d(r1r2, k1r2 + k2).

Proof. Together with [5, Lemma 2.5], an elementary computation will show the equality.

Let χ =< (1, k0), (n1, k1), . . . > be an infinite sequence of positive numbers. Set λ(0) = k0
and for i > 1 set λ(i) = k0n1n2 . . . ni+k1n2 . . . ni+ . . .+ki−1ni+ki. Starting with the complete
monomial group H ≀ Sk0

consider the direct limit of the groups as follows,

Σλ(0)(H) = H ≀ Sλ(0)
d(n1,k1)−→ Σλ(1)(H) = H ≀ Sλ(1)

d(n2,k2)−→ Σλ(2)(H) = H ≀ Sλ(2) . . .

From the direct limit, we obtain the group Σχ(H) =
∞⋃
i=0

Σλ(i)(H) which is called limit

monomial group of diagonal type. The group Σχ(H) is a subgroup of the infinite monomial

group H ≀ Sχ. Since we have Σχ(H) =
∞⋃
i=0

Σλ(i)(H), for any element one can define principal

beginning as in the same way it is defined in Definition 4.

Lemma 9. If all ki = 0 for all i > 0 the group Σχ(H) will be isomorphic to the limit monomial
group of strictly diagonal type Σξ(H) where ξ = (k0, n1, n2, . . .), see [4].

Since all elements of the monomial substitutions can be written uniquely as the product of a
multiplication and a permutation when we take the image of an element [h1, . . . , hn]π ∈ H ≀ Sn

inside the group H ≀ Snr+k we see the embedding sends permutation parts to permutation parts
and multiplication parts to multiplication parts via the diagonal embedding. Hence from the
diagonal embeddings of symmetric groups we get the infinite direct limit group Sχ and from the
embeddings of multiplication parts we obtain a subgroup Bχ of the infinite Cartesian product
of H.

Then the group can be written as Σχ(H) = BχoSχ where Bχ consists of periodic components
of elements from the group H followed by 1’s.
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2.1. Centralizers of elements

In this section the centralizer of elements in the groups Σχ(H) is investigated.
Before the result, for a finite monomial group Σn(H) one may see the following definitions.
A monomial substitution is called a cycle if the permutation part is a cycle. Obviously, every

monomial substitution can be written as a product of disjoint cycles.
Let u = [h1, h2, . . . hm](i1, i2, i3 . . . im). If we take m-th power of u, we get a multiplication
um = [h1h2 . . . hm, h2h3 . . . hmh1, . . . , hmh1 . . . hm−1].
The elements ∆i = hihi+1 . . . hmh1 . . . hi−1 ∈ H for all 1 6 i 6 m are called determinants

of u.
One may observe that ∆hi

i = ∆i+1 for all 1 6 i 6 m and upto conjugacy every cycle have a
unique determinant class in H.

Let u = [h1, h2, . . . hm](i1, i2, i3 . . . im). With a suitable element inside the group Σn(H), by
taking conjugate, one can find an element of the form [1, 1, . . . , 1, a](i1, i2, . . . , im) where a is an
element of H and a is a determinant class. This conjugate is called a normal form of u.

Since centralizers of conjugate elements are conjugate, it is enough to work on centralizers of
normalized form of elements.

Recall that for an element π ∈ Sn, the type of π is the number sequence (r1, r2, . . . , rt) where
each ri is the number of i-cycles in the cycle decomposition of π. Similar to this, one can define
the type of a monomial substitution as the number sequence

(a11r11, a12r12, . . . , a1k1
r1k1

, . . . at1rt1, at2rt2, . . . , atkt
rtkt

).

This sequence means that for a fixed i, the monomial substitution has rij many i-cycles of
determinant class aij .

For a cycle of normal form ρ = [1, 1, . . . , 1, a]

(
x1 x2 · · · xm

x2 x3 · · · x1

)
if we get conjugate of ρ

with an arbitrary element

u = [b1, b2, . . . , bn]

(
x1 x2 · · · xn

xj1 xj2 · · · xjn

)
we have

uρu−1 = [b−1
1 b2, b

−1
2 b3, . . . , b

−1
m b1a]

(
xj1 xj2 · · · xjm

xj2 xj3 · · · xj1

)
.

Hence one may observe that conjugacy preserves the type of an element.

Lemma 10. Let ρ =

(
x1 x2 · · · xm

x2 x3 · · · ax1

)
be a cycle in Σn(H) with determinant class a ∈ H.

Then the image of ρ under d(r, k) in Σnr+k(H) consists of cycles with the same determinant
class.

Proof. The result follows when we write the image

d(r, k)(ρ) ==

(
x1 xr+1 · · · x(m−1)r+1

xr+1 xr+2 · · · ax1

)
. . .

(
xr x2r · · · xmr

x2r x3r · · · axr

)
note that the fixed symbols are not written to avoid the confusion. Hence embedding does not
alter the determinant class, it only increases the cycle numbers.

Centralizers in monomial groups are given by Ore.
Let ρ be a monomial substitution in Σn(H) with determinant class a. Then by [6, p.20], the

centralizer of ρ is isomorphic to the cyclic extension of CH(a) by < ρ >.
CΣn(H)(ρ) ∼= CH(a) < ρ >= Ca.

Theorem 11. Let ρ be a normal form of an element in Σχ(H). Assume the principal beginning
ρ0 is in Σλ(t)(H). Write ρ as the product ρ = ρ1ρ2 . . . ρl where for each i, the substitutions
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ρi consist of cycles with the same length and same determinant class ai. Assume also that ρi
consists of ri many cycles of the same type. Without loss of generality assume ρl is the element
consisting of one cycles with determinant class 1. Then the centralizer is

CΣχ(H)(ρ) ∼= Σξ1(Ca1
)× Σξ2(Ca2

) . . .× Σξl−1
(Cal−1

)× Sχ
l

where ξi = (ri, nt+1, nt+2, . . .) and χ
l
=< (1, rl), (nt+1, kt+1), (nt+2, kt+2), . . . > .

Proof. Since conjugation does not change the type, the centralizer can be written as the direct
product of centralizers of the cycles of different cycle type and length. Hence it is enough to find
the centralizer for an arbitrary ρi.

Since the principal beginning ρ0 is in Σλ(t) we may assume CΣξ
(ρi) =

∞⋃
j=1

CΣλ(j+t)
(ρi).

For ρl the element is nothing but the identity element formed with the fixed points. There-
fore, CΣλ(t)

(ρl) = Srl . With the embedding d(nt+1, kt+1) the image will be again identity with
rlnt+1 + kt+1 many fixed points and permutation formed with those rlnt+1 + kt+1 points will
centralize the image. Hence CΣλ(t+1)

(ρl) = Srlnt+1+kt+1
. Continuing the embedding we will have

Sχ
l

as the centrlizer of ρl where χ
l
=< (1, rl), (nt+1, kt+1), (nt+2, kt+2), . . . > .

As for the other parts, by [6, p.20], since ρi has ri many cycles of the same type we get

CΣλ(t)
(ρi) ∼= CH(ai) < ρi > ≀ Sri = Cai

≀ Sri = Σri(Cai
).

By Lemma 10, the embedding d(nt+1, kt+1) only increases the cycle number and does not
affect the type. Hence with the embedding d(nt+1, kt+1), we have

CΣλ(t+1)
(ρi) ∼= Cai

≀ Srint+1
= Σrint+1

(Cai
).

Continuing the embeddings, monomial groups will be embedded into the monomial groups
so we will have

CΣχ
(ρi) = Σξi(Cai

)

where ξi = (ri, nt+1, nt+2, . . .).
Therefore,

CΣχ(H)(ρ) ∼= Σξ1(Ca1
)× Σξ2(Ca2

) . . .× Σξl−1
(Cal−1

)× Sχ
l

where ξi = (ri, nt+1, nt+2, . . .) and χ
l
=< (1, rl), (nt+1, kt+1), (nt+2, kt+2), . . . > .

Corollary 12. If all ki = 0 except for k0, then the group Σχ(H) will be isomorphic to the limit
monomial group of [4]. Hence, Theorem 11 also gives the centralizer of an element in limit
monomial groups.

Corollary 13. If the group H is the identity group, then Σχ(H) will become Sχ. Hence Theo-
rem 11 gives also the results obtained by Theorem 6.

References
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Ближневосточный технический университет
Анкара, Турция

Аннотация. Централизаторы конечных подгрупп в прямом пределе конечных и финитарных сим-
метрических групп через строго диагональные вложения охарактеризованы в 2015 г. Гювеном,
Кегелем и Кузукуоглу. В статье эта идея распространяется на случай диагональных вложений.
Кроме того, посредством диагонального вложения строится новый класс бесконечных предельных
мономиальных групп.

Ключевые слова: централизатор, простое локально конечное диагональное вложение, сохраня-
ющее уровень.
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