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INTRODUCTION

Analytic functions play a very important role in mathematics and its

applications in science. These functions bridge the gap between exact and

approximate computations.

One way to identify an analytic function is based on its power series expan-

sion (Weierstrass’ approach). The coefficients of a power series expansion of an

analytic function carry all the information about properties of this function, includ-

ing the property of its analytic continuation. This problem and the closely related

problem of relationships between singularities of power series and its coefficients

have been extensively studied in the last century by Hadamard [1], Lindelöf [2],

Pólya [3], Szegö [4], Carlson [5] and many other prominent mathematicians (see

the literature list in monograph by Biberbach [6]).

The most effective and complete results were obtained for simple (one-

dimensional) series with coefficients interpolated by values ϕ(k) of an entire func-

tion ϕ(z) at the natural numbers k ∈ N (see, for example, [7], [8], [9]).

According to Abel’s theorem, the domain of convergence for a one-dimensional

series is a disk, therefore, if its sum extends analytically beyond this disk, then it

extends across some boundary arc. This arc is called the arc of regularity. A de-

scription of an open arc of regularity was given in the papers by Arakelian [10], [11].

He gave a criterion for a given arc of a unit circle to be an arc of regularity for

a given power series in terms of the indicator function of the interpolating entire

function.

Pólya found conditions for analytic continuability of a series to the whole

complex plane except some boundary arc [12].

The other side of the problem of analytic continuation is the problem of

distribution of singularities of a power series, i.e. points such that the sum of
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the series does not extend across them [13], [14], [6]. In this context, the cases

where all the boundary points are singular are of special interest [15], [16]. Such

analytically non extendable series are mainly “strongly lacunar”, in other words,

these series have “many” monomials with zero coefficients. Examples of such

series are
∞∑
n=0

zn!,
∞∑
n=0

z2n,
∞∑
n=0

zn
n

.

In 1891 Fredholm [17] constructed examples of “moderately lacunar” non

extendable series representing infinitely differentiable functions in the closure of

the disk of convergence. These series depend on a parameter a and have the

following form
∞∑
n=0

anzn
2

, 0 < a < 1.

Here n2 has the power order 2 respective to the summation index n, therefore we

say that Fredholm’s series have the lacunarity order 2.

A more general result on non extendable series in terms of lacunarity belongs

to Fabry (see [18] or [6]). It claims that if the sequence of natural numbers mn

increases faster than n (i.e. n = o(mn)), then there is a series

∞∑
n=0

anz
mn,

converging in the unit disk and not extending across its boundary.

It should be emphasized that the approach to the study of analytic continua-

tion formulated above has been mainly applied to functions of one variable. In the

case of multivariate power series many similar problems remain open. Moreover,

the applications of multivariate complex analysis in mathematical physics, for ex-

ample in quantum field theory [19] and thermodynamics [20],[21], motivate further

research in this area.

The goal of this thesis is to find multidimensional analogs of theorems by

Arakelian and Pólya on the analytic continuability of a power series across parts of
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the boundary of the domain of convergence. We also aim to describe the conditions

for analytic continuability of a power series whose coefficients are interpolated by

entire or meromorphic function, and to construct multidimensional examples of

Fredholm’s moderately lacunar power series with natural boundaries of conver-

gence domains.

In the research we use methods of multivariate complex analysis, in partic-

ular, integral representations (Cauchy, Mellin, and Lindelöf representations),

multidimensional residues, properties of power series. An important role in the

study is played by the interpolation of power series coefficients by analytic func-

tions from such classes as entire functions of exponential type or special mero-

morphic functions. Accordingly, we use some facts on the growth of interpolating

functions, i.e. elements of complex potential theory.

In the problem of natural boundary of the domain of convergence we use the

Kovalevskaya phenomenon on unsolvability of the Cauchy problem for the heat

equation with temperature initial data.

The first chapter deals with analytic continuation of one-dimensional power

series. Here we establish conditions for analytic continuability (or uncontinuability)

of series across a given boundary arc. Such conditions are crucial for the devel-

opment of methods of data and digital signal processing [40]. To be specific, the

radius of the convergence disk is assumed to be equal to 1. We distinguish four

types of problems related to a boundary arc:

1) continuability to a sector defined by the arc;

2) continuability to a neighborhood of the arc;

3) continuability to the complex plane except some boundary arc;

4) uncontinuability across every boundary point.

Problems 1 and 2 were studied among others by Arakelian, Problem 3 by

Pólya. They obtained criteria for continuability of series in terms of entire functions

interpolating the coefficients.
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In the first section we give conditions for continuability of a power series,

whose coefficients are interpolated by values of a meromorphic function. First, let

us formulate the results by Arakelian and Pólya.

Consider a power series

f(z) =
∞∑
n=0

fnz
n (0.1)

in z ∈ C, whose domain of convergence is the unit disk D1 := {z ∈ C : |z| < 1}.

The Cauchy-Hadamard theorem yields that

lim
n→∞

n
√
|fn| = 1.

We say that a function ϕ interpolates the coefficients of the series (0.1), if

ϕ(n) = fn for all n ∈ N.

Recall (see, Appendix A.1 or [22]) that the indicator function hϕ(θ) for an

entire function ϕ is defined as the upper limit

hϕ(θ) = lim
r→∞

ln |ϕ(reiθ)|
r

, θ ∈ R.

Let ∆σ be the sector {z = reiθ ∈ C : |θ| ≤ σ}, σ ∈ [0, π). We denote the open arc

∂D1 \∆σ by γσ.

Theorem ([24], [25]) The sum of the series (0.1) extends analytically to the

open sector C \ ∆σ if and only if there is an entire function ϕ(ζ) of exponential

type interpolating the coefficients fn whose indicator function hϕ(θ) satisfies the

condition

hϕ(θ) ≤ σ| sin θ| for |θ| < π

2
.

We say that the boundary arc γσ is an arc of regularity for the series (0.1) if

it extends analytically to a neighborhood of γσ.
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Theorem ([10], [11]) The open arc γσ = ∂D1 \ ∆σ is an arc of regularity

of the series (0.1) if and only if there is an entire function ϕ(ζ) of exponential

type interpolating the coefficients fn whose indicator function hϕ(θ) satisfies the

conditions:

hϕ(0) = 0 and lim
θ→0

hϕ(θ)

|θ|
≤ σ.

Problem 3 deals with continuation to the complex plane except the arc

∂D1 ∩∆σ. This problem is solved by the following Pólya’s theorem.

Theorem ([12]) The series (0.1) extends analytically to C, except possibly

the arc ∂D1 ∩∆σ, if and only if there exists an entire function of exponential type

ϕ(ζ) interpolating the coefficients fn such that

hϕ(θ) ≤ σ| sin θ| for |θ| ≤ π.

As mentioned above, in the first section we obtain sufficient conditions for

analytic continuability of the power series (0.1) in Problems 1-3. This conditions

are formulated in terms of meromorphic interpolations of the form

ψ(ζ) = φ(ζ)

∏p
j=1 Γ(ajζ + bj)∏q
k=1 Γ(ckζ + dk)

, (0.2)

where φ(ζ) is entire, aj ≥ 0, j = 1, ..., p, and

p∑
j=1

aj =

q∑
k=1

ck. (0.3)

Our choice of the interpolation function (0.2) with conditions (0.3) is mo-

tivated, in particular, by the fact that the inverse Mellin transformations of some

such functions belong to the class of nonconfluent hypergeometric functions [26].

Denote

l =

q∑
k=1

|ck| −
p∑
j=1

aj.
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An expression of the form

ϕ(ζ) := φ(ζ)

∏p
j=1 aj

ajζ∏q
k=1 |ck|

ckζ

is called the associated entire function for the meromorphic function (0.2).

We prove the following statements.

Theorem 1.1. The series (0.1) extends analytically to the open sector C\∆σ

if there exists a meromorphic function ψ(ζ) of the form (0.2) interpolating the coef-

ficients fn such that the indicator of the associated with ψ(ζ) entire function ϕ(ζ)

satisfies the conditions

1) hϕ(0) = 0, 2) max{hϕ(−π
2

) +
π

2
l, hϕ(

π

2
) +

π

2
l} ≤ σ.

Theorem 1.2. The open arc γσ = ∂D1 \ ∆σ is an arc of regularity for the

series (0.1) if there exists a meromorphic function ψ(ζ) of the form (0.2) interpo-

lating the coefficients fn such that the indicator of the associated with ψ(ζ) entire

function ϕ(ζ) satisfies the conditions

1) hϕ(0) = 0, 2) lim
θ→0

hϕ(θ)

|θ|
+
π

2
l ≤ σ.

Theorem 1.3. The series (0.1) extends analytically to C \ (∂D1 ∩ ∆σ) if

there exists a meromorphic function ψ(ζ) of the form (0.2) interpolating the coef-

ficients fn such that the indicator of the associated with ψ(ζ) entire function ϕ(ζ)

satisfies the conditions

hϕ(θ) +
π

2
l| sin θ| ≤ σ| sin θ| for |θ| ≤ π.
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In section 2 we consider two examples clarifying why interpolation of the

coefficients by meromorphic functions, and not by entire, may be more effective.

The first example is given by the series

f(z) =
∞∑
n=0

(2n− 2)(2n− 5)...(2n− 3(n+ 2))

2
2
3nn!

zn,

whose coefficients are interpolated by the meromorphic function

ψ(ζ) =
3ζ−1

2
2
3ζ

Γ(2
3ζ + 1

3)

Γ(ζ + 1)Γ(−1
3ζ + 4

3)
.

The associated with ψ(ζ) entire function ϕ(z) is

ϕ(ζ) :=
3ζ−1

2
2
3ζ

(2
3)

2
3ζ

| − 1
3 |

1
3ζ
≡ 1

3
.

Here l = 1 + 1
3 −

2
3 = 2

3 . According to Theorem 1.1, the series extends analytically

to the open sector C \∆π
3
.

In the third section we study Problem 4. We construct a family of “moder-

ately lacunar” non extendable series whose sums are infinitely differentiable func-

tions in the closure of the convergence disk.

One of the main results in this section is given by Theorem 1.4. It demon-

strates that Fredholm’s example may be strengthened by reducing the power order

of lacunarity from 2 to 1 + ε. The precise formulation is the following:

If the increasing sequence of natural numbers nk satisfies the inequality

nk ≥ const× k1+ε with ε > 0, then the power series

∞∑
k=0

akznk, 0 < a < 1

is not extendable across the boundary circle and represents infinitely differentiable

function in the closed disk.
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In chapter 2 we study continuability of power series in several variables.

For multiple power series there are significantly less results describing singular

subsets on the boundary of the convergence domain, or, in other words, subsets on

the boundary such that series analytically extends across them. In the first section

we extend Arakelian’s result [10] on the arc of regularity formulated above to the

case of multiple series.

Consider a multiple power series

f(z) =
∑
k∈Nn

fkz
k, (0.4)

with the property

lim
|k|→∞

|k|
√
|fk|Rk = 1, (0.5)

where Rk = Rk1
1 ...R

kn
n , and |k| = k1 + ... + kn. According to the n-dimensional

Cauchy-Hadamard theorem ([27], Section 7), the property (0.5) means that Rj

constitute the family of conjugate radii of polydisk of convergence of the series

(0.4).

A subset G on the boundary of the convergence domain is said to be a

regularity set of the series (0.4) if the sum of the series can be analytically continued

across any point of this set.

Let Dρ(a) := {z ∈ C : |z − a| < ρ} be an open circle with the centre a ∈ C

and radius ρ > 0. Denote Dρ := Dρ(0), and for σ ∈ (0, π] by γσ,ρ we denote the

open arc ∂Dρ \∆σ.

In the multivariate case there is no universal definition for the growth indi-

cator of an entire function. Moreover, the information of the growth of an entire

function is frequently represented in geometric terms. Following Ivanov [28] (see

also [22], Section 3, §3), we introduce the following set which implicitly contains

the notion of the growth indicator of an entire function ϕ(z) ∈ O(Cn):

Tϕ(θ) = {ν ∈ Rn : ln |ϕ(reiθ)| ≤ ν1r1 + ...+ νnrn + Cν,θ},
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where the inequality is satisfied for any r ∈ Rn
+ with some constant Cν,θ. Here reiθ

stands for the vector (r1e
iθ1, ..., rne

iθn). Thus, Tϕ(θ) is the set of linear majorants

(up to a shift by Cν,θ)

ν = ν(r) = ν1r1 + ...+ νnrn

for the logarithm of the modulus of function ϕ.

Define the set

Mϕ(θ) := {ν ∈ Rn : ν + ε ∈ Tϕ(θ), ν − ε /∈ Tϕ(θ) for any ε ∈ Rn
+},

which can be called a boundary set of linear majorants.

Let D ⊂ Cn be the domain of convergence of the series (0.4). Consider the

family of polyarcs γσ,R:

G =
⋃
R

γσ,R =
⋃
R

(γσ1,R1
× ...× γσn,Rn) ⊂ ∂D (0.6)

where R runs over the surface of conjugate radii of the convergence of series (0.4),

and σ = σ(R) = (σ1(R), ..., σn(R)).

Theorem 2.1. A family G of polyarcs (0.6) is the regularity set for the series

(0.4) if and only if there exists an entire function ϕ(z) interpolating the coefficients

fk such that the following conditions are fulfilled:

1) 0 ∈MRzϕ(0),

2) there exists a vector-function νR(θ) with values in MRzϕ(θ) to satisfy

lim
(θ1,..ĵ..,θn)→0

lim
θj→0

νj(θ)

|θj|
≤ σj(R), j = 1, ..., n.

In the second section of Chapter 2 we give conditions for continuability to a

sector of a power series whose coefficients are interpolated by values of an entire

or a meromorphic function.

Denote

Tϕ :=
⋂

θj=±π2

Tϕ(θ1, ..., θn),
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Mϕ := {ν ∈ [0, π]n : ν + ε ∈ Tϕ, ν − ε /∈ Tϕ for all ε ∈ Rn
+}.

Let G be a sectorial set of the form

G =
⋃
ν∈Mϕ

Gν, (0.7)

where

Gν = (C \∆ν1)× ...× (C \∆νn).

Theorem 2.2. The sum of the series (0.4) extends analytically to a sectorial

set G of the form (0.7) if there is an entire function ϕ(ζ) of exponential type

interpolating the coefficients fn and a vector-function ν(θ) on [−π
2 ,

π
2 ]n with values

in Mϕ(θ) to satisfy

νj(θ) ≤ a| sin θj|+ b cos θj, j = 1, ..., n,

with some constants a ∈ [0, π), b ∈ [0,∞).

As an example, consider a double power series

f(z1, z2) =
∑

k1,k2∈N2

cos
√
k1k2 z

k1
1 z

k2
2 , (0.8)

whose coefficients are interpolated by values of the entire function

ϕ(ζ1, ζ2) = cos
√
ζ1ζ2.

According to Theorem 2.2 the series (0.8) extends to a sectorial domain (0.7),

where ν runs over a part of the hyperbola ν1ν2 = 1
4 :

Mϕ = {ν ∈ [0, π]2 : ν1ν2 =
1

4
}.

In the fourth final section we construct double power series which are not extend-

able across the boundary of the convergence bidisk

U 2 = {(z1, z2) : |z1| < 1, |z2| < 1}
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and represent infinitely differentiable functions in Ū 2 \ T 2, where T 2 = {(z1, z2) :

|z1| = 1, |z2| = 1}.

These series have the form ∑
(k1,k2)∈A

z1
k1z2

k2,

where A = {(k1, k2) ∈ Z+
2 : k2 ≥ k1

1+ε} ∪ {(k1, k2) ∈ Z+
2 : k1 ≥ k2

1+ε}, ε > 0.
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Chapter 1. Analytic continuation of

one-dimensional power series

1.1 Continuation by means of meromorphic

interpolation of coefficients

Consider a power series

f(z) =
∞∑
n=0

fnz
n (1.1)

in z ∈ C whose domain of convergence is the unit disk D1 := {z ∈ C : |z| < 1}.

The Cauchy-Hadamard theorem yields that

lim
n→∞

n
√
|fn| = 1. (1.2)

We say that a function ϕ interpolates the coefficients of the series (1.1) if

ϕ(n) = fn for all n ∈ N. (1.3)

Recall (see, e.g. [22]) that the indicator function hϕ(θ) for an entire function ϕ is

defined as the upper limit

hϕ(θ) = lim
r→∞

ln |ϕ(reiθ)|
r

, θ ∈ R.

Let ∆σ be the sector {z = reiθ ∈ C : |θ| ≤ σ}, σ ∈ [0, π). By γσ we denote the

open arc ∂D1 \∆σ.

We consider interpolating meromorphic functions of the form

ψ(ζ) = φ(ζ)

∏p
j=1 Γ(ajζ + bj)∏q
k=1 Γ(ckζ + dk)

, (1.4)

where φ(ζ) is entire, aj ≥ 0, j = 1, ..., p, and

p∑
j=1

aj =

q∑
k=1

ck. (1.5)
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Our choice of the interpolation function (1.4) with conditions (1.5) is motivated,

in particular, by the fact that the inverse Mellin transformations of some such

functions belong to the class of nonconfluent hypergeometric functions [26].

1.1.1 Conditions for continuability to a sector

Denote

l :=

q∑
k=1

|ck| −
p∑
j=1

aj.

An expression of the form

ϕ(ζ) := φ(ζ)

∏p
j=1 aj

ajζ∏q
k=1 |ck|

ckζ
(1.6)

is called the associated entire function for the meromorphic function (1.4).

Theorem 1.1. The series (1.1) extends analytically to the open sector C\∆σ

if there exists a meromorphic function ψ(ζ) of the form (1.4) interpolating the co-

efficients fn such that the indicator of the associated with ψ(ζ) entire function ϕ(ζ)

satisfies the conditions

1) hϕ(0) = 0, 2) max{hϕ(−π
2

) +
π

2
l, hϕ(

π

2
) +

π

2
l} ≤ σ.

Proof.

To begin with, we prove Theorem 1.1 in the case when all ck are positive,

i.e. l = 0. Then the statement is the following:

The series (1.1) extends analytically to the open sector C \ ∆σ, if there

exists a meromorphic function ψ(ζ) of the form (1.4) interpolating the coefficients

fn such that the indicator of the associated with ψ(ζ) entire function ϕ(ζ) satisfies

the conditions

1) hϕ(0) = 0, 2) max{hϕ(−π
2

), hϕ(
π

2
)} ≤ σ. (1.7)
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Let ϕ be an entire function of the form (1.6) satisfying the conditions (1.7). Let us

assume that the series (1.1) extends to the open sector C \∆σ. It follows from the

definition of an indicator that

|ϕ(reiθ)| ≤ ehϕ(θ)r+o(r) for θ ∈ R,

where o(r) is infinitesimally small compared to r as r →∞.We need the property

of the trigonometric convexity of indicator function of entire function of exponen-

tial type (see Appendix A.1):

hϕ(θ) sin (θ2 − θ1) ≤ hϕ(θ1) sin (θ2 − θ) + hϕ(θ2) sin (θ − θ1),

where θ1 < θ < θ2 and θ2 − θ1 < π. Taking θ1 = 0, θ2 = α or θ1 = −α, θ2 = 0 we

obtain that for hϕ(0) = 0 and α ∈ (0, π)

hϕ(θ) ≤ cα| sin θ| for |θ| ≤ α

with the coefficients

cα =
1

sinα
max{hϕ(α), hϕ(−α)}.

If in this estimate for hϕ(0) = 0 we let α = π
2 , then taking into account (1.7)

we get the following estimate for the growth of ϕ

|ϕ(reiθ)| ≤ eσ| sin θ|r+o(r) for |θ| ≤ π

2
.

Since ϕ(ζ) has the form (1.6), we obtain the inequality

|φ(reiθ)|
∏p

j=1 |a
ajre

iθ

j |∏q
k=1 |c

ckreiθ

k |
≤ eσ| sin θ|r+o(r) or |θ| ≤ π

2
,

in the variable ζ = ξ + iη = r(cos θ + i sin θ) it can be written as

|φ(ζ)| ≤

(∏p
j=1 |a

ajζ
j |∏q

k=1 |c
ckζ
k |

)−1

eσ|η|+o(|ζ|) for ζ ∈ ∆π
2
. (1.8)
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We need the following estimate.

Lemma 1. For all ζ ∈ ∆π
2∣∣∣∣∣

∏p
j=1 Γ(ajζ + bj)∏q
k=1 Γ(ckζ + dk)

∣∣∣∣∣ ≤
∏p

j=1 |a
ajζ
j |∏q

k=1 |c
ckζ
k |

eo(|ζ|) for |ζ| → ∞. (1.9)

Proof. It is easy to see that for |ζ| → ∞ one has

|aζ|aξ(1− |b|
|aζ|

)|aζ|e−aη arg(ζ) ≤ |aζ + b|aξ ≤ |aζ|aξ(1 +
|b|
|aζ|

)|aζ|e−aη arg(ζ).

This fact together with Stirling’s formula (applicable in the right half plane ∆π
2

since aj, ck > 0) gives∏p
j=1 |Γ(ajζ + bj)|∏q
k=1 |Γ(ckζ + dk)|

∼
∏p

j=1 |(ajζ + bj)
(ajζ+bj)e−(ajζ+bj)(2π(ajζ + bj))

1
2 |∏q

k=1 |(ckζ + dk)(ckζ+dk)e−(ckζ+dk)(2π(ckζ + dk))
1
2 |
≤

≤
∏p

j=1 |ajζ|ajξ(1 +
|bj |
|ajζ|)

|ajζ|e−ajη arg(ζ)|(ajζ + bj)
bje−(ajζ+bj)(2π(ajζ + bj))

1
2 |∏q

k=1 |ckζ|ckξ(1−
|dk|
|ckζ|)

|ckζ|e−ckη arg(ζ)|(ckζ + dk)dke−(ckζ+dk)(2π(ckζ + dk))
1
2 |
≤

≤
∏p

j=1 |a
ajζ
j |∏q

k=1 |c
ckζ
k |
|ζξ(

∑p
j=1 aj−

∑q
k=1 ck)||e−ζ(

∑p
j=1 aj−

∑q
k=1 ck)|×

×
∏p

j=1 (1 +
|bj |
|ajζ|)

ajξe−ajη arg(ζ)∏q
k=1 (1− |dk|

|ckζ|)
ckξe−ckη arg(ζ)

×
∏p

j=1 |ajζ + bj|bje−bj |2π(ajζ + bj)|
1
2∏q

k=1 |ckζ + dk|dke−dk|2π(ckζ + dk)|
1
2

.

In view of (1.5), this turns into

∣∣∣∣∣
∏p

j=1 Γ(ajζ + bj)∏q
k=1 Γ(ckζ + dk)

∣∣∣∣∣ ≤
∏p

j=1 |a
ajζ
j |∏q

k=1 |c
ckζ
k |
|Aζ +B|C ,

where A,B and C are some constants (independent of ζ ). Since |Aζ + B|C =

eln |Aζ+B|C and

lim
|ζ|→∞

ln |Aζ +B|C

|ζ|
= 0,
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we get |Aζ +B|C = eo(|ζ|) as ζ →∞, i.e. the lemma’s statement.

It follows from (1.8) and (1.9) that for a meromorphic function ψ(ζ) defined

by (1.4) we have

|ψ(ζ)| ≤ eσ|η|+o(|ζ|) for ζ ∈ ∆π
2
. (1.10)

Consider the following function

g(ζ, z) :=
zζ

e2πiζ − 1

of two complex variables ζ = ξ + iη, z = x+ iy. It is meromorphic in ζ ∈ C and

holomorphic in z ∈ C \ R+.

Denote D∗ := ∪m∈ZD1/4(m). Notice that there exists a constant c > 0 such

that

|e2πiζ − 1| > eπ(|η|−η)

c
for ζ ∈ C \D∗.

From this we get the estimate

|g(ζ, z)| < ceξ log |z|−(π−|π−arg z|)|η|

for ζ ∈ C \D∗ and z ∈ C \R+. Using (1.10) for ζ ∈ ∆π
2
\D∗ and z ∈ C \R+ we

see that

|ψ(ζ)||g(ζ, z)| < ceξ log |z|−(π−σ−|π−arg z|)|η|+o(|ζ|). (1.11)

For ζ ∈ ∆π
2
\D∗ and z ∈ C \∆σ+δ there is the following bound

|ψ(ζ)||g(ζ, z)| < ceξ log |z|−δ|η|+o(|ζ|).

Consider the integral

Im =

∫
∂Gm

ψ(ζ)g(ζ, z)dζ

over the oriented boundary of Gm that consists of the segments (see Fig.1)

Γ1
m = [a− i(m+

1

2
), a+ i(m+

1

2
)],
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Γ2
m = [a+ i(m+

1

2
), a+m+ i(m+

1

2
)],

Γ3
m = [a+m+ i(m+

1

2
), a+m− i(m+

1

2
)],

Γ4
m = [a+m− i(m+

1

2
), a− i(m+

1

2
)],

where 1
4 < a < 3

4 .

Figure 1

The integral Im is the sum of four integrals I1
m, I

2
m, I

3
m, I

4
m over

Γ1
m,Γ

2
m,Γ

3
m,Γ

4
m, respectively. For ζ ∈ ∆π

2
\ D∗ and z ∈ C \ ∆σ+δ there hold the

following estimates

I2
m =

∫
Γ2
m

|ψ(ζ)g(ζ, z)||dζ| ≤ ce−δ(m+ 1
2 )

a+m∫
a

eξ ln |z|+o(|ζ|)dξ,

I3
m =

∫
Γ3
m

|ψ(ζ)g(ζ, z)||dζ| ≤ ce(a+m) ln |z|+o(m)

i(m+ 1
2 )∫

−i(m+ 1
2 )

dη,

I4
m =

∫
Γ4
m

|ψ(ζ)g(ζ, z)||dζ| ≤ ce−δ(m+ 1
2 )

a∫
a+m

eξ ln |z|+o(|ζ|)dξ.
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We see that for z ∈ D1 \∆σ+δ the integrals I2
m, I

3
m, I

4
m tend to 0 as m→∞.

Thus,

lim
m→∞

Im = lim
m→∞

∫
∂Gm

ψ(ζ)g(ζ, z)dζ = lim
m→∞

∫
Γ1
m

ψ(ζ)g(ζ, z)dζ = lim
m→∞

I1
m.

In the domain Gm the integrand has simple poles at real integer points and

finitely many poles at points −ν−bjaj
∈ Gm, ν = 0, 1, ... (recall that aj, bj are

parameters in the definition (1.4) of ψ(ζ)).

The residue theorem yields∫
∂Gm

ϕ(ζ)g(ζ, z)dζ =
m∑
n=1

ϕ(n)zn + P (z),

where P (z) is a polynomial.

Consider the integral

I =

a+i∞∫
a−i∞

ϕ(ζ)g(ζ, z)dζ.

For ζ = a+ iη and z ∈ C \∆σ+δ we have

|ϕ(ζ)||g(ζ, z)| < cea ln |z|−δ|η|+o(|ζ|).

It follows from this inequality that the integral I converges absolutely and

uniformly on any compact subset K ⊂ C \ ∆σ+δ, and defines a holomorphic

function on the set of interior points of K. For z ∈ D1 \∆σ+δ∫
Γ1
m

ϕ(ζ)g(ζ, z)dζ →
a+i∞∫
a−i∞

ϕ(ζ)g(ζ, z)dζ, as m→∞.

Since Im → I as m → ∞, I(z) = f(z) + P (z) for z ∈ D1 ∩ Ko. This means

that f(z) extends analytically to Ko. Because K is an arbitrary compact set in

C \ ∆σ+δ for any small δ, the function f(z) extends to the open sector C \ ∆σ.

Thus, Theorem 1.1 is proved if all ck are positive.
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Now we prove Theorem 1.1 in the case when ck may be negative. To avoid

cumbersome notation let us show the idea of the proof under the assumption that

only one of cks is negative, let it be cq. It follows easily that in this case l
2 = −cq.

The expression for ψ(ζ) becoming

ψ(ζ) = φ(ζ)

∏p
j=1 Γ(ajζ + bj)∏q−1

k=1 Γ(ckζ + dk)Γ(− l
2ζ + dq)

.

The associated with ψ(ζ) entire function is

ϕ(ζ) := φ(ζ)

∏p
j=1 aj

ajζ∏q
k=1 |ck|

ckζ
= φ(ζ)

∏p
j=1 aj

ajζ( l2)
l
2ζ∏q−1

k=1 ck
ckζ

.

Note that the function ψ(ζ) may be rewritten in the form (1.4) such that all ck are

positive

ψ(ζ) = φ(ζ)

∏p
j=1 Γ(ajζ + bj)∏q−1
k=1 Γ(ckζ + dk)

Γ(1 +
l

2
ζ + dq) sinπ(− l

2
ζ − d).

The associated entire function for this form of ψ(ζ) is

ϕ̃(ζ) := ψ(ζ) sinπ(− l
2
ζ − dq).

Its indicator is bounded

hϕ̃(θ) ≤ hϕ(θ) + π
l

2
| sin(θ)|, |θ| ≤ π

2
.

According to the hypothesis of Theorem 1.1

max{hϕ(−π
2

) +
π

2
l, hϕ(

π

2
) +

π

2
l} ≤ σ.

Thus

hϕ̃(0) = 0, hϕ̃(±π
2

) ≤ σ.

The function ϕ̃(ζ) satisfies the conditions (1.7), hence the sum of the series

(1.1) extends analytically to the open sector C \∆σ. Theorem 1.1 is proved.
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1.1.2 Conditions for continuability to some

neighborhood of an open arc

Theorem 1.2. The open arc γσ = ∂D1 \ ∆σ is an arc of regularity for the

series (1.1) if there exists a meromorphic function ψ(ζ) of the form (1.4) interpo-

lating the coefficients fn such that the indicator of the associated with ψ(ζ) entire

function ϕ(ζ) satisfies the conditions

1) hϕ(0) = 0, 2) lim
θ→0

hϕ(θ)

|θ|
+
π

2
l ≤ σ.

The proof of Theorem 1.2 is largely similar to that of Theorem 1.1. Namely,

it follows from condition 2) of Theorem 1.2 that for any α > 0 there exists δ > 0

such that hϕ(θ) ≤ (σ + δ)| sin θ| for |θ| ≤ α. Consequently, the bounds (1.10)

and (1.11) for the absolute values of ψ(ζ) and ψ(ζ)g(ζ, z) hold for ζ ∈ ∆α. The

domains G and Gm become (see Fig. 2)

G = D1 ∪∆o
α and Gm = {ζ = ξ + iη ∈ G : ξ ≤ m+

1

2
},

i.e. ∂Gm = Γ1
m ∪ Γ2

m.

The integral Im is then the sum of I1
m and I2

m over Γ1
m, Γ2

m, and for z ∈ K∩

Do
1 the integral I

2
m → 0 as m→∞.

The integral I over ∂G converges for ζ ∈ ∆α, z ∈ K, (see Fig. 3) where

K = Deε \ (∆o
σ+2δ ∪D 1

2
), ε =

δ sinα

2
.

The rest of the proof is the same.
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Figure 2

Figure 3

1.1.3 Conditions for continuability to complex plane

except some arc

Theorem 1.3. The series (1.1) extends analytically to C \ (∂D1 ∩ ∆σ), if

there exists a meromorphic function ψ(ζ) of the form (1.4) interpolating the coef-

ficients fn such that the indicator of the associated with ψ(ζ) entire function ϕ(ζ)

satisfies the conditions

hϕ(θ) +
π

2
l| sin θ| ≤ σ| sin θ| for |θ| ≤ π.
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As for the proof of Theorem 1.3, it is enough to note that the main estimates

(1.10) and (1.11) hold for all ζ ∈ C. Therefore, by choosing appropriate contours

of integrations (see Fig. 4) we prove analytic continuation of the sum of the series

to C \ (∂D1 ∩∆σ).

Figure 4

The integral I converges for z ∈ K, where K = C \ (D1 ∩ ∆σ+2δ ∪De−ε)

(see Fig. 5) and the sum of the series (1.1) equal to the integral I as z ∈ K ∩Do
1.

Thus, the series extends to the whole complex plane C except some arc of the

boundary D1.

1.2 Examples

Consider two examples clarifying why interpolation of the coefficients by

meromorphic functions, and not by entire, may be more effective.

Example 1. Consider the series
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Figure 5

f(z) =
∞∑
n=0

(2n− 2)(2n− 5)...(2n− 3(n+ 2))

2
2
3nn!

zn, (1.12)

whose domain of convergence is the unit disk. Let the coefficients fn be given by

the values of a meromorphic function of the form (1.4). Therefore the cofficients

can be rewritten in the form

fn =
3n−1(2

3n+ 1
3 − 1)...(2

3n+ 1
3 − (n− 1))

2
2
3nn!

.

Using the formula

Γ(τ + l) = (τ)lΓ(l),

where (τ)l = τ(τ + 1)...(τ + l − 1) is the Pochhammer symbol, l ∈ N, we get

fn =
Γ(2

3n+ 1
3)3n−1

Γ(n+ 1)Γ(−1
3n+ 4

3)2
2
3n
.

Thus, the meromorphic function

ψ(ζ) =
3ζ−1

2
2
3ζ

Γ(2
3ζ + 1

3)

Γ(ζ + 1)Γ(−1
3ζ + 4

3)

interpolates the coefficients fn.
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In this case the entire function from Theorem 1.1 is

ϕ(ζ) =
3ζ−1

2
2
3ζ

(2
3)

2ζ
3

(1
3)
−ζ
3

≡ 1

3
.

Here hϕ(θ) = 0 and l = 1 + 1
3 + 2

3 = 2
3 . Therefore

max{hϕ(−π
2

) +
πl

2
, hϕ(

π

2
) +

πl

2
} =

π

3
.

According to Theorem 1.1, the series (1.12) extends analytically to the open sector

C \∆π
3
.

Note that the series (1.12) is a branch of the solution y(z) to the algebraic

equation y3 − 3z

2
2
3
y − 1 = 0 determined by the condition y(0) = 1 (see [29]).

The series f(z) has singularities (branching points) at e−i
2
3π and ei

2
3π and extends

to the sector C \∆π
3
defined by the large arc of the boundary of the unit disk with

endpoints e−i
2
3π and ei

2
3π [29].

However, an entire function interpolating the coefficients cannot be always

constructed so easily, despite its existence follows from Arakelian’s theorem [10].

Example 2. Consider now the series

f(z) =
∞∑
n=0

Γ(n3 + 1
3)3n

Γ(n+ 1)Γ(−2n
3 + 4

3)2
2n
3

zn, (1.13)

with the same domain of convergence, the unit disk. Its coefficients are

fn =
Γ(n3 + 1

3)3n

Γ(n+ 1)Γ(−2n
3 + 4

3)2
2n
3

,

They are interpolated by the following entire function

ϕ(z) =
2π

3
1
2

2−
2
3z

Γ(z3 + 2
3)Γ(z3 + 1)Γ(4

3 −
2z
3 )
.

Indeed, in Gauss’s multiplication formula [30]

Γ(w)Γ(w +
1

m
)...Γ(w +

m− 1

m
) = m

1
2−mw(2π)

m−1
2 Γ(mw)
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let m = 3, w = n
3 + 1

3 , then

Γ(
n

3
+

1

3
)Γ(

n

3
+

2

3
)Γ(

n

3
+ 1) = 3−

1
2−n2πΓ(n+ 1).

Express Γ(n3 + 1
3) through the other terms of this identity and substitute it into the

expression for fn to see that ϕ(n) = fn, n ∈ N.

Estimate |ϕ(r)| by using Stirling’s formula

|ϕ(r)| =

∣∣∣∣∣ 2

3
1
2

2
2
3rΓ(2r

3 −
1
3)sin(π 2r−1

3 )

Γ(r3 + 2
3)Γ(r3 + 1)

∣∣∣∣∣ ∼

∼ 2

3
1
2

2
2
3r(2π 2r−1

3 )
1
2 (2r

3 −
1
3)

2r
3 −

1
3e−( 2r

3 −
1
3 )

(2π r+2
3 )

1
2 (r3 + 2

3)
r
3+ 2

3e−( r3+ 2
3 )

sin(π 2r−1
3 )

(2π(r3 + 1))
1
2 (r3 + 1)

r
3+1e−( r3+1)

≤

≤ Cr + eo(r).

On the one hand

hϕ(0) = lim
r→∞

ln |ϕ(r)|
r

≤ lim
r→∞

ln(Cr + eo(r))

r
≤ 0,

on the other hand

hϕ(0) ≥ lim
n→∞

ln |ϕ(n)|
n

= lim
n→∞

ln |fn|
1
n = 0,

therefore hϕ(0) = 0.

In order to estimate |ϕ(rei
π
2 )| and |ϕ(re−i

π
2 )| we use the double-sided estimate

for the Gamma-function (see [31]):

c1(|y|+ 1)x−
1
2e−

π
2 |y| ≤ Γ(x+ iy) ≤ c2(|y|+ 1)x−

1
2e−

π
2 |y|,

where x ∈ K ⊂ R\{0,−1,−2, ...}, K is compact. The constants c1 and c2 depend

on the choice of y ∈ R. Then
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|ϕ(re±i
π
2 )| ≤ C

e
π
6 re

π
6 re

2π
6 r

c1(
r
3 + 1)

2
3−

1
2c1(

r
3 + 1)1− 1

2c1(
2r
3 + 1)

4
3−

1
2

,

or

ln |ϕ(re±i
π
2 )| ≤ 2π

3
r + o(r).

Therefore

hϕ(±π
2

) ≤ 2π

3
.

It follows from Arakelian’s Theorem [24] that the series (2.2) extends to the

open sector C \∆ 2π
3
.

On the other hand, the coefficients of the series (1.13) are interpolated by the

meromorphic function

ψ(ζ) =
3ζ

2
2
3ζ

Γ(1
3ζ + 1

3)

Γ(ζ + 1)Γ(−2
3ζ + 4

3)
.

The entire function of Theorem 1.1 is

ϕ(ζ) =
3ζ

2
2
3ζ

3−
1
3ζ

(−2
3)−

2
3ζ
≡ 1,

and l = 1 + 2
3 −

1
3 = 4

3 , hϕ(θ) = 0 and

max{hϕ(−π
2

)− 2π

3
, hϕ(

π

2
) +

2π

3
} ≤ 2π

3
.

Therefore, by Theorem 1.1 the series (1.13) extends to the open sector

C \ ∆ 2π
3
.

1.3 Non extendable one-dimensional series

The problem of describing the relations between singularities of power series

in one variable and their coefficients attracted mathematicians’ attention already
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at the end of 19th century. Remarkable results were obtained in the first half of

the 20th century which allowed thinking that the development in this direction was

almost completed. Many obtained results touch upon the question about series

non extendable analytically across the boundary of their convergence domain and

these results are connected with the names of famous Hungarian mathematicians

Szegö and Pólya (see, for example, articles [4] and [3], and also the list of their

articles in the book by Bieberbach [6]). Examples of series that are non extendable

analytically across the boundary of their convergence domain we can find in the

text-books about theory functions of complex variables. These examples deal with

the so-called "strongly lacunar" series, in other words, having "many" monomials

with zero coefficients. Such series, for instance, are

∞∑
n=0

zn!,

∞∑
n=0

z2n,

∞∑
n=0

zn
n

.

In 1891, Fredholm [17] gave examples of "moderate lacunar" non extendable se-

ries, moreover, these series represented infinitely differentiable function in the clo-

sure of the convergence disk. These series depend on a parameter a, and they have

the following form
∞∑
n=0

anzn
2

, 0 < a < 1.

Here n2 has the power order 2 respective to the summation index n, therefore we

say that Fredholm’s series have the lacunarity order 2.

A more general result on non extendable series in terms of lacunarity belongs

to Fabry (see [18] or [6]). It claims that if the sequence of natural numbers mn

increases faster than n (i.e. n = o(mn)), then there is a series

∞∑
n=0

anz
mn,

converging in the unit disk and not extending across its boundary.
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One of the main results in this section is given by Theorem 1.4. It demon-

strates that Fredholm’s example may be refined to the power order of lacunarity

from 2 to 1 + ε. The precise formulation is the following:

Theorem 1.4. If the increasing sequence of natural numbers nk satisfies the

inequality nk ≥ const× k1+ε with ε > 0, then the power series

∞∑
k=0

akznk, 0 < a < 1, (1.14)

are not extendable across the boundary circle and represent infinitely differentiable

function in the closed disk.

Proof. Consider the following series

ϕ(t, u) =
∞∑
k=0

enkt+ku, where t, u ∈ C. (1.15)

Its terms exponentially decrease in the product Π× Π̄ of subspaces Π = {u :

Re u < 0} and Π̄ = {t : Re t ≤ 0}. These series converge uniformly on compact

subsets of Π× Π̄ and therefore ϕ(t, u) is holomorphic in the product Π×Π of open

subspaces. This property is preserved for all derivatives of this series with respect

to the variable t. Consequently the function ϕ(t, u) is infinitely differentiable in Π̄

for each fixed u ∈ Π.

Introduce the following notation

F (−t) =
∞∑
k=0

eku0e−nk(−t) =
∞∑
k=0

enkt+ku0 = ϕ(t, u0), (1.16)

for t ∈ Π̄ and for each fixed u0 ∈ Π. Here, the function F (−t) is represented by

a Dirichlet series
∞∑
k=0

ake
−λkt

with exponential indexes λk = nk and coefficiens ak = eku0.

If the series converges in the half plane Rez > c and diverges in the half

plane Rez < c, then the line Rez = c is called a line of convergence for the
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Dirichlet series, and the quantity c is called an abscissa of convergence (see [32],

[33]).

Compute the value

L = lim
k→∞

ln k

λk
= lim

k→∞

ln k

nk
≤ lim

k→∞

ln k

k1+ε
= 0.

Therefore, the abscissa of convergence for the series (1.16) can be found as follows

= lim
k→∞

ln |eku0|
nk

= lim
k→∞

ln ekRe u0

nk
= lim

k→∞

kRe u0

nk
≤ lim

k→∞

kRe u0

k1+ε
= 0.

Now we demonstrate that the function F (−t) satisfies the conditions of Polya’s

theorem [34]: If a Dirichlet series

F (z) =
∞∑
k=1

ake
−nkz

has a finite abscissa of convergence c and

lim
k→∞

k

nk
= 0, nk+1 − nk ≥ h > 0,

then the line of convergence Re z = c is the natural boundary for the function

F (z).

Indeed,

lim
k→∞

k

nk
∼ lim

k→∞

k

k1+ε
→ 0,

nk+1 − nk ∼ (k + 1)1+ε − k1+ε = k1+ε

((
1 +

1

k

)1+ε

− 1

)
=

= k1+ε

(
(1 + ε)

1

k
+ o(

1

k
)

)
−−−→
k→∞

∞.

Consequently, the function F (−t) is not analytically extendable. Then, denoting

a = eu (fixed) and z = et, from (1.15) we get (1.14) as desired.

Theorem 1.5. For an arbitrary pair of natural numbers p > q the series

f(z) =
∞∑
ν=0

aν
q

zν
p

, 0 < a < 1, (1.17)
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is not extendable across the unit disk boundary and represents an infinitely differ-

entiable function in the closed disk.

Proof. We can prove this theorem directly, without referring to the Polya’s

theorem. We consider the following series

ϕ(t, u) =
∞∑
ν=0

eν
pt+νqu, where t, u ∈ C. (1.18)

Its terms are exponentially decreasing in the product Π× Π̄ of subspaces

Π = {u : Re u < 0} and Π̄ = {t : Re t ≤ 0}. The series converges uniformly on

the compact subsets of Π × Π̄ therefore ϕ(t, u) is holomorphic in the product of

open subspaces Π × Π. Besides, the function ϕ(t, u) is holomorphic in u ∈ Π for

any fixed t0 ∈ Π̄. We consider the Taylor expansion of ϕ

ϕ(t, u) =
∞∑
k=0

∂kϕ

∂uk
(t, u0)

(u− u0)
k

k!
, (1.19)

with the centre u0 ∈ Π, regarding t ∈ Π̄ as a parameter. In view of (1.18) we have

∂kϕ

∂uk
(t, u) =

∞∑
ν=0

(νq)keν
pt+νqu.

Substituting this expression in (1.19), we obtain

∞∑
k=0

( ∞∑
ν=0

(νq)keν
pt+νqu0

)
(u− u0)

k

k!
. (1.20)

We demonstrate that the series (1.20) has a finite convergence radius for any fixed

t0 from the boundary ∂ Π̄ (i.e. Ret0 = 0).

The series (1.18) diverges if Reu ≥ 0 and Ret0 = 0, because its general

term

|eνpt0+νqu| = |eνpt0||eνqu| = (eRe u)ν
q

does not tend to 0. Besides, the series (1.18) can be considered as a power series

in the variable w = eu. Using these facts, we obtain that the function ϕ(t0, u)
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has a singularity point û such that Reû = 0. Hence, the series (1.20) has a finite

convergence disk.

By using these facts and the Cauchy-Hadamard formula, we obtain that there

is a sequence kl with the following property∣∣∣∣∣
∞∑
ν=0

(νq)kleν
pt0+νqu0

∣∣∣∣∣ ∼ kl!

ρkl
with kl →∞, (1.21)

where ρ is the convergence radius of the series (1.18) which depends on the choice

of points u0 ∈ Π and t0 ∈ Π.

Assume that the function ϕ(t, u0) extends analytically with respect to t from

Π̄ across some boundary point t0 ∈ ∂Π̄ for some fixed u0 ∈ Π. We denote by

ϕ̃(t, u0) the analytic continuation of the function ϕ(t, u0). Its Taylor series is the

following:

ϕ̃(t, u0) =
∞∑
k=0

∂kϕ̃

∂tk
(t0, u0)

(t− t0)k

k!
=

∞∑
k=0

∂kϕ

∂tk
(t0, u0)

(t− t0)k

k!
. (1.22)

Taking into account (1.18) we have

∂kϕ

∂tk
(t, u) =

∞∑
ν=0

(νp)keν
pt+νqu.

Substituting this expression in (1.22), we obtain

ϕ̃(t, u0) =
∞∑
k=0

( ∞∑
ν=0

(νp)keν
pt0+νqu0

)
(t− t0)k

k!
=

=
∞∑
k=0

( ∞∑
ν=0

(νq)
p
qkeν

pt0+νqu0

)
(t− t0)k

k!
. (1.23)

We investigate the convergence radius of this series by the Cauchy–Hadamard

theorem. In the sequence

k

√√√√ 1

k!

∣∣∣∣∣
∞∑
ν=0

(νq)
p
qkeνpt0+νqu0

∣∣∣∣∣
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we consider the subsequence taking k = qkl:

qkl

√√√√ 1

(qkl)!

∣∣∣∣∣
∞∑
ν=0

(νq)pkleνpt0+νqu0

∣∣∣∣∣.
Using the estimate (1.21), we obtain

qkl

√
1

(qkl)!

(pkl)!

ρpkl
= qkl

√
(pkl)!

(qkl)!
ρ
p
q .

By Stirling’s formula

qkl

√
(pkl)pkl−

1
2e−pkl

(qkl)qkl−
1
2e−qkl

ρ
p
q ∼

k
p
q

l

kl
−−−→
kl→∞

∞ with p > q.

Thus, the series (1.22) has empty convergence domain. It follows that the series

(1.18) does not continue analytically with respect to t across the point t0 ∈ ∂ Π̄.

The theorem is proved.
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Chapter 2. Analytic continuation of multiple

power series

For multiple power series there are significantly less results describing singu-

lar subsets on the boundary of the convergence domain, or, in other words, subsets

on the boundary such that series analytically extend across them. In the first sec-

tion we extend Arakelian’s result [10] on the arc of regularity formulated in the

Introduction.

Recall that this theorem establishes the size of the regularity arc (across which

the series extends) on the boundary circle in terms of the indicator function of the

entire function of exponential type interpolating the coefficients of the series.

In the second section we consider the problem of continuability of power

series to sectorial domains of Cn. Sectorial domains are defined by conditions on

the arguments θj = arg zj of variables (z1, ..., zn) ∈ Cn only. In the final fourth

section we construct double power series with a natural boundary. Such series are

non extendable across the boundary of their convergence domains.

2.1 Criterion of continuability of multiple power series

across a family of polyarcs

Consider the multiple power series

f(z) =
∑
k∈Nn

fkz
k (2.1)

with the property

lim
|k|→∞

|k|
√
|fk|Rk = 1, (2.2)

where Rk = Rk1
1 ...R

kn
n , and |k| = k1 + ... + kn. According to the n-dimensional

Cauchy-Hadamard theorem ([27], Section 7), the property (2.2) means that Rj
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constitute the family of radii of polydisk of convergence of the series (2.1).

A subset G on the boundary of convergence domain is said to be the regu-

larity set of the series (2.1), if the sum of the series can be analytically continued

across any point of this set.

In this section we describe the regularity sets G that consist of families of

polyarcs (direct products of arcs) from the distinguished boundary of the polydisk

of convergence of the series (2.1).

Let Dρ(a) := {z ∈ C : |z − a| < ρ} be an open circle with center a ∈ C and

radius ρ > 0. Denote Dρ := Dρ(0), and for σ ∈ (0, π] by γσ,ρ we denote the open

arc ∂Dρ \∆σ.

2.1.1 Formulation of Theorem 2.1

In the multivariate case there is no universal definition of the growth indicator

of an entire function. Moreover, frequently the information on the growth of an

entire function is represented in geometric terms. Following Ivanov [28] ((see also

[22], Section 3, §3), we introduce the following set, which implicitly contains the

notion of the growth indicator of an entire function ϕ(z) ∈ O(Cn):

Tϕ(θ) = {ν ∈ Rn : ln |ϕ(reiθ)| ≤ ν1r1 + ...+ νnrn + Cν,θ},

where the inequality is satisfied for any r ∈ Rn
+ with some constant Cν,θ. Here reiθ

stands for the vector (r1e
iθ1, ..., rne

iθn). Thus, Tϕ(θ) is the set of linear majorants

(up to a shift by Cν,θ)

ν = ν(r) = ν1r1 + ...+ νnrn

for the logarithm of the modulus of function ϕ.

Define the set

Mϕ(θ) := {ν ∈ Rn : ν + ε ∈ Tϕ(θ), ν − ε /∈ Tϕ(θ) for any ε ∈ Rn
+},
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which can be called a boundary set of linear majorants.

We say that an entire function ϕ interpolates the coefficients of the series

(2.1), if the following equality is fulfilled:

ϕ(k) = fk for all k ∈ Nn. (2.3)

Let D ⊂ Cn be the domain of convergence of the series (2.1). Consider a

family of polyarcs γσ,R:

G =
⋃
R

γσ,R =
⋃
R

(γσ1,R1
× ...× γσn,Rn) ⊂ ∂D, (2.4)

where R runs over the surface of conjugate radii of convergence of the series (2.1),

and σ = σ(R) = (σ1(R), ..., σn(R)).

Theorem 2.1. A family G of polyarcs (2.4) is the regularity set for the series

(2.1) if and only if there exists an interpolating the coefficients fk entire function

ϕ(z) such that the following conditions are fulfilled:

1) 0 ∈MRzϕ(0),

2) there exists a vector-function νR(θ) with values in MRzϕ(θ) to satisfy

lim
(θ1,..ĵ..,θn)→0

lim
θj→0

νj(θ)

|θj|
≤ σj(R), j = 1, ..., n.

Observe that it is enough to prove the theorem for the polyarc γσ,R from the

distinguished boundary of the polydisk of convergence

{|z1| < R1, ..., |zn| < Rn} = DR1
× ...×DRn.

Namely, we prove the following proposition for fixed R1, ..., Rn.

Proposition. The polyarc γσ1,R1
× ... × γσn,Rn is the regularity set for the

series (2.1) if and only if there exists an interpolating the coefficients fk entire

function ϕ(z) such that the following conditions are fulfilled:
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1) 0 ∈MRzϕ(0),

2) there exists a vector-function ν(θ) with values in MRzϕ(θ), to satisfy

lim
(θ1,..ĵ..,θn)→0

lim
θj→0

νj(θ)

|θj|
≤ σj, j = 1, ..., n.

It is worthwhile to note that for the class of hypergeometric functions (this

class contains a general algebraic function, that is, a function that is determined by

a polynomial equation with independent variable coefficients) the polyarc of regu-

larity can be extended to a polytope of regularity (see [35] and [26], Chapters 4,7).

By this we mean is continuation of the series across a part of boundary of the

domain of convergence which in the angular coordinates θ1, ..., θn is determined by

a polytope, i.e. by a bounded polyhedron.

2.1.2 Necessity of the conditions of Theorem 2.1

Assume that the sum of series (2.1) can be continued across the polyarc

γσ,R = γσ1,R1
× ...× γσn,Rn.

We show that there exists an entire function ϕ(ζ) that interpolates the coefficients

fk and satisfies conditions 1) and 2).

According to our assumption there exists a simply connected domain Ω con-

taining (DR1
× ...×DRn) ∪ γσ,R, in which the sum of series (2.1) is holomorphic.

By Hartogs’ theorem (see, e.g.,[27], Section 32) this sum can be holomorphically

continued into a domain containing

(DR1
∪ γσ1,R1

)× ...× (DRn ∪ γσn,Rn).

We fix the numbers rjo ∈ (0, Rj|1− eiσj |), j = 1, ..., n, to satisfy

(D̄r1o(−R1))× ...× (D̄rno (−Rn)) ⊂ Ω.
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Denote eµ
j
o := Rj + rjo, j = 1, ..., n, and for any δj ∈ (0, π − σj) fix the numbers

µj = µjδj ∈ (lnRj, µ
j
o) to satisfy

(D̄eµ1 \∆o
σ1+δ1

)× ...× (D̄eµn \∆o
σn+δn

) ⊂ Ω.

Then for any ε ∈ Rn
+ the domain

Ωε,δ = Ω1
ε1,δ1
× ...× Ωn

εn,δn
,

where

Ωj
εj ,δj

:= (Drjo
(−Rj)) ∪ (D̄eµj \∆σj+δj) ∪DRje

−εj , j = 1, ..., n,

satisfies the condition Ω̄ε,δ ⊂ Ω.

Denote by Γε,δ := ∂Ω1
ε1,δ1
× ...× ∂Ωn

εn,δn
the distinguished boundary of Ωε,δ.

Since f ∈ O(Ω̄ε,δ), we can apply the Cauchy integral formula for the coefficients

of the power series (2.1) to obtain

fk = (2πi)−n
∫

Γε,δ

ζ−k−If(ζ)dζ, k ∈ Nn,

where I = (1, ..., 1) ∈ Nn and dζ = dζ1...dζn. As a desired interpolating

function ϕ we take the same integral but with a complex parameter z instead of

integer k:

ϕ(z) = (2πi)−n
∫

Γε,δ

ζ−z−If(ζ)dζ, where ζ
zj
j = ezj log ζj . (2.5)

Observe that ϕ(z) is an entire function because it is an integral over a compact set

of a function continuous up to the boundary with respect to the variables (ζ, z) ∈

(Ω ∩ (C \ R−)n) × Cn and holomorphic everywhere in the variable z, where R−

stands for the negative real semiaxis (see [36]).

40



Now we are going to obtain an estimate for the function ϕ. To this end, we

deform the distinguish boundary Γε,δ as follows. The parts of arcs from ∂Drjo
(−Rj),

the dotted curves in Fig. 6, we replace by two arcs on ∂Deµj
and a pair of segments

[−eµjo,−eµj ] and [−eµj ,−eµjo] oriented in the opposite directions. The contour ob-

tained for each j = 1, ..., n we denote by Ljεj ,δj . Then the entire distinguished

boundary Γε,δ is deformed into an n-dimensional loop

Lε,δ = L1
ε1,δ1
× ...× Lnεn,δn.

Observe that for a fixed r0 ∈ Rn
+ and a chosen σ ∈ Rn

+ the curves Ljεj ,δj and L
j

έj ,δ́j

bound a path, where the integrand in (2.5) is univalent and holomorphic in ζj, and

hence the value of ϕ(z) given by the integral (2.5) is independent of ε and δ.

Figure 6

Denoting zj = ξj + iηj, j = 1, ..., n, and

Mε,δ := sup
ζ∈Lε,δ

|f(ζ)|,

from (2.5) we obtain the estimate
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|ϕ(z)| ≤Mε,δI, z ∈ Cn, (2.6)

where

I = πn
∫

L+
1 ×...×L

+
n

|ζ1|−ξ1−1e|η1| arg ζ1...|ζn|−ξn−1e|ηn| arg ζn|dζ1|...|dζn|.

Here L+
j denotes the part of Ljεj ,δj lying in the upper half-plane, that is,

Lj+ = Lj1 ∪ L
j
2 ∪ L

j
3 ∪ L

j
4,

where

Lj1 = {Rje
−εj+iωj : ωj ∈ [0, σj + δj)},

Lj2 = {tjei(σj+δj) : tj ∈ [Rje
−εj , eµj)},

Lj3 = {eµj+iωj : ωj ∈ [σj + δj, π)},

Lj4 = {tjeiπ : tj ∈ [eµj , eµ
j
o]}.

Therefore I can be represented as a sum of integrals Ip1,...,pn over the L1
p1
×

...× Lnpn, p1, ..., pn = 1, 2, 3, 4. Observe that each such path is a direct product of

arcs (with centers at zero) and line segments (passing through zero). This observa-

tion allows to obtain effective estimates of the integrals Ip1,...,pn. For instance, we

have

I1...1 =
1

πn

∫
L1
1×...×Ln1

|ζ1|−ξ1e|η1| arg ζ1...|ζn|−ξne|ηn| arg ζn|dζ1

ζ1
|...|dζn

ζn
| =

=
1

πn

σ1+δ1∫
0

...

σn+δn∫
0

n∏
j=1

(R
−ξj
j eεjξj+|ηj |ωj)dω1...dωn =

=
1

πn

n∏
j=1

(
R
−ξj
j eεjξj

e(σj+δj)|ηj | − 1

|ηj|

)
.
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Taking into account that σj + δj ≤ π, we can use the inequality eax − 1 ≤ aeax,

where a ≥ 0, x ≥ 0, to obtain the estimate

I1...1 ≤
n∏
j=1

(
R
−ξj
j eεjξj e(σj+δj)|ηj |

)
.

By similar argument we get

I2...2 =
1

πn

∫
L1
2×...×Ln2

|ζ1|−ξ1e|η1| arg ζ1...|ζn|−ξne|ηn| arg ζn|dζ1

ζ1
|...|dζn

ζn
| =

=
1

πn

eµ1∫
R1e−ε1

...

eµn∫
Rje−εn

n∏
j=1

(
tj
−ξj−1e|ηj |(σj+δj)

)
dt1...dtn =

=
1

πn

n∏
j=1

(
e|ηj |(σj+δj)

(
e−µjξj −R−ξjj eεjξj

−ξj

))
.

Therefore for ξj ≥ 1 we obtain the estimate

I2...2 ≤
n∏
j=1

(
e|ηj |(σj+δj)R

−ξj
j eεjξj

)
.

Furthermore, we have

I3...3 =
1

πn

π∫
σ1+δ1

...

π∫
σn+δn

n∏
j=1

(
e−µjξjeωj |ηj |

)
dω1...dωn =

=
1

πn

n∏
j=1

(
e−µjξj

(
e|ηj |π − e|ηj |(σj+δj)

|ηj|

))

=
1

πn

n∏
j=1

(
e−µjξje|ηj |(σj+δj)

(
e|ηj |(π−σj−δj − 1

|ηj|

))
=

=
1

πn

n∏
j=1

(
(π − σj − δj)e−µjξje|ηj |(σj+δj)

(
e|ηj |(π−σj−δj) − 1

|ηj|(π − σj − δj)

))
≤
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≤ 1

πn

n∏
j=1

(
πe−µjξje|ηj |(σj+δj)e|ηj |(π−σj−δj)

)
≤

≤
n∏
j=1

e−µjξj+π|ηj |.

Finally, we have

I4...4 =
1

πn

eµ
1
o∫

eµ1

...

eµ
n
o∫

eµn

t1
−ξ1−1eπ|η1|...tn

−ξn−1eπ|ηn|dt1...dtn =

=
1

πn

n∏
j=1

(
eπ|ηj |

(
e−µjξj + e−µ

j
oξj

ξj

))
,

which for ξj ≥ 1 implies the estimate

I4...4 ≤
n∏
j=1

e−µjξj+π|ηj |.

The obtained results show that in repeated calculation of the integral Ip1...pn
depending on the value of pj (indicating that integration by the variable ζj is over

the part Ljpj), the contribution of this integral in the estimate is given by the fol-

lowing relations:

R
−ξj
j eεjξj e(σj+δj)|ηj |, if pj = 1,

e|ηj |(σj+δj)R
−ξj
j eεjξj , if pj = 2 and ξj ≥ 1,

e−µjξj+π|ηj |, if pj = 3,

e−µjξj+π|ηj |, if pj = 4 and ξj ≥ 1.

Each collection p1, ..., pn we divide into 4 groups: A1, A2, A3, A4, where Aj denote

the numbers of k ∈ {1, ..., n}, for which pk = j. Then for ξl ≥ 1, j = 1, ...n, we

obtain

Ip1,...,pn ≤
∏
j∈A1

R
−ξj
j eεjξj e(σj+δj)|ηj |

∏
j∈A2

e|ηj |(σj+δj)R
−ξj
j eεjξj×
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×
∏
j∈A3

e−µjξj+π|ηj |
∏
j∈A4

e−µjξj+π|ηj |.

For π|ηj| ≤ µjξj we have e−µjξj+π|ηj | ≤ 1, Hence in view of the estimate above,

we obtain the following estimate for the integral I:

I < Cε,δR
−ξ1
1 ...R−ξnn e|η1|(σ1+δ1)+εξ1...e|ηn|(σn+δn)+εξn.

Thus, with notation ζj = rje
iθj and αj = arctan(µj/π) the inequality (2.6) gives

the following estimate for the function ϕ:

|ϕ(reiθ)| ≤ cR−r cos θe((σ1+δ1)| sin θ1|+ε1 cos θ1)r1+...+((σn+δn)| sin θn|+εn cos θn)rn, (2.7)

if |θj| ≤ αj, j = 1, ..., n.

Observe that the inequality (2.7) can be written in the following form:

Rr cos θ|ϕ(reiθ)| ≤ ce((σ1+δ1)| sin θ1|+ε1 cos θ1)r1+...+((σn+δn)| sin θn|+εn cos θn)rn.

Therefore, taking its logarithm, for |θj| ≤ αj, j = 1, ..., n we obtain

ln (Rr cos θ|ϕ(reiθ|) ≤ c+
n∑
j=1

(((σj + δj)| sin θj|+ εj cos θj)rj) . (2.8)

Taking θ = 0 in the inequality (2.8), we obtain for any ε ∈ Rn
+

ln (Rr|ϕ(r)|) ≤ c+< ε, r > (2.9)

implying that 0 ∈ TRzϕ(0).

Next, in view of (2.2) and (2.3) we conclude that

ln (Rk|ϕ(k)|)
1
|k| = 0 as |k| → ∞, (2.10)

implying that for any ε ∈ Rn
+ we have −ε /∈ TRzϕ(0). Hence, by (2.9) and (2.10)

we obtain 0 ∈MRzϕ(0).

Also, in view of the inequality (2.8) for any ε ∈ Rn
+ we have

((σ1 + δ1)| sin θ1|+ ε1 cos θ1, ..., (σn + δn)| sin θn|+ εn cos θn) ∈ TRzϕ(θ),
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if |θj| ≤ αj, j = 1, ..., n.

Therefore there exists ν(θ) = (ν1(θ), ..., νn(θ)) ∈MRzϕ(θ) with the properties

νj(θ) ≤ (σj + δj)| sin θj| for |θj| ≤ αj, j = 1, ..., n.

For the components of ν(θ) we obtain

lim
(θ1,..ĵ..,θn)→0

lim
θj→0

νj(θ)

|θj|
≤ σj, j = 1, ..., n.

Thus, the necessity of conditions of Proposition, and hence, of Theorem 2.1 is

proved.

2.1.3 Sufficiency of the conditions of Theorem 2.1

Let ϕ be an entire function satisfying conditions 1) and 2) of Proposition. We

show that the series (2.1) can be continued across the polyarc γσ1,R1
× ...× γσn,Rn.

To this end, we first observe that by condition 2) for any δj ∈ (0,
π−σj

2 ) there exists

αj such that

νj(θ) ≤ (σj + δj)| sin θj|, if |θj| ≤ αj, j = 1, ..., n.

Since ν(θ) ∈MRzϕ(θ), we have

ln (Rr cos θ|ϕ(reiθ)|) ≤ ((σ1 + δ1)| sin θ1|)r1 + ...+ ((σn + δn)| sin θn|)rn + c,

implying the estimate

|ϕ(reiθ)| ≤ ecR−r1 cos θ1
1 ...R−rn cos θn

n e((σ1+δ1)| sin θ1|)r1+...+((σn+δn)| sin θn|)rn. (2.11)

We introduce the following auxiliary function

g(ζ, z) =
n∏
j=1

z
ζj
j

(e2πiζj − 1)
,
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where ζj = ξj + iηj, zj = xj + iyj, j = 1, ..., n, and observe that it is meromorphic

in variables ζ from Cn and holomorphic in variables z from (C \ R+)n.

Denote D∗ := ∪m∈ZD1/4(m), and note that there exists a constant C > 0

such that

|e2πiw − 1| > eπ(| Imw|−Imw)

C
for w ∈ D∗.

Therefore we have the estimate

g(ζ, z) < Ce〈ξ,log |z|〉−〈(π−|π−arg z|),|η|〉 (2.12)

for ζ ∈ (C\D∗)n and z ∈ (C\R+)n. Using (2.11) and (2.12) for ζ ∈ (∆σ1 \D∗)×

...× (∆σn \D∗) and z ∈ (C \ R+)n, we obtain

|ϕ(ζ)||g(ζ, z)| < cR−ξe〈σ+δ,η〉e〈ξ,log |z|〉−〈(π−|π−arg z|),|η|〉 =

= cR−ξe〈ξ,log |z|〉−〈(π−|π−arg z|−σ−δ),|η|〉.

Denoting

d(z) = (d1(z1), ..., dn(zn)), dj(zj) = π − |π − arg zj| − σj − δj, j = 1, ..., n,

we obtain

|ϕ(ζ)||g(ζ, z)| < cR−ξe〈ξ,log |z|〉−〈d(z),|η|〉. (2.13)

Consider the sets

Kj = D̄Rje
εj \ (∆o

σj+2δj
∪DRj/2), εj > 0, j = 1, ..., n.

We show that

dj(zj) ≥ δj for zj ∈ Kj j = 1, ..., n.

Indeed, we have

dj(zj) = π − σj − δj − |π − arg zj|, j = 1, ..., n.
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Figure 7

Taking into account that zj ∈ Kj, we can write

1)σj + 2δj < arg zj < π, ⇒ dj(zj) = π − σj − δj − π + σj + 2δj ≥ δj,

2)π < arg zj < 2π − σj − 2δj, ⇒ dj(zj) = 2π − σj − δj − 2π + σj + 2δj ≥ δj.

Thus, for (z1, ..., zn) ∈ (K1 × ... × Kn) and (ζ1, ..., ζn) ∈ (∂∆α1
\ D∗) × ... ×

(∂∆αn \D∗) we obtain

|g(ζ, z)||ϕ(ζ)| < cR−ξe〈ξ,log |z|〉−〈δ,|η|〉 ≤

≤ cR−ξe〈ξ,log(Reε)〉−〈δ,|η|〉 = ce〈ξ,ε〉−〈δ,|η|〉.

Taking 2εj = δj sinαj, j = 1, ..., n, we get

|g(ζ, z)||ϕ(ζ)| < ce〈−ε,|ζ|〉. (2.14)

For each j ∈ {1, ..., n} consider the domain

Gj := DRj ∪∆o
αj
,
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and let Γj = ∂Gj be the boundary of this domain positively oriented with respect

to the origin. Then for each natural mj consider the following part of Γj :

Γjmj
:= {ζj = ξj + iηj ∈ Γj : ξj ≤ mj +

1

2
}.

Denote by Ljm the vertical segment with vertices (see Fig. 8)

(mj +
1

2
)(1± i tanαj) for mj ∈ N,

oriented by movement upward. The domain bounded by the union Γjmj
∪ Ljmj

we

denote by Gj
mj

and hence

∂Gj
mj

= Γjmj
∪ Ljmj

.

Figure 8

Consider the following integral

Im =

∫
∂G

m1
1 ×...×∂G

mn
n

g(ζ, z)ϕ(ζ)dζ = (2.15)

=

∫
∂G

m1
1 ×...×∂G

mn
n

n∏
j=1

zζj

(e2πiζj − 1)
ϕ(ζ)dζ.

Now we compute the integral in (2.15) by means of multidimensional residues.

To this end, observe first that the integrand in (2.15) defines the differential form

ω =
n∏
j=1

zζj

(e2πiζj − 1)
ϕ(ζ)dζ1 ∧ ... ∧ dζn
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with poles on divisors

Q1 = {(ζ1, ..., ζn) : f1 = e2πiζ1 − 1 = 0} = Z× Cn−1,

. . . . . . . . . . . . . . . . . . . . . . . .

Qn = {(ζ1, ..., ζn) : fn = e2πiζn − 1 = 0} = Cn−1 × Z.

Next, since the intersection Z = Q1 ∩ ...∩Qn = Zn is discrete and the Jacobian is

different from zero, that is, ∂(f)/∂(ζ) = (2πi)n 6= 0 at points k = (k1, ..., kn) ∈ Zn,

then for any point k ∈ Zn we can define the local residue (see [37], [31]) :

reskω =
zkϕ(k)
∂(f)
∂(ζ)(k)

= ϕ(k)zk. (2.16)

The position of the distinguished boundary and the polar divisors Q1, ..., Qn is such

that

Q1 ∩ (∂Gm1
1 × ...×Gmn

n ) = (Z× Cn−1) ∩ (∂Gm1
1 × ...×Gmn

n ) = ∅,

. . . . . . . . . . . . . . . . . . . . . . . .

Qn ∩ (Gm1
1 × ...× ∂Gmn

n ) = (Cn−1 × Z) ∩ (Gm1
1 × ...× ∂Gmn

n ) = ∅.

According to the terminology of [37], this means that the polyhedronGm1
1 ×...×Gmn

n

is consistent with the divisors Q1, ..., Qn. Therefore, according to the principle of

separating cycles the integral (2.15) after multiplication by (2πi)−n is equal to the

sum of residues over all points

k ∈ (Gm1
1 × ...×Gmn

n ) ∩ (Z× ...× Z).

Hence, in view of (2.16) we obtain

Im =

m1∑
k1=0

...

mn∑
kn=0

ϕ(k1, ..., kn)z
k1
1 ...z

kn
n .
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Now we represent the integral (2.15) as a sum of 2n integrals over the paths

Γ1
m1
× ...× Γnmn

, ..., L1
m1
× ...× Lnmn

.

For each of such path we split the integration variables ζ1, ..., ζn into two groups:

B1 and B2, where B1 stands for the numbers j ∈ {1, ..., n} for which ζj ∈ Ljmj
,

while B2 stands for the numbers j ∈ {1, ..., n}, for which ζj ∈ Γjmj
. Then using

(2.13), we obtain the following estimate

|g(ζ, z)||ϕ(ζ)| < C
∏
j∈B1

e
mj log

|zj |
Rj

∏
j∈B2

e−εj |ζj |, (2.17)

where z ∈ (DR1
∩Ko

1)× ...× (DRn ∩Ko
n).

It follows from (2.17) that if B1 6= ø, then the integral over the corresponding

path tends to zero as mj →∞, j ∈ B1.

Finally, we consider the integral

I =

∫
Γ1×...×Γn

g(ζ, z)ϕ(ζ)dζ.

It follows from (2.14) that the integral I converges uniformly on z from the compact

set (K1 × ...×Kn), and defines a holomorphic function in its interior.

Taking into account that Im → I for mj → ∞, j = 1, ..., n, we obtain

I(z) = f(z) for z ∈ (DR1
∩Ko

1)× ...× (DRn ∩Ko
n). This means that γσ+2δ,R is a

polyarc of regularity for f, provided that δ is sufficiently close to zero. Thus, γσ,R

is a polyarc of regularity for f, and the result follows.

2.2 Conditions of continuability of multiple power series

into a sectorial domain

Here we give sufficient conditions for analytic continuability of a multiple

power series to a sectorial domain. A domain G ⊂ Cn is called sectorial if it
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is defined by the conditions on the arguments θ = (argz1, ..., argzn) of elements

z ∈ Cn only. As in Theorem 2.1, the conditions of continuability are expressed in

terms of a vector-function ν(θ) with the values in Mϕ(θ), however, more precisely.

Recall that ϕ is an entire function interpolating the coefficients.

Denote

Tϕ :=
⋂

θj=±π2

Tϕ(θ1, ..., θn).

Mϕ := {ν ∈ [0, π)n : ν + ε ∈ Tϕ, ν − ε /∈ Tϕ for any ε ∈ Rn
+}.

Let G be a sectorial set

G =
⋃
ν∈Mϕ

Gν (2.18)

where

Gν = (C \∆ν1)× ...× (C \∆νn).

This set is a domain: it is open and connected because every polysector Gν

is connected and contains the point (−1, ...,−1).

Theorem 2.2. The sum of the series (2.1) extends analytically to a sectorial

domain G of the form (2.18) if there is an entire function ϕ(ζ) of exponential

type interpolating the coefficients fk and a vector-function ν(θ) on [−π
2 ,

π
2 ]n

with values in Mϕ(θ) to satisfy

νj(θ) ≤ a| sin θj|+ b cos θj, j = 1, ..., n, (2.19)

with some constants a ∈ [0, π), b ∈ [0,∞).

We need the following proposition regarding the properties of the set Tϕ. Let

I = (1, ..., 1) ∈ Zn.

Proposition 1. If ν ∈ Tϕ(θ) ∩ Tϕ(θ + πI) then ν ∈ Rn
≥0.

It follows that Tϕ ⊂ Rn
≥0.
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Proof. For a given entire function ϕ in Cn consider the function

Lr(z, ϕ) = lim
t→∞

ln |ϕ(tz)|
t

, z ∈ Cn

called the radial indicator of ϕ. The function Lr(z, ϕ) is plurisubharmonic, posi-

tively homogenous in Cn and has the following property ([22],Ch.3, §5):

Lr(e
iπz, ϕ) + Lr(z, ϕ) ≥ 0. (2.20)

From the definition of Tϕ(θ) it follows that

Lr(re
iθ, ϕ) = lim

t→∞

ln |ϕ(treiθ)|
t

≤ ν1r1 + ...+ νnrn

for all ν ∈ Tϕ(θ). Analogously

Lr(e
iπreiθ, ϕ) = lim

t→∞

ln |ϕ(trei(θ+π)|
t

≤ ν̃1r1 + ...+ ν̃nrn

for all ν̃ ∈ Tϕ(θ + πI).

According to (2.20) we see that for all ν ∈ Tϕ(θ), ν̃ ∈ Tϕ(θ + πI) the

inequality

(ν1 + ν̃1)r1 + ...+ (νn + ν̃n)rn ≥ 0

hold for all r ∈ Rn
≥0. In particular, if ν ∈ Tϕ(θ) ∩ Tϕ(θ + πI) then

2(ν1r1 + ...+ νnrn) ≥ 0, for any r ∈ Rn
≥0,

hence ν ∈ Rn
≥0.

Let now ν ∈ Tϕ. Then

ν ∈ Tϕ(−π
2
I) ∩ Tϕ(

π

2
I) = Tϕ(−π

2
I) ∩ Tϕ(−π

2
I + πI).

According to proved above, one has ν ∈ Rn
≥0.

Proof of Theorem 2.2. Let ϕ be an entire function satisfying the conditions

of Theorem 2.2. For all ν ∈ Tϕ(θ) this function satisfies the inequality

|ϕ(reiθ)| ≤ Aν,θe
〈ν,r〉 ∀r ∈ R+

n.
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Hence for ν ∈Mϕ(θ) it satisfies the inequality

|ϕ(reiθ)| ≤ Aν,θe
〈ν,r〉+o(r) ∀r ∈ R+

n.

From (2.19) we get that for θj ≤ π
2 , j = 1, ..., n.

|ϕ(reiθ)| ≤ Aν,θe
a
∑n
j=1 rj | sin θj |+b

∑n
j=1 rj cos θj+o(r).

Write ζj = ξj + iηj = rje
iθj , then

|ϕ(ζ)| ≤ Aν,θe
a
∑
|ηj |+b

∑
ξj+o(|ζ|) (2.21)

for ζj ∈ ∆π/2, j = 1, ..., n. Consider the following function

g(ζ, z) =
n∏
j=1

z
ζj
j

(e2πiζj − 1)
,

where zj = xj + iyj, j = 1, ..., n. It is meromorphic in ζ ∈ Cn and holomorphic in

z ∈ (C \ R+)n.

Using (2.21) and (2.12) for ζ ∈ (∆π/2 \D∗)n and z ∈ (C \ R+)n, we obtain

|ϕ(ζ)||g(ζ, z)| ≤ ceb
∑
ξj+a

∑
|ηj |e

∑
ξj ln |zj |−

∑
(π−|π−arg zj |)|ηj |+o(|ζ|) =

= ce
∑
ξj(ln |zj |+b)−

∑
(π−a−|π−arg zj |)|ηj |+o(|ζ|).

Denoting d(zj) = π − a− |π − arg zj| we get

|ϕ(ζ)||g(ζ, z)| ≤ ce
∑
ξj(ln |zj |+b)−

∑
d(zj)|ηj |+o(|ζ|).

Let

K = D̄e−b−δ \ (∆o
a+δ ∪De−2b).

Note that

d(zj) ≥ δ as zj ∈ K j = 1, ..., n.
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Thus, for z ∈ Kn and ζ ∈ (∆π
2
\D∗)n we get

|g(ζ, z)||ϕ(ζ)| < ce
∑
ξj(ln |zj |+b)−δ

∑
|ηj |+o(|ζ|). (2.22)

For any m = (m1, ...,mn) ∈ Nn we consider the integral

Im =

∫
∂Gm

ϕ(ζ)g(ζ, z)dζ, (2.23)

where ∂Gm = ∂Gm1
× ...× ∂Gmn

. Each of the plane domains Gmj
is bounded by

segments: ∂Gj
mj

= Γ1
mj
∪ Γ2

mj
∪ Γ3

mj
∪ Γ4

mj
,

Γ1
mj

= [−imj, imj],

Γ2
mj

= [imj, aj +mj + imj],

Γ3
mj

= [aj +mj + imj, aj +mj − imj],

Γ4
mj

= [aj +mj − imj,−imj]

where 1
4 < aj <

3
4 .

The integral Im can be represented as a sum of 4n integrals over paths

Γ1
m1
× ...× Γ1

mn
, ...,Γi1m1

× ...× Γinmn
, ...,Γ4

m1
× ...× Γ4

mn
.

where i1, ..., in are random collections of numbers 1,2,3,4.

For each of such path we split the integration variables ζ1, ..., ζn into 2 groups

B1 and B2 where B1 stands for the indexes j ∈ {1, ..., n}, for which ζj ∈ Γ1
mj
, and

B2 stands for the indexes j ∈ {1, ..., n}, for which ζj ∈ Γ2
mj
∪ Γ3

mj
∪ Γ4

mj
.

Using inequalities (2.22) for Kn, we obtain

|g(ζ, z)||ϕ(ζ)| < c
∏
j∈B1

e−δ|ηj |
∏
j∈B2

e−δmjeo(|ζ|).

55



Thus, if B2 6= ∅, the integral over the corresponding contour vanishes as

mj →∞, j = 1, ..., n. Therefore, for Kn we get

Im =

∫
∂Gm

ϕ(ζ)g(ζ, z)dζ =

∫
Γ1
m

ϕ(ζ)g(ζ, z)dζ = I1
m

as mj →∞.

On the other hand, the integral Im can be computed by means of multidimen-

tional residues, as was done in section 2.1.3.

The integrand in (2.23) defines the differential form

ω =
n∏
j=1

zζj

(e2πiζj − 1)
ϕ(ζ)dζ1 ∧ ... ∧ dζn

with poles on divisors

Q1 = {(ζ1, ..., ζn) : f1 = e2πiζ1 − 1 = 0} = Z× Cn−1,

. . . . . . . . . . . . . . . . . . . . . . . .

Qn = {(ζ1, ..., ζn) : fn = e2πiζn − 1 = 0} = Cn−1 × Z.

Since the intersection Z = Q1∩ ...∩Qn = Zn is discrete and the Jacobian is

different from zero, that is, ∂(f)/∂(ζ) = (2πi)n 6= 0 at k = (k1, ..., kn) ∈ Zn, then

for any point k ∈ Zn the local residue can be defined (see Appendix A.2) :

reskω =
zkϕ(k)
∂(f)
∂(ζ)(k)

= ϕ(k)zk. (2.24)

The integration set in (2.23) is related with the polar dicisor Q1, ..., Qn by

the relations:

Q1 ∩ (∂G1
m1
× ...×Gn

mn
) = (Z× Cn−1) ∩ (∂G1

m1
× ...×Gn

mn
) = ∅,

. . . . . . . . . . . . . . . . . . . . . . . .

Qn ∩ (G1
m1
× ...× ∂Gn

mn
) = (Cn−1 × Z) ∩ (G1

m1
× ...× ∂Gn

mn
) = ∅.
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This means that the polyhedron Gm1
1 × ... × Gmn

n is compatible with the divisors

Q1, ..., Qn. Therefore, by the Theorem from A.2 the integral (2.23) multiplied by

(2πi)−n is equal to the sum of residues at

k ∈ (G1
m1
× ...×Gn

mn
) ∩ (Z× ...× Z).

Taking into account (2.24) we see that

Im =

m1∑
k1=0

...

mn∑
kn=0

ϕ(k1, ..., kn)z
k1
1 ...z

kn
n .

Consider the integral

I =

∫
Γ1

g(ζ, z)ϕ(ζ)dζ.

where Γ1 = {ζ ∈ Cn : ξj = 0, j = 1, ..., n} is the imaginary subspace iRn.

Let us show that for ζ ∈ Γ1 (ζj = iηj) and z ∈ G the absolute value of the

integrand |ϕ(ζ)||g(ζ, z)| is estimated by

|g(ζ, z)||ϕ(ζ)| < e−δ
∑
|ηj |.

Indeed, it follows from the definition of the set Tϕ (Tϕ describes the growth

of the function ϕ along the imaginary subspace) that

|ϕ(ζ)| ≤ eCν,θe
∑
νj |ηj | as ζ ∈ Γ1,

where νj is a jth component of the vector ν which run over the set Tϕ.

From the previous inequality and (2.12), for ζ ∈ Γ1 and z ∈ (C \ R+)n we get

|ϕ(ζ)||g(ζ, z)| ≤ e−
∑
d(zj)|ηj |,

where d(zj) = π − νj − |π − arg zj|.

Note that

d(zj) ≥ δ
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for z ∈ (C \∆o
ν1+δ)× ...× (C \∆o

νn+δ), for any νj < π.

From two previous inequalities and Proposition 1 we have

|ϕ(ζ)||g(ζ, z)| ≤ e−δ
∑
|ηj |

for ζ ∈ Γ1 and

z ∈
⋃

{ν∈Tϕ, νj<π}

Gν+δ. (2.25)

From the definition of Mϕ it follows that (2.25) is equivalent to

z ∈
⋃
ν∈Mϕ

Gν.

Thus, the integral I converges for z ∈ G.

Since Im → I as mj →∞, j = 1, ..., n, we get I(z) = f(z) as z ∈ (Ko)n.

Therefore the sum of the series (2.1) extends analytically to the sectorial set G,

which was to be proved.

To conclude the section let us note that along with Theorem 2.2 on extend-

ability to a sectorial domain by means of entire interpolation, one can ask about

extendability be means of meromorphic interpolation. Denote by Ψ the class of

meromorphic functions ψ(ζ) that does not have poles in the set

{ζ : Reζj ≥ 0, j = 1, ..., n}.

For the function ψ(ζ) ∈ Ψ we can correctly define the sets Tψ(θ) and Mψ(θ) for

|θj| ≤ π
2 j = 1, ..., n. The same reasoning as in the proof of Theorem 2.2 leads us

to the following statement.

Theorem 2.3. The sum of the series (2.1) extends analytically to a sectorial

domain G of the form (2.18) if there is a meromorphic function ψ(ζ) of the class

Ψ interpolating the coefficients fk and a vector-function ν(θ) on [−π
2 ,

π
2 ]n with

values in Mϕ(θ) to satisfy

νj(θ) ≤ a| sin θj|+ b cos θj, j = 1, ..., n

with some constants a ∈ (0, π), b ∈ (0,∞).
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2.3 Example

Consider a power series

f(z1, z2) =
∑

k1,k2∈N2

cos
√
k1k2 z

k1
1 z

k2
2 . (2.26)

Obviously the function ϕ(ζ1, ζ2) = cos(ζ1ζ2)
1
2 is entire and interpolates the

coefficients of the series (2.26). Write ζj = rje
iθj , the absolute value of the function

admits an asymptotic expansion

|ϕ(ζ1, ζ2)| = | cos
(

(r1r2)
1
2ei

θ1+θ2
2

)
| = 1

2
e(r1r2)

1
2 |sin(

θ1+θ2
2 )| + o(1)

as r1r2 →∞. Therefore, the set Tϕ(θ) is

Tϕ(θ) = {ν ∈ R2 : (r1r2)
1
2 | sin(

θ1 + θ2

2
)| ≤ ν1r1 + ν2r2 + Cν,θ},

and, consequently, consist of solutions ν = ν(θ) of the inequality

(r1r2)
1
2 | sin(

θ1 + θ2

2
)| ≤ ν1r1 + ν2r2, r1, r2 ≥ 0.

Taking rj = 0 we see that νj ≥ 0, j = 1, 2.

To study this inequality for r1r2 6= 0 we take into account that it is homoge-

neous with respect to r1 and r2. Namely, divide it by r2, then

| sin(
θ1 + θ2

2
)| ≤ ν1

(
r1

r2

) 1
2

+ ν2

(
r2

r1

) 1
2

,

and denote

t =

(
r1

r2

) 1
2

.

Thus, the inequality reduces to the following (not homogeneous) inequality

ν1t
2 − | sin(

θ1 + θ2

2
)|t+ ν2 ≥ 0, t ≥ 0. (2.27)
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As stated above, we are interested only in solutions ν with non negative coordinates.

It follows from Viéte’s formulas that for ν1 ≥ 0, ν2 ≥ 0 the quadratic trinomial

(2.27) in t does not have negative roots, therefore we may consider the inequality

for all t ∈ R. Thus, the solutions ν of the inequality (2.27) are defined by the

condition that its discriminant is non-positive:

| sin(
θ1 + θ2

2
)|2 − 4ν1ν2 ≤ 0,

i.e.

ν1ν2 ≥
1

4
| sin(

θ1 + θ2

2
)|2.

In the end we get

Tϕ(θ1, θ2) = {ν ∈ R2 : ν1ν2 ≥
1

4
| sin(

θ1 + θ2

2
)|2, ν1 ≥ 0, ν2 ≥ 0}.

The set Mϕ(θ1, θ2) coincides with the topological boundary of Tϕ(θ1, θ2), that is

the positive part of the hyperbola

Mϕ(θ1, θ2) = {ν ∈ R2 : ν1ν2 =
1

4
| sin(

θ1 + θ2

2
)|2, ν1 ≥ 0, ν2 ≥ 0}. (2.28)

Obviously, Tϕ(±π
2 ,±

π
2 ) consists of the quadrant ν1 ≥ 0, ν2 ≥ 0, if the signs

are the same, and {ν ∈ R2
+ : ν1ν2 ≥ 1

4}, if the signs are different.

As a result, the intersection Tϕ =
⋂
Tϕ(±π

2 ,±
π
2 ) is

Tϕ = {ν ∈ R2 : ν1ν2 ≥
1

4
, ν1 ≥ 0, ν2 ≥ 0}.

Thereby, the sets Mϕ are of the form (see Fig. 9)

Mϕ = {ν ∈ [0, π)2 : ν1ν2 =
1

4
}.

Now, make sure that the condition (2.19) of Theorem 2.2 is fulfilled. Taking

into account (2.28), it is enough to find constants a ∈ [0, π), b ∈ [0,∞) such that

(a| sin θ1|+ b cos θ1)(a| sin θ2|+ b cos θ2) ≥
1

4
| sin(

θ1 + θ2

2
)|2.
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Figure 9

For a = 1, b = 1 the left hand side

(| sin θ1|+ cos θ1)(| sin θ2|+ cos θ2) ≥ 1,

and the right hand side does not exceed 1
4 , i.e. the inequality holds.

Thus according to Theorem 2.2 the sum of the series extends into the union

G of polysectors Gν = (C \ ∆ν1) × ... × (C \ ∆νn) over all ν ∈ Mϕ. Fig. 10

depicts the set of arguments θ = (θ1, θ2) defining the sectorial set G. It is a union

of rectangles (ν1, 2π − ν1)× (ν2, 2π − ν2) over all (ν − 1, ν2) ∈Mϕ.

Figure 10
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2.4 Non extendable multiple power series

Here we consider two examples of double power series. The first one can

be viewed as a two-dimensional analog of the Fredholm example. Its coefficients

assume only two values: zero or one. The second series is of the same type, it is

a restriction of a geometric series to a cone. In the case the cone is rational such

a series represents a rational function of a certain type. We may conjecture that a

restriction to an irrational cone is a series with natural boundary.

Theorem 2.4. If the support A of a double power series∑
(k1,k2)∈A

z1
k1z2

k2 (2.29)

is ofthe type

A = {(k1, k2) ∈ Z+
2 : k2 ≥ k1

1+ε} ∪ {(k1, k2) ∈ Z+
2 : k1 ≥ k2,

1+ε} ε > 0,

then the double series (2.29) is not extendable across the boundary of the bidisk

U 2 = {(z1, z2) : |z1| < 1, |z2| < 1}

and represents an infinitely differentiable function in Ū 2 \ T 2, where

T 2 = {(z1, z2) : |z1| = 1, |z2| = 1}.

Proof. We can represent the power series (2.29) by the sum of two series:

∞∑
k1=0

∞∑
k2=0

z1
k1z2

k2+[k1
1+ε] +

∞∑
k1=0

∞∑
k2=0

z1
k1+[k2

1+ε]z2
k2 =

∞∑
k2=0

z2
k2

∞∑
k1=0

z1
k1z2

[k1
1+ε] +

∞∑
k1=0

z1
k1

∞∑
k2=0

z2
k2z1

[k2
1+ε] =

=
1

1− z2

∞∑
k1=0

z1
k1z2

nk1 +
1

1− z1

∞∑
k2=0

z2
k2z1

nk2 .
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Here [kj
1+ε] denotes the integer part of the number kj

1+ε.

According to Theorem 1.4 the series

∞∑
k1=0

z1
k1z2

nk1 , (2.30)

if considered in the variable |z2| < 1, converges in the unit disk and does not

extend across the boundary circle when 0 < |z1| < 1. Using the change of variables

eu = z1 and et = z2, we rewrite (2.30) as an exponential series∑
(k1,k2)∈A1

ek1uek2t,

where A1 = {(k1, k2) ∈ Z2 : k2 ≥ k1+ε
1 }. This represents an infinitely differentiable

function in

{(u, t) : Re u ≤ 0, Re t ≤ 0} \ {(u, t) : Re u = 0, Re t = 0}.

Consequently, the series (2.30) represent an infinitely differentiable function in

Ū 2 \ T 2.

The similar holds for the series
∞∑
k2=0

z2
k2z1

nk2 ,

it converges in the unit disk, it does not extend with respect to the variable z1, if

0 < z2 < 1, and represents an infinitely differentiable function in Ū 2 \ T 2.

Therefore, we obtain the desired statement for the series (2.29).

Proposition 2. Let K be a sector with integer generating vectors m1 =

(m11,m12) and m2 = (m21,m22), then the series

f(z) =
∑

k∈N2∩K

z1
k1z2

k2

represents a rational function of the form

f(z) =
P (z)

(1− z1
m11z2

m12)(1− z1
m21z2

m22)
,
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with

P (z) = 1 +
∑

α∈(N2∩intD)

zα,

where intD is the interior of the parallelogram D with vertices (0, 0),m1,m2 and

m1 +m2.

Proof. We can cover all the integer points of K by the semigroup

L = {(l1m11 + l2m21, l1m12 + l2m22), li ∈ Z≥0, i = 1, 2}

and its shifts Lj = aj + L, where aj runs over N2 ∪ intD. Thus, we have∑
k∈N2∩K

z1
k1z2

k2 =
∑
k∈L

z1
k1z2

k2 +
∑
k∈L1

z1
k1z2

k2 + ...+
∑
k∈Lp

z1
k1z2

k2,

where p is the cardinality of N 2 ∩ intD. Summing up the geometric series we get∑
k∈L

z1
k1z2

k2 =
∑
l1,l2≥0

zl1m1+l2m2 =
∑
l1,l2≥0

(zm1)l1(zm2)l2 =

=
1

(1− zm1)(1− zm1)
=

1

(1− z1
m11z2

m12)(1− z1
m21z2

m22)
.

Obviously ∑
k∈Lj

z1
k1z2

k2 = z1
aj1z2

aj2
∑
k∈L

z1
k1z2

k2,

therefore we obtain∑
k∈N2∩K

z1
k1z2

k2 =
1 + z1

a11z2
a12 + ...+ z1

ap1z2
ap2

(1− z1
m11z2

m12)(1− z1
m21z2

m22)

as desired.

In the end let us conjecture the following: The series (2.4) for an arbitrary

cone K (not necessary whit rational m1 and m2) is either non-extendable across

the boundary of convergence domain (2.4) or represent a rational function of the

form

f(z) =
P (z)

(1− z1
m11z2

m12)(1− z1
m21z2

m22)
,
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where P (z) is a polynomial. Such a statement can be seen as a two-dimensional

analog of Szegö’s theorem ( [4], [6]) on series whose coefficients take a finite

number of different values.
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APPENDIX

A.1 Growth indicator of entire functions

An entire function ϕ(z) of a complex variable z ∈ C is said to be of expo-

nential type if

lim
z→∞

ln |ϕ(z)|
|z|

< +∞.

The indicator function of an entire function ϕ(z) of exponential type is de-

fined as the upper limit [6]

hϕ(θ) := lim
r→∞

ln |ϕ(reiθ)|
r

, θ ∈ R.

The indicator function describes the growth of the function ϕ on rays z = reiθ (here

r ∈ R+ and θ is fixed). It follows from the definition that hϕ(θ) is a real valued

function with the period 2π. One of the basic properties of the indicator function

hϕ(θ) is the trigonometric convexity [38],[6]:

If θ1 < θ < θ2 and θ2 − θ1 < π then

hϕ(θ) sin (θ2 − θ1) ≤ hϕ(θ1) sin (θ2 − θ) + hϕ(θ2) sin (θ − θ1).

If an entire function ϕ(z) is represented by a power series

ϕ(z) =
∞∑
k=0

akz
k,

then the Laurent series

ϕ̂ =
∞∑
k=0

akk!z−k−1 (3.1)

is called the Borel transform of ϕ.

The connection between the set of singularities of ϕ̂ and the indicator function ϕ is
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described by a theorem of Pólya [34], [22]. Recall that the support function K(θ)

for a convex set K is defined as

k(θ) = sup
z∈K

Re(ze−iθ).

Note that if z = x+ iy then

Re(ze−iθ) = x cos θ + y sin θ.

Theorem (Pólya [34]) The indicator function hϕ(θ) for an entire function ϕ

of exponential type and the support function k(θ) of the minimal convex compact

set K, outside of which hϕ extends analytically, are related through

hϕ(θ) = k(−θ).

Note that K is convex implies that it is an intersection of half-planes

K =
⋂

θ∈[0,2π]

{z : Re(ze−iθ) < ν}.

This fact has been taken as a basis of multidimensional formulation of Pólya’s

theorem.

In n variables by an entire function of exponential type we understand a

function ϕ(z) = ϕ(z1, ..., zn), for which there exist positive A, σ1, ..., σn such that

∀z∈ Cn there holds an inequality

|ϕ(z)| ≤ Aeσ1|z1|+...+σn|zn|.

As in one-dimensional case, to an entire function

ϕ(z) =
∑
k∈Nn

akz
k, (3.2)

where k = (k1, ..., kn), zk = zk11 ...z
kn
n , there is an associated Borel transform

ϕ̂(z) =
∞∑
|k|≥0

akk!z−k−1,

67



where k! = k1!...kn!.

For an entire function ϕ of exponential type we define the set

Tϕ(θ) = {ν ∈ Rn : ln |ϕ(reiθ)| ≤ ν1r1 + ...+ νnrn + Cν,θ},

where the inequality is satisfied for any r ∈ Rn
+ with some constant Cν.θ.

Let Cϕ(θ) be a set of vectors ν ∈ Rn such that the function ϕ̂(z) extends into

the domain

Gν,θ = {z : Re(zje
−iθj) > νj, j = 1, .., n},

from a neighborhood of (∞, ...,∞) Gν,θ is a direct product of half-planes.

Theorem (Ivanov-Stavski [28], [22]) Let ϕ(z) be an entire function of

exponential type, then

Tϕ(θ) = Cf(−θ).
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A.2 Multidimensional residues and an analog of the

Jordan Lemma

Let ω be a meromorphic differential form in Cn of the form

ω =
h(z)dz1 ∧ ... ∧ dzn
f1(z)...fn(z)

(3.3)

with poles on the divisors Dj = {z : fj(z) = 0}, j = 1, ..., n. Assuming the

intersection Z = D1 ∩ ... ∩ Dn is discrete, for every a ∈ Z we define the lo-

cal (Grothendieck) residue with respect to the system of divisors {Dj} to be the

following integral (see [39], Chapter 5 or [37], §5)

resaω =
1

(2πi)n

∫
Γa

ω, (3.4)

where Γa = {z ∈ Ua : |fj(z)| = ε, j = 1, ..., n} is a cycle in some small

neighborhood Ua about a with orientation determined by the inequality

d(argf1) ∧ ... ∧ d(argfn) ≥ 0.

If f1, ..., fn are such that the Jacobian ∂(f)/∂(z) at a differs from zero then (by

Cauchy’s formula) the local residue equals

resaω =
h(a)
∂(f)
∂(z)(a)

. (3.5)

Consider the question of when the integral

1

(2πi)n

∫
Γa

ω (3.6)

of a meromorphic form (3.3) over the skeleton σ of some polyhedron Π equals

the sum of the residues (3.4) at points a ∈ Π. A polyhedron is the inverse image

g−1(∂G) of the domain G = G1 × ... × Gn under a proper mapping g : Cn → Cn
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with each Gj being a domain with piecewise smooth boundary ∂Gj in the complex

plane. The skeleton of such polyhedron is the set g−1(∂G1 × ... × ∂Gn), with the

orientation determined by the order of parameters τ1, ..., τn in parametrizations of

the boundaries ∂G1, ..., ∂Gn.

Given a multi-index K = {k1, ..., ks} ⊂ {1, ..., n} we associate with K the

face

σK = {z : gk(z) ∈ ∂Gk, k ∈ K, gj(z) ∈ Gj, j /∈ K}.

We say that a family of divisors {Dj} is compatible with Π if

Dj ∩ σj =, j = 1, ..., n. (3.7)

If Π is a bounded polyhedron and {Dj} is a family of divisors compatible

with Π then the integral (3.6) equals the sum of the residues (3.4) over all points

a ∈ Π [36]. For an unbounded polyhedron we must additionally require that the

integrand vanishes at infinity in accordance with the classical one-dimensional Jor-

dan lemma [36]. Using the functions fj determining the divisors Dj, we introduce

the functions

ρj =
|fj|2

||f ||2
, where ||f ||2 = |f1|2 + ...+ |fn|2.

Given a multi-index J = {j1, ..., js} ⊂ {1, ..., n} with 1 ≤ s ≤ n, we associate

with J the (n, s− 1)-differential form

ξJ =
∑
j∈J

(−1)(j,J)−1ρj∂̄ρJ [j] ∧ ω,

where (j, J) indicates the position of j in J and ∂̄ρJ [j] = ∂̄ρ1 ∧ ...[j]... ∧ ∂̄ρs.

We say that a differential form ξj satisfies the Jordan condition on the face

σJo where Jo = {1, ..., n} \ J, if there is a sequence of reals Rk converging to +∞

as k →∞ and such that

lim
k→∞

∫
SRk∩ σJo

ξj = 0, (3.8)
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where SR is the sphere of radius R with center at some point of the skeleton

σ = σ1...n of Π.

Theorem (the multidimensional abstract Jordan lemma [31], [48]). If the

family of divisors {Dj} is compatible with the polyhedron Π and for every multi-

index J the form ξJ satisfies the Jordan condition on the face σJo then

∫
σ

ω = (2πi)n
∑
a∈Π

resaω.

Observe that the sequence of spheres SRk in the lemma may be replaced with

an arbitrary sequence of piecewise smooth surfaces such that the domains bounded

by the faces of the polyhedron and the surfaces of the sequence exhaust the whole

polyhedron as R→∞.
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2. Lindelöf E. L. Le calcul des résidus et ses applications à la théori des fonctions.
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ica. 1891. 15 Imprime le 21.

18. Fabry E. Sur les points singuliers d’une fonction donnée par son développement
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