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INTRODUCTION

Analytic functions play a very important role in mathematics and its
applications in science. These functions bridge the gap between exact and
approximate computations.

One way to identify an analytic function is based on its power series expan-
sion (Weierstrass’ approach). The coefficients of a power series expansion of an
analytic function carry all the information about properties of this function, includ-
ing the property of its analytic continuation. This problem and the closely related
problem of relationships between singularities of power series and its coefficients
have been extensively studied in the last century by Hadamard [1], Lindelof [2],
Polya [3], Szegd [4], Carlson [5] and many other prominent mathematicians (see
the literature list in monograph by Biberbach [6]).

The most effective and complete results were obtained for simple (one-
dimensional) series with coefficients interpolated by values (k) of an entire func-
tion o(z) at the natural numbers k € N (see, for example, [7], [8], [9]).

According to Abel’s theorem, the domain of convergence for a one-dimensional
series is a disk, therefore, if its sum extends analytically beyond this disk, then it
extends across some boundary arc. This arc is called the arc of regularity. A de-
scription of an open arc of regularity was given in the papers by Arakelian [10], [11].
He gave a criterion for a given arc of a unit circle to be an arc of regularity for
a given power series in terms of the indicator function of the interpolating entire
function.

Pdlya found conditions for analytic continuability of a series to the whole
complex plane except some boundary arc [12].

The other side of the problem of analytic continuation is the problem of

distribution of singularities of a power series, i.e. points such that the sum of



the series does not extend across them [13], [14], [6]. In this context, the cases
where all the boundary points are singular are of special interest [15], [16]. Such

analytically non extendable series are mainly “strongly lacunar”, in other words,

b

these series have “many” monomials with zero coefficients. Examples of such
y

series are
o0 0 0
| n n
E A E 22" E A

In 1891 Fredholm [17] constructed examples of “moderately lacunar” non
extendable series representing infinitely differentiable functions in the closure of
the disk of convergence. These series depend on a parameter a and have the

following form

(0.¢]
2
Za”z”, 0<a<l.

n=0

Here n? has the power order 2 respective to the summation index n, therefore we
say that Fredholm’s series have the lacunarity order 2.

A more general result on non extendable series in terms of lacunarity belongs
to Fabry (see [18] or [6]). It claims that if the sequence of natural numbers m,,

increases faster than n (i.e. n = o(m,,)), then there is a series

(0.9]

E apz"",

n=0
converging in the unit disk and not extending across its boundary.

It should be emphasized that the approach to the study of analytic continua-
tion formulated above has been mainly applied to functions of one variable. In the
case of multivariate power series many similar problems remain open. Moreover,
the applications of multivariate complex analysis in mathematical physics, for ex-
ample in quantum field theory [19] and thermodynamics [20],[21], motivate further
research in this area.

The goal of this thesis is to find multidimensional analogs of theorems by

Arakelian and Polya on the analytic continuability of a power series across parts of
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the boundary of the domain of convergence. We also aim to describe the conditions
for analytic continuability of a power series whose coefficients are interpolated by
entire or meromorphic function, and to construct multidimensional examples of
Fredholm’s moderately lacunar power series with natural boundaries of conver-
gence domains.

In the research we use methods of multivariate complex analysis, in partic-
ular, integral representations (Cauchy, Mellin, and Lindelof representations),
multidimensional residues, properties of power series. An important role in the
study is played by the interpolation of power series coefficients by analytic func-
tions from such classes as entire functions of exponential type or special mero-
morphic functions. Accordingly, we use some facts on the growth of interpolating
functions, i.e. elements of complex potential theory.

In the problem of natural boundary of the domain of convergence we use the
Kovalevskaya phenomenon on unsolvability of the Cauchy problem for the heat
equation with temperature initial data.

The first chapter deals with analytic continuation of one-dimensional power
series. Here we establish conditions for analytic continuability (or uncontinuability)
of series across a given boundary arc. Such conditions are crucial for the devel-
opment of methods of data and digital signal processing [40]. To be specific, the
radius of the convergence disk is assumed to be equal to 1. We distinguish four
types of problems related to a boundary arc:

1) continuability to a sector defined by the arc;

2) continuability to a neighborhood of the arc;

3) continuability to the complex plane except some boundary arc;

4) uncontinuability across every boundary point.

Problems 1 and 2 were studied among others by Arakelian, Problem 3 by
Pélya. They obtained criteria for continuability of series in terms of entire functions

interpolating the coefficients.



In the first section we give conditions for continuability of a power series,
whose coefficients are interpolated by values of a meromorphic function. First, let
us formulate the results by Arakelian and Polya.

Consider a power series
fz) =) far" 0.1)

in z € C, whose domain of convergence is the unit disk D; := {z € C : |z| < 1}.
The Cauchy-Hadamard theorem yields that

En\/ | fal = 1.

n—oo

We say that a function ¢ interpolates the coefficients of the series (0.1), if
o(n) = f, forall neN.

Recall (see, Appendix A.1 or [22]) that the indicator function h,(6) for an

entire function ¢ is defined as the upper limit

1 i0
ho(0) = T LUy e g

r—00 T

Let A, be the sector {z =re? € C: |§] < o}, o € [0,7). We denote the open arc
D1\ A, by 7,

Theorem ([24], [25]) The sum of the series (0.1) extends analytically to the
open sector C\ A, if and only if there is an entire function () of exponential
type interpolating the coefficients f,, whose indicator function h,(0) satisfies the
condition

ho(0) < o|sind| for |0] < g

We say that the boundary arc v, is an arc of regularity for the series (0.1) if

it extends analytically to a neighborhood of ~,.



Theorem ([10], [11]) The open arc v, = 0D1 \ A, is an arc of regularity
of the series (0.1) if and only if there is an entire function p(C) of exponential
type interpolating the coefficients f, whose indicator function h,(0) satisfies the

conditions:

— hy(0)
h,(0) =0 and glg(l) 0] <o
Problem 3 deals with continuation to the complex plane except the arc

0Dy N A,. This problem is solved by the following Pélya’s theorem.

Theorem ([12]) The series (0.1) extends analytically to C, except possibly
the arc 0D N A, if and only if there exists an entire function of exponential type

©(C) interpolating the coefficients f, such that
hy(0) < o|sind| for |0] <.

As mentioned above, in the first section we obtain sufficient conditions for
analytic continuability of the power series (0.1) in Problems 1-3. This conditions
are formulated in terms of meromorphic interpolations of the form

L1 D¢+ by)
Hk:l [(cxC +dy)’

where ¢(() is entire, a; > 0, j=1,...,p, and

p q
e Z . (0.3)

¥(¢) = o(¢) (0.2)

Our choice of the interpolation function (0.2) with conditions (0.3) is mo-
tivated, in particular, by the fact that the inverse Mellin transformations of some
such functions belong to the class of nonconfluent hypergeometric functions [26].

Denote

=3 ol -0

k=1 7=1



An expression of the form

p—l ajajC
P(C) = 9(Q) =L
k=1 ’Ck|

is called the associated entire function for the meromorphic function (0.2).

We prove the following statements.

Theorem 1.1. The series (0.1) extends analytically to the open sector C\ A,
if there exists a meromorphic function 1)(() of the form (0.2) interpolating the coef-

ficients f,, such that the indicator of the associated with 1)(() entire function ¢(()

satisfies the conditions

s s s

D hp(0) =0, 2) max{hy(=3) + 5L As(5) + gu <o.

Theorem 1.2. The open arc 7, = 0Dy \ A, is an arc of regularity for the
series (0.1) if there exists a meromorphic function 1(C) of the form (0.2) interpo-
lating the coefficients f, such that the indicator of the associated with () entire

function ¢(C) satisfies the conditions

Theorem 1.3. The series (0.1) extends analytically to C\ (0D N A,) if
there exists a meromorphic function V() of the form (0.2) interpolating the coef-

ficients f, such that the indicator of the associated with () entire function ¢(()

satisfies the conditions

ho(0) + gu sinf| < o|sinf| for |0] <.



In section 2 we consider two examples clarifying why interpolation of the
coefficients by meromorphic functions, and not by entire, may be more effective.

The first example is given by the series

o

f(2) = Z (2n —2)(2n — sgnn('Qn —3(n+ 2))2717

whose coefficients are interpolated by the meromorphic function

37 T(EC+3)

o= T(C+DI(—4¢+3)°

The associated with v(() entire function ¢(z) is

(-1 (2\%¢
o) =2 W

Here [ =1+ % — % = % According to Theorem 1.1, the series extends analytically
to the open sector C \ Ax.

In the third section we study Problem 4. We construct a family of “moder-
ately lacunar” non extendable series whose sums are infinitely differentiable func-
tions in the closure of the convergence disk.

One of the main results in this section is given by Theorem 1.4. It demon-
strates that Fredholm’s example may be strengthened by reducing the power order
of lacunarity from 2 to 1 4 . The precise formulation is the following:

If the increasing sequence of natural numbers ny, satisfies the inequality

ny > const X k1 with € > 0, then the power series

(o]
Zakz”’“, 0<ax<1
k=0

is not extendable across the boundary circle and represents infinitely differentiable

function in the closed disk.



In chapter 2 we study continuability of power series in several variables.
For multiple power series there are significantly less results describing singular
subsets on the boundary of the convergence domain, or, in other words, subsets on
the boundary such that series analytically extends across them. In the first section
we extend Arakelian’s result [10] on the arc of regularity formulated above to the
case of multiple series.

Consider a multiple power series

flz) =) fid", (0.4)

keNn

Jim H Il RE =1, (0.5)

where R¥ = R™. Rf» and |k| = ki + ... + k,. According to the n-dimensional

with the property

Cauchy-Hadamard theorem ([27], Section 7), the property (0.5) means that R;
constitute the family of conjugate radii of polydisk of convergence of the series
(0.4).

A subset GG on the boundary of the convergence domain is said to be a
regularity set of the series (0.4) if the sum of the series can be analytically continued
across any point of this set.

Let D,(a) := {z € C: |z — a| < p} be an open circle with the centre a € C
and radius p > 0. Denote D, := D,(0), and for o € (0, 7] by v, , we denote the
open arc 0D, \ A,.

In the multivariate case there is no universal definition for the growth indi-
cator of an entire function. Moreover, the information of the growth of an entire
function is frequently represented in geometric terms. Following Ivanov [28] (see
also [22], Section 3, §3), we introduce the following set which implicitly contains

the notion of the growth indicator of an entire function ¢(z) € O(C"):

T,0) = {v € R" : In|p(re”)| < viry + ... + vy + Cop},

10



where the inequality is satisfied for any € R’} with some constant C,, y. Here retf

O .. rne?). Thus, T,(6) is the set of linear majorants

stands for the vector (¢’
(up to a shift by C, )

v=u(r)=ur +..+um

for the logarithm of the modulus of function .

Define the set
M,0) ={veR": v+eeT,(0), v—c¢T,(0) forany ¢ € R"},

which can be called a boundary set of linear majorants.
Let D C C”" be the domain of convergence of the series (0.4). Consider the

family of polyarcs 7, r:
G =Jror =010 X .. X Yo,.0,) C OD (0.6)
R R

where R runs over the surface of conjugate radii of the convergence of series (0.4),
and 0 =0(R) = (01(R),...,0n(R)).

Theorem 2.1. 4 family G of polyarcs (0.6) is the regularity set for the series
(0.4) if and only if there exists an entire function p(z) interpolating the coefficients
fr such that the following conditions are fulfilled:
1) 0 € Mp=,(0),
2) there exists a vector-function vr(0) with values in Mpg-,(0) to satisfy

— v;(0)

lim lim
(01,00 —0 0,0 |0}]

SO’j(R), jzl,,n

In the second section of Chapter 2 we give conditions for continuability to a
sector of a power series whose coefficients are interpolated by values of an entire
or a meromorphic function.

Denote



M, ={vel0n]": v+eeT, v—c¢T, forall ccR}}.

Let GG be a sectorial set of the form
¢=J G, (0.7)
veM,
where

G,=(C\A,) x...x(C\A,).

Theorem 2.2. The sum of the series (0.4) extends analytically to a sectorial

set G of the form (0.7) if there is an entire function ¢(C) of exponential type

interpolating the coefficients f, and a vector-function v(0) on [—%, Z]" with values

272
in M(0) to satisfy
vj(0) < a|sinb;| +bcosb;, j=1,..,n

with some constants a € [0,7), b€ [0,00).

As an example, consider a double power series

f(z1, 22) Z cos \/ kiks Z1 z2 : (0.8)

ki, k2€N2

whose coefficients are interpolated by values of the entire function

©(C1,G2) = cos /(1.

According to Theorem 2.2 the series (0.8) extends to a sectorial domain (0.7),

where v runs over a part of the hyperbola v, = %1 :
9 1
M, ={vel0,n]": = Z}

In the fourth final section we construct double power series which are not extend-

able across the boundary of the convergence bidisk

U? ={(z1,2) : =l <1, 2] <1}

12



and represent infinitely differentiable functions in U? \ T2, where T? = {(z1, 22) :
|Zl‘ = 1, ’22| = 1}

These series have the form

E ki. k
zZ1 1Z2 27

(k1,k2)€A

where A = {(]{71, ]{72) c Z+2 s ko > le—g} U {(]{71, ]432) € Z+2 c k> kQH—E}, e > 0.

13
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Chapter 1. Analytic continuation of

one-dimensional power series

1.1 Continuation by means of meromorphic

interpolation of coefficients

Consider a power series
F(2) = 2" (1.1)

in z € C whose domain of convergence is the unit disk D; := {z € C : |z] < 1}.

The Cauchy-Hadamard theorem yields that

lim "\/|f,] = 1. (1.2)

n—oo

We say that a function ¢ interpolates the coefficients of the series (1.1) if
o(n) = f, forall neN. (1.3)

Recall (see, e.g. [22]) that the indicator function h, () for an entire function ¢ is
defined as the upper limit

1 0
ho(0) = Tim LUy e g

r—00 r
Let A, be the sector {z = re’ € C: |0] < o}, 0 € [0,7). By 7, we denote the
open arc 0D; \ A,.
We consider interpolating meromorphic functions of the form
0(¢) = o) L lese +0)
i1 L'(crC + dy)

where ¢(() is entire, a; >0, j=1,...,p, and

(1.4)

q

Zaj = Cle- (1.5)

j=1 k=1

15



Our choice of the interpolation function (1.4) with conditions (1.5) is motivated,
in particular, by the fact that the inverse Mellin transformations of some such

functions belong to the class of nonconfluent hypergeometric functions [26].

1.1.1 Conditions for continuability to a sector

Denote

=Y el - Yo

k=1 7=1
An expression of the form
p:l ajajC
o) = ()= (1.6)
ket lck]”

is called the associated entire function for the meromorphic function (1.4).
Theorem 1.1. The series (1.1) extends analytically to the open sector C\ A,

if there exists a meromorphic function 1(C) of the form (1.4) interpolating the co-

efficients f, such that the indicator of the associated with 1)(C) entire function p(()

satisfies the conditions

s m s

D hp(0) =0, 2) max{hy(=3) + 5L As(5) + gZ} <o.

Proof.
To begin with, we prove Theorem 1.1 in the case when all ¢, are positive,
1.e. [ = 0. Then the statement is the following:
The series (1.1) extends analytically to the open sector C\ A,, if there
exists a meromorphic function 1(() of the form (1.4) interpolating the coefficients
fn such that the indicator of the associated with 1)(() entire function p(() satisfies

the conditions

D ha(0) =0, 2) max{hy(—2).hy(2)} <o (1.7)



Let ¢ be an entire function of the form (1.6) satisfying the conditions (1.7). Let us
assume that the series (1.1) extends to the open sector C \ A,. It follows from the

definition of an indicator that
p(re?)| < ehe@rtel) for g € R,

where o(r) is infinitesimally small compared to  as » — co. We need the property
of the trigonometric convexity of indicator function of entire function of exponen-

tial type (see Appendix A.1):
hy(8) sin (B2 — 61) < hy,(6:) sin (62 — 0) + hy(02) sin (6 — 6,),

where 01 <0< (92 and 92 —(91 < . Takmg (91 = 0,92 =« or (91 = —04,92 =0 we
obtain that for h,(0) = 0 and o € (0, 7)

hy(0) < co|sinb| for 0] <a

with the coefficients

o = —— max{ho(a), ho(—a)}.

S v

If in this estimate for h,(0) = 0 we let o = 7, then taking into account (1.7)

we get the following estimate for the growth of ¢
|¢(T€i9)‘ < 6a|sin€|r+o(r) for \9| < g

Since (() has the form (1.6), we obtain the inequality

il
ajre |

J o|sin@|r+o(r)
e or 18] <
k=1 1Ck

in the variable ( = £ + in = r(cos 0 + isin f) it can be written as

?:1 [

[p(re”)

bo |

9

?:1 ‘aqjc

-1

2=1y 1 aln|+o([¢]) .

y ol > el for ¢ € Ag. (1.8)
k=1 ‘Ck |

19(Q)] < (

17



We need the following estimate.

Lemma 1. For all ¢ € As

P T(a;¢C+b; P Jalt
Hg_1 (a;¢ + b)) < J—1| J |€0(ICD for |¢] — oo. (1.9)
[Tizy T(exC + di) [Ti— |C;kc‘

Proof. 1t is easy to see that for || — oo one has

10 1l
g g

This fact together with Stirling’s formula (applicable in the right half plane Ax

lac|®(1 — Ylacle=anare(Q) < |q¢ + 5% < |a]®(1 + ylaclg=anarg(¢),

since a;, ¢, > 0) gives

P IT(aC 4+ b))l TTo [(ay¢ + b)) e 2 (a6 + b))
[Tt erC i)l T | (¢ + di)cr (e (2m(cid + dy))?|

P a1 + M laiCle=amars(Q)| (g ¢ 4 b;)bie~(@¢H0) (27 (a:C + b, 2
j=1 1 Erq j j j j

1 el (1 — %)\ckde—cmarg(cn(ckg + dy) et (27 (e + di))?|

18
?:1 |a§j |

T ‘ Cg(zﬁ)—*l a; ZZ—*l Ck) | | C(} :;)—1 a; ZZ_1 Ck) | X
q k €
I Ikzl Ck

bil \aé . —amar - 1

g (1 |Lf<||)aj£€ e y 1 laiC 4 bjl%e " 2m(a;¢ + b))
d _ r B 1-

hot (1= \'afgl Jersemewnarsl©) T |epC + dy| e[ 2m (¢ + dy)|?

In view of (1.5), this turns into

?:1 F(ajC + bj)
[Ti T(cxC + di)

where A, B and C' are some constants (independent of ¢ ). Since |A¢ + B|¢ =
6ln|AC+B|C

19
?:1 |a?j |

|AC + B|°,

%:1 |Czk<‘

and

C
lim In|A¢ + B| o,
¢l =0 C]

18




we get |AC + B|¢ = el as ¢ — oo, i.e. the lemma’s statement.
It follows from (1.8) and (1.9) that for a meromorphic function () defined
by (1.4) we have
[W(¢)| < el for ¢ € As. (1.10)

Consider the following function

~C
9(6,2) = e
of two complex variables ( = £ + in, z = x + 4y. It is meromorphic in { € C and
holomorphic in z € C\ R,.
Denote D* := U, ez D1 /4(m). Notice that there exists a constant ¢ > 0 such
that

|e2”4 BTN em(Inl=n)

for (e C\ D"
From this we get the estimate

19(C, )| < cebloslel=(m=lm—ara 2]

for ( € C\ D" and z € C\ R,. Using (1.10) for ¢ € Az \ D* and z € C\ R, we
see that

1W(O)|1g(C, 2)| < cebloslel=(mmo=lm=arg z)inl+ollc]) (1.11)

For ¢ € Az \ D" and z € C\ A, 5 there is the following bound

[W(OIg(¢, )] < cetlosl=ohirelicl),

Consider the integral

oG

over the oriented boundary of (5, that consists of the segments (see Fig.1)

1 1
I = [a—i(m+§),a+i(m+§)],

19



. 1 , 1
an:[a+z(m+§),a+m+z(m+§)],
3 . 1 , 1
Fm:[a+m+z(m+§),a+m—z(m+§)],
\ o o
Fm:[a—l—m—z(m+§),a—z(m—|—§)],
1 3
where 1<a<i.
m+1/2
—m—1/2
Figure 1

The integral I,, is the sum of four integrals I, 12 I3 I% over

mytTms tmo

I, T2, T3 T, respectively. For ( € Az \ D* and z € C\ A, there hold the

following estimates

a+m
/W 2)||d¢| < ce0(m3) / e mlzl+olldh ge
z(m—i—%)
/l,w ‘dd < Ce(a+m)ln|z\+0( m) / d777
m _Z(m+%)

/W 9(¢, 2)||d¢| < ce00ma) / s mlzl+ollch ge

a+m

20



We see that for 2 € Dy \ A, s the integrals 12, I3, I} tend to 0 as m — oo.

m?»Tm)m
Thus,

lim I, = lim | (Q)g(¢2)dC = lim [ ¥(Q)g(¢,2)d¢ = lim I},

m—00 m—00 m—00 m—00
0G, rL

In the domain G, the integrand has simple poles at real integer points and

finitely many poles at points wafbj € Gp, v =0,1,.. (recall that a;,b; are
parameters in the definition (1.4) of 1(()).

The residue theorem yields

| #(Q(¢. ¢ = }:w )2+ P(2),

6G7n
where P(z) is a polynomial.
Consider the integral

a+100

= [ w2

a—100

For ( =a+inand z € C\ A, s we have
[(O]1g(C, 2)| < cemIEI=dlnollh,

It follows from this inequality that the integral / converges absolutely and
uniformly on any compact subset X C C \ A,.s, and defines a holomorphic

function on the set of interior points of K. For z € Dy \ Ayys

a+ioo
Fl/ ©(Q)g dC—>a40 g(¢, z)d¢, as m — oo.

m

Since [, - [ as m — oo, I(z) = f(2) + P(2) for z € D; N K°. This means
that f(z) extends analytically to K°. Because K is an arbitrary compact set in
C\ A, for any small 9, the function f(z) extends to the open sector C \ A,.

Thus, Theorem 1.1 is proved if all ¢; are positive.

21



Now we prove Theorem 1.1 in the case when c; may be negative. To avoid

cumbersome notation let us show the idea of the proof under the assumption that

l

only one of ¢s is negative, let it be c,. It follows easily that in this case 5 = —c,.

The expression for ¢(() becoming
P T(a;¢+ b))
_ j=1 14, j .
v =) I T (el + di)T(—1C + dy)

The associated with ({) entire function is

P ;¢ p a;C (L5

A -1 a5 (2)2
P(Q) = 0O =T — (Pt

i1 |Ck| =1 Ck™*

Note that the function ¢({) may be rewritten in the form (1.4) such that all ¢ are
positive
j—11(a;¢ + b))

9O = O T o )

[ [
I'(1+ 5{ + d,) sin 7T(—§C —d).
The associated entire function for this form of ¥)(() is

P(C) = () sin(—5C — dy)

Its indicator is bounded

)
h(60) < ha(6) + m5|sin(0)], 16] < 2.

7
- 2

According to the hypothesis of Theorem 1.1

v

max{h,(=5) + 51 ha(5) + 51} S 0
Thus
T
ho(0) =0, ha(E5) <o

The function ¢(() satisfies the conditions (1.7), hence the sum of the series

(1.1) extends analytically to the open sector C \ A,. Theorem 1.1 is proved.
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1.1.2 Conditions for continuability to some

neighborhood of an open arc

Theorem 1.2. The open arc 7, = 0Dy \ A, is an arc of regularity for the
series (1.1) if there exists a meromorphic function (C) of the form (1.4) interpo-
lating the coefficients f, such that the indicator of the associated with 1)({) entire

function ¢(() satisfies the conditions

—_h(0
D ha(0)=0, 2 Tim Te(y)+gl§"'

The proof of Theorem 1.2 is largely similar to that of Theorem 1.1. Namely,
it follows from condition 2) of Theorem 1.2 that for any o > 0 there exists 6 > 0
such that h,(0) < (o + 0)|sinf| for |#] < a. Consequently, the bounds (1.10)
and (1.11) for the absolute values of ¢(¢) and ¥({)g((, z) hold for ¢ € A,. The

domains G and G,,, become (see Fig. 2)
1
G =Dy UA? and Gm:{C:§+in€G:£§m+§},

ie. 0G, =TL UT2.

The integral I,,, is then the sum of I} and I overT'. T2 andforz e KN

D¢ the integral 12, — 0 as m — oo.
The integral I over OG converges for ( € A,, z € K, (see Fig. 3) where

dsin «
5

K =D\ (Mg UDy), &=

The rest of the proof is the same.
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Figure 2

Figure 3

1.1.3 Conditions for continuability to complex plane

except some arc

Theorem 1.3. The series (1.1) extends analytically to C\ (0D, N A,), if
there exists a meromorphic function 1¥(C) of the form (1.4) interpolating the coef-
ficients f, such that the indicator of the associated with 1)(() entire function ¢(()

satisfies the conditions

ho(0) + gu sinf| < o|sinf| for |0] < .
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As for the proof of Theorem 1.3, it is enough to note that the main estimates
(1.10) and (1.11) hold for all ( € C. Therefore, by choosing appropriate contours
of integrations (see Fig. 4) we prove analytic continuation of the sum of the series

to C\ (9D N A,).

I r3

m+1/2

Figure 4

The integral I converges for z € K, where K = C\ (D1 N Agio5 U D)
(see Fig. 5) and the sum of the series (1.1) equal to the integral [ as z € K N DY.
Thus, the series extends to the whole complex plane C except some arc of the

boundary D;.

1.2 Examples

Consider two examples clarifying why interpolation of the coefficients by
meromorphic functions, and not by entire, may be more effective.

Example 1. Consider the series
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Figure 5

oo

£(2) :z:(2n—2)(2n—5)...(2n—3(n+2))zn7 (1.12)

237

n=0

whose domain of convergence is the unit disk. Let the coefficients f,, be given by
the values of a meromorphic function of the form (1.4). Therefore the cofficients
can be rewritten in the form

_ 3 1En+3—1)...3n+3—(n—1))

231!

Jn
Using the formula
L(r+1) = (7),I'(),
where (7); = 7(7 + 1)...(7 + 1 — 1) is the Pochhammer symbol, [ € N, we get

(30 +3)3""
D(n+ 1)0(—4n+ 3)25m

fn:

Thus, the meromorphic function

B 3¢-1 F(%C + %)
P(C) = 25¢ T(C+ 1)I(—3C + 3)

interpolates the coefficients f,.
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In this case the entire function from Theorem 1.1 is

©(¢) = S

1
23¢ (%)%% 3

Here h,(f) =0 and | = 1 + 5 + 2 = 2. Therefore

s ml s ml s
ho(—=)+ —,ho(=) + =} = —=.
According to Theorem 1.1, the series (1.12) extends analytically to the open sector

C\ As.
Note that the series (1.12) is a branch of the solution y(z) to the algebraic
equation > — ;’—gy — 1 = 0 determined by the condition y(0) = 1 (see [29]).

.92 -2
~'3™ and e'3™ and extends

The series f(z) has singularities (branching points) at e
to the sector C \ A=z defined by the large arc of the boundary of the unit disk with
endpoints e =37 and €37 [29].

However, an entire function interpolating the coefficients cannot be always
constructed so easily, despite its existence follows from Arakelian’s theorem [10].

Example 2. Consider now the series

R NG e P A 13
&= o r e s (1.13)

with the same domain of convergence, the unit disk. Its coefficients are

;= L%+ 5)3"
" T+ 1)D(F2 4 2%

They are interpolated by the following entire function

2

2 273

p(2) = gp(g + 2)[‘(% + 1)F(%1 — 22).

Indeed, in Gauss’s multiplication formula [30]



letm:3,w:%—|—%,then
P+ D@ 22 1) = 34 m9mD(n + 1)
373 373377 A
Express I'(3 + %) through the other terms of this identity and substitute it into the
expression for f, to see that o(n) = f,, n € N.

Estimate | (7)| by using Stirling’s formula

L 22 Eetig - ¥ i (Y sin(n25)
3 QeI+ DI ) @n(5 )G+ Fte D T

On the one hand

1 | o(r)
ho(0) = Tom P g In@r )
r—00 T r—0o0 T

on the other hand

1 .
h,(0) > Tim el i g,

n—00 n n—00

1
n =0,

therefore h,(0) = 0.

In order to estimate |p(re’2)| and |¢(re~'2)| we use the double-sided estimate

for the Gamma-function (see [31)):

Cl(‘y| —+ 1)95—%6_%2/‘ < F(l’ + Zy) < CZ(’:U‘ + 1)3@—%6—g|y|7

where z € K C R\ {0, —1,—2, ...}, K is compact. The constants ¢; and ¢, depend
on the choice of y € R. Then
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n 2m
eo6’

es"es

ci(z + 1)§_%cl(§ + 1)1_501(%’" +1)

r

[p(re™'?)| < C

SN
N[ =

or

In[p(re™?)| < —=r+o(r).

Therefore

T 2
ho (=) < —.

It follows from Arakelian’s Theorem [24] that the series (2.2) extends to the
open sector C \ A 2.
On the other hand, the coefficients of the series (1.13) are interpolated by the
meromorphic function
3 L3¢+ 3)
25 D(¢+ DD(=2¢ +3)

The entire function of Theorem 1.1 is

¥(¢)

3¢ 37w
PO = =1
2 (3K
andl=1+2—1=3, hy(f)=0and
™ 2m ™ 2m 2m
maxihy(—5) — 5 he(5) + 5} < =
Therefore, by Theorem 1.1 the series (1.13) extends to the open sector
C\ Ay

1.3 Non extendable one-dimensional series

The problem of describing the relations between singularities of power series

in one variable and their coefficients attracted mathematicians’ attention already
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at the end of 19th century. Remarkable results were obtained in the first half of
the 20th century which allowed thinking that the development in this direction was
almost completed. Many obtained results touch upon the question about series
non extendable analytically across the boundary of their convergence domain and
these results are connected with the names of famous Hungarian mathematicians
Szeg6 and Pdlya (see, for example, articles [4] and [3], and also the list of their
articles in the book by Bieberbach [6]). Examples of series that are non extendable
analytically across the boundary of their convergence domain we can find in the
text-books about theory functions of complex variables. These examples deal with
the so-called "strongly lacunar" series, in other words, having "many" monomials

with zero coefficients. Such series, for instance, are

o0 o0 o0

| n n
g A g 22" g A
n=0 n=0 n=0

In 1891, Fredholm [17] gave examples of "moderate lacunar" non extendable se-
ries, moreover, these series represented infinitely differentiable function in the clo-
sure of the convergence disk. These series depend on a parameter a, and they have

the following form
Za”z”z, 0<a<l.

n=0

Here n? has the power order 2 respective to the summation index n, therefore we
say that Fredholm’s series have the lacunarity order 2.

A more general result on non extendable series in terms of lacunarity belongs
to Fabry (see [18] or [6]). It claims that if the sequence of natural numbers m,,

increases faster than n (i.e. n = o(m,,)), then there is a series

converging in the unit disk and not extending across its boundary.
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One of the main results in this section is given by Theorem 1.4. It demon-
strates that Fredholm’s example may be refined to the power order of lacunarity
from 2 to 1 4 . The precise formulation is the following:

Theorem 1.4. [f the increasing sequence of natural numbers ny, satisfies the

inequality ny > const x k' with € > 0, then the power series
 at, 0<a<, (1.14)
k=0

are not extendable across the boundary circle and represent infinitely differentiable
function in the closed disk.

Proof. Consider the following series

(0.¢]

o(t,u) = Ze”kt+k“, where t,u € C. (1.15)
k=0

Its terms exponentially decrease in the product IT x II of subspaces II = {u :
Rewu < 0} and I = {t : Re t < 0}. These series converge uniformly on compact
subsets of IT x IT and therefore (¢, u) is holomorphic in the product II x IT of open
subspaces. This property is preserved for all derivatives of this series with respect
to the variable ¢. Consequently the function ¢(¢,u) is infinitely differentiable in IT
for each fixed u € II.

Introduce the following notation
=) Mo = Ny Semt R — (¢ ), (1.16)
k=0 k=0
for ¢ € I1 and for each fixed wug € II. Here, the function F'(—t) is represented by

a Dirichlet series
[ee]
g ake_’\’“t
k=0

with exponential indexes A\; = n; and coefficiens a; = ehto

If the series converges in the half plane Rez > c and diverges in the half

plane Rez < c, then the line Rez = c is called a line of convergence for the
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Dirichlet series, and the quantity c is called an abscissa of convergence (see [32],

[33]).

Compute the value

— Ink —— Ink — Ink
b= T, S =0

Therefore, the abscissa of convergence for the series (1.16) can be found as follows

— Inlefuw|  —— Ineffew ___ kRewy — kRewug
= lim = lim —— = lim < hml—:O.
k—oo Ny k—o0 ng k—oo TN k—oo k1T

Now we demonstrate that the function F'(—t) satisfies the conditions of Polya’s

theorem [34]: If a Dirichlet series

oo

F(z) = Z ape "

k=1

has a finite abscissa of convergence c and

.k
hm—:O, nk+1—nk2h>0,
k—o0 T},

then the line of convergence Re z = c is the natural boundary for the function
Indeed,

lim — ~ lim — — 0
k—o00 N k—oo k1t ’

1 1+e
Npiq — Mgy ~ (]43 + 1)1+€ . kH—s — k1+a ((1 + %) . 1) —

1 1
= ]{71+€ <(1 + 5)% + O(E)> :) 0.

Consequently, the function F'(—t) is not analytically extendable. Then, denoting
a = e (fixed) and z = €!, from (1.15) we get (1.14) as desired.

Theorem 1.5. For an arbitrary pair of natural numbers p > q the series

flz)=) a"2", 0<a<l, (1.17)

v=0
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is not extendable across the unit disk boundary and represents an infinitely differ-
entiable function in the closed disk.
Proof. We can prove this theorem directly, without referring to the Polya’s

theorem. We consider the following series

o

o(t,u) = Z e’ where t,u € C. (1.18)
v=0

Its terms are exponentially decreasing in the product II x II of subspaces

Il={u:Reu<0}and Il = {t: Ret < 0}. The series converges uniformly on
the compact subsets of II x II therefore (¢, u) is holomorphic in the product of
open subspaces II x II. Besides, the function (¢, u) is holomorphic in u € II for

any fixed ¢, € II. We consider the Taylor expansion of ¢
o \k
2_90 P ) (1.19)

with the centre v, € II, regarding ¢ € II as a parameter. In view of (1.18) we have

00
a E ’ k th+1/qu
@u’f

v=0

Substituting this expression in (1.19), we obtain

i (i (I/Q)kel/pt—i-z/quo) (u _k!u_())k, (1.20)

We demonstrate that the series (1.20) has a finite convergence radius for any fixed
to from the boundary 0 II (i.e. Rety = 0).
The series (1.18) diverges if Reu > 0 and Rety = 0, because its general

term

|€y7’t0—|—1/qu| VPt ‘ |€un| — (eRe u)uq

:‘6

does not tend to 0. Besides, the series (1.18) can be considered as a power series

in the variable w = e". Using these facts, we obtain that the function (¢, u)
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has a singularity point u such that Ret = 0. Hence, the series (1.20) has a finite
convergence disk.

By using these facts and the Cauchy-Hadamard formula, we obtain that there
is a sequence k; with the following property

oo

E , kl tho—H/quo

v=0

k!
~E with k) — oo, (1.21)
P

where p is the convergence radius of the series (1.18) which depends on the choice
of points ug € II and ¢y € II.

Assume that the function ¢(t, ug) extends analytically with respect to ¢ from
I1 across some boundary point t; € OII for some fixed ug € II. We denote by
@(t, up) the analytic continuation of the function (¢, ug). Its Taylor series is the

following:

Ak~ Nk Ak Nk
oltu0) = 3 L2 u) Lo 500 gl

Ok - k y
up —|—uqu
atk Z

Substituting this expression in (1.22), we obtain

00 00 o k
Bltuo) =y (Z (upyfevpfowuo) (E—to)” k!%) _
k=0

v=0

= . S q Bk vPto+viug (t_tO)k
> | D @Dte — (1.23)
k=0 !

v=0
We investigate the convergence radius of this series by the Cauchy—-Hadamard

theorem. In the sequence

oo

E Vq q eypt0+l/‘1u0

ol L

k!
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we consider the subsequence taking k = qk;:

1
(qky)!

Using the estimate (1.21), we obtain
g (L (PROL g | (PR)! pi.
(gk1)! prh (qky)!

p

k pkl_%e_pkl b kg _

air [ (PR : pi~-L — 00 with p>gq.
(qkl)qkﬁ§e—qkz k; ki—oo

qk

00
Z (Vq )pkl eVPlotviug |

v=0

By Stirling’s formula

Thus, the series (1.22) has empty convergence domain. It follows that the series
(1.18) does not continue analytically with respect to t across the point ¢, € 0 1II.

The theorem is proved.
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Chapter 2. Analytic continuation of multiple

power series

For multiple power series there are significantly less results describing singu-
lar subsets on the boundary of the convergence domain, or, in other words, subsets
on the boundary such that series analytically extend across them. In the first sec-
tion we extend Arakelian’s result [10] on the arc of regularity formulated in the
Introduction.

Recall that this theorem establishes the size of the regularity arc (across which
the series extends) on the boundary circle in terms of the indicator function of the
entire function of exponential type interpolating the coefficients of the series.

In the second section we consider the problem of continuability of power
series to sectorial domains of C". Sectorial domains are defined by conditions on
the arguments ¢, = arg z; of variables (zy,...,2,) € C" only. In the final fourth
section we construct double power series with a natural boundary. Such series are

non extendable across the boundary of their convergence domains.

2.1 Criterion of continuability of multiple power series

across a family of polyarcs

Consider the multiple power series

f2)=> fid @.1)
keNn
with the property
Tim Wy /| fi| RF = 1, (22)
|k|—o00

where R¥ = R . Rl»

n

and |k| = k1 + ... + k,. According to the n-dimensional
Cauchy-Hadamard theorem ([27], Section 7), the property (2.2) means that R;
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constitute the family of radii of polydisk of convergence of the series (2.1).

A subset GG on the boundary of convergence domain is said to be the regu-
larity set of the series (2.1), if the sum of the series can be analytically continued
across any point of this set.

In this section we describe the regularity sets GG that consist of families of
polyarcs (direct products of arcs) from the distinguished boundary of the polydisk
of convergence of the series (2.1).

Let D,(a) := {2z € C: |z —a| < p} be an open circle with center a € C and
radius p > 0. Denote D, := D,(0), and for o € (0, 7| by 7, , we denote the open
arc 0D, \ A,.

2.1.1 Formulation of Theorem 2.1

In the multivariate case there is no universal definition of the growth indicator
of an entire function. Moreover, frequently the information on the growth of an
entire function is represented in geometric terms. Following Ivanov [28] ((see also
[22], Section 3, §3), we introduce the following set, which implicitly contains the

notion of the growth indicator of an entire function ¢(z) € O(C"):

T,(0) = {v € R" : In|p(re”)| < viry 4 ... + vy + Cog},

where the inequality is satisfied for any r € R” with some constant C,, . Here re®

61
y -

stands for the vector (r1e’®, ..., r,e!). Thus, T,,(6) is the set of linear majorants
@ J

(up to a shift by C, p)

v=u(r)=uri+ ..+ v,ry,

for the logarithm of the modulus of function .

Define the set
M,0) ={veR": v+eeT,0), v—c¢T,0) forany ¢ € R},
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which can be called a boundary set of linear majorants.
We say that an entire function ¢ interpolates the coefficients of the series

(2.1), if the following equality is fulfilled:
o(k) = fr forall ke N" (2.3)

Let D C C” be the domain of convergence of the series (2.1). Consider a

family of polyarcs v, p:
G =Jvor =JOwr % - X Yo,.r,) C OD, (2.4)
R R

where R runs over the surface of conjugate radii of convergence of the series (2.1),
and 0 =o0(R) = (01(R),...,0n(R)).

Theorem 2.1. 4 family G of polyarcs (2.4) is the regularity set for the series
(2.1) if and only if there exists an interpolating the coefficients f}. entire function
©(z) such that the following conditions are fulfilled:
1) 0 € Mg=,(0),

2) there exists a vector-function vr(0) with values in Mg-,(0) to satisfy

_ — vi(6
lim lim Vj( )
(01,..5..,0,)—00;—0 \9j|

<oj(R), j=1,..,n.

Observe that it is enough to prove the theorem for the polyarc ~, p from the

distinguished boundary of the polydisk of convergence

{|Zl‘ < Rq,..., ‘Zn‘ < Rn} = DR1 X ...xX Dpg .

n

Namely, we prove the following proposition for fixed Ry, ..., R,.
Proposition. The polyarc V5, r, X ... X Vo, R, IS the regularity set for the
series (2.1) if and only if there exists an interpolating the coefficients f, entire

function p(z) such that the following conditions are fulfilled:
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1) 0 € Mg-,(0),

2) there exists a vector-function v(0) with values in Mp=,(0), to satisfy
lim fim 2 ()
(01,.0,)—0 0,0 [0;]

SO’j, jzl,,n

It is worthwhile to note that for the class of hypergeometric functions (this
class contains a general algebraic function, that is, a function that is determined by
a polynomial equation with independent variable coefficients) the polyarc of regu-
larity can be extended to a polytope of regularity (see [35] and [26], Chapters 4,7).
By this we mean is continuation of the series across a part of boundary of the
domain of convergence which in the angular coordinates 61, ..., 6, is determined by

a polytope, i.e. by a bounded polyhedron.

2.1.2 Necessity of the conditions of Theorem 2.1

Assume that the sum of series (2.1) can be continued across the polyarc

/Y(T,R = fYO'l,Rl X ... X 'VUn,Rn-

We show that there exists an entire function ¢(() that interpolates the coefficients
fr and satisfies conditions 1) and 2).

According to our assumption there exists a simply connected domain €2 con-
taining (Dp, X ... X Dg,) U7,.gr, in which the sum of series (2.1) is holomorphic.
By Hartogs’ theorem (see, e.g.,[27], Section 32) this sum can be holomorphically

continued into a domain containing

(DR, UYo,r,) X . X (DR, UY0,.R,)-

We fix the numbers rJ € (0, R;|1 — €'%i]), j=1,...,n, to satisfy

(Dyi(—Ry)) % ... x (Dps(—Ry)) C Q.

o
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Denote e/ := Rj+7, j=1,..,n, and for any §; € (0,7 — 0;) fix the numbers

= ,u‘gj € (InR;, 1) to satisfy
(Das \ A% 15 ) X ooo X (Do \ AL 15 ) C 0.

Then for any € € R’} the domain

n
5n75n7

Q.5 =01

8y, X o X

where

Q) = (D

€j,5j

J(_RJ)) U (De”j \A0j+5j) U DRje—fj, ] = 1,...,n,

To

satisfies the condition Qg,g C Q.

Denote by I'. 5 := 89;, 5, X - X 007 5 the distinguished boundary of ). 5.
Since f € O(€.5), we can apply the Cauchy integral formula for the coefficients

of the power series (2.1) to obtain

fi = @mi) ™" / CHIFQdC, ke N,

Fs,é
where [ = (1,..,1) € N” and d{ = d(;...d(,. As a desired interpolating
function ¢ we take the same integral but with a complex parameter z instead of

integer k:

o(z) = (2mi) ™" / ¢Ff(Q)d¢, where (7 = e™'8%, (2.5)
Ies

Observe that ((z) is an entire function because it is an integral over a compact set
of a function continuous up to the boundary with respect to the variables ((, z) €
(N (C\R_)") x C" and holomorphic everywhere in the variable z, where R_

stands for the negative real semiaxis (see [36]).
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Now we are going to obtain an estimate for the function . To this end, we
deform the distinguish boundary I'. 5 as follows. The parts of arcs from (9D7,g (—R;),
the dotted curves in Fig. 6, we replace by two arcs on 8D65 and a pair of segments
[—ets, —ets] and [—e?i, —ets] oriented in the opposite directions. The contour ob-
tained for each 7 = 1,...,n we denote by L£j7 5 Then the entire distinguished

boundary I'. 5 is deformed into an n-dimensional loop

L.s=1L!

n
ey X e X Lgm(sn.

Observe that for a fixed o € R} and a chosen o € R’} the curves ng, 5, and L‘i 5
bound a path, where the integrand in (2.5) is univalent and holomorphic in ¢;, and

hence the value of ¢(z) given by the integral (2.5) is independent of ¢ and ¢.

I

Figure 6

Denoting z; = & +1;, j=1,...,n, and

Ms,é := Sup ‘f(C)L
CELE,é

from (2.5) we obtain the estimate
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lp(2)] < M.sZ, ze€C", (2.6)

where
= / ST P e L S 1 CY R e
LFx..xLi
Here Lj denotes the part of ng, 5; lying in the upper half-plane, that is,
I =LurniurLiuL,
where

L‘i = {Rje_gj—’_iwj VS [O, 0 + (Sj)},
= {tjei(aj+5j) : tj € [Rje_gj, e’“‘j)},
Lg = {e“ﬂ'”“j L wj € [0+ 0;,m)},
= {t;e'" : t; € [, et}
Therefore Z can be represented as a sum of integrals Z,, , over the L, X
X Ly s p1y.pn = 1,2,3,4. Observe that each such path is a direct product of
arcs (with centers at zero) and line segments (passing through zero). This observa-

tion allows to obtain effective estimates of the integrals Z,, , . For instance, we

have

1 d dc,
Il_,_1 = / |g | —&1 7}1|arg§1 |g ‘ 5n || arg ¢, ‘ Cll | C o
! G

Lix..xLy

o1+61 On+on

1
== / TR st dw,...dw, =
j=1

0

n oj+0;)In;l _
_ 1 (R._gjegjgj el )] 1) .
™ ’ 7]

j=1

3
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Taking into account that o; + 0; < 7, we can use the inequality e** — 1 < ae™

where a > 0, = > 0, to obtain the estimate

Tia < H( —5i i eo]+6>|m|)_

By similar argument we get

1 d dGy
1-2.“225 / |§1| =& clmlarg G K‘ —&n |77n|argC‘ Cll |<< _

Lix..xLy

/ / H t —§—1 |77J (0j+3; )) dtl dt

Rle_fl Rje—en j=1

n —1i& _ RTS8 o556
_ b (emaﬁm <€ YR ew )) ,
Ik i —fj

Therefore for §; > 1 we obtain the estimate

Zy.2 < H <6|"j(gj+5j)Rj€je€j5j) :

J=1

Furthermore, we have

U1+51 on+on ‘7:1

:i i (e_ng (elmﬂ_eml(ffﬁ%)))
- u

7=1

— iH ( —13&j olnjl(0+65) <e|m|(7T T — 1)) —
ik S ‘773"

J

1 n

((’ﬂ' —0j— 5j)6—ﬂjﬁje|nj\(gj+5j) ( 6‘777| T—0;—0;) _ 1 )) -
" =1 |77]|(7T_0']—5])

J_

43



n
< 1 H (We—ujﬁjelm'|(Uj+5j)€|77j|(7f—0j—5j)) <

n o

j=1
n
H Mjgj+7r‘77]

Finally, we have
e”o eho
Ly.a= —/ /tl_fl_le””1|...tn_én_leﬂ””'dtl...dtn =
e,un

1 — ( (eujﬁj + M >>
_ 67T|7]j| :
n .
o &

which for §; > 1 implies the estimate

n
T, 4 < He—ujfﬁﬂﬁﬂ_
J=1

The obtained results show that in repeated calculation of the integral Z,,
depending on the value of p; (indicating that integration by the variable (; is over
the part Lg;j), the contribution of this integral in the estimate is given by the fol-

lowing relations:

Rj_gjegjfj el@itoinil - if pj =1,
eITIj|(%‘Jr(sj)Rj_fieffafj7 ifp;=2and &; > 1,
e~ Hai&itminsl if p; = 3,
e—Mj§j+7T\7lj|7 ifpj = 4 and fj > 1.

Each collection py, ..., p, we divide into 4 groups: A;, Ay, A3, A4, where A; denote
the numbers of k& € {1,...,n}, for which py = j. Then for §{ > 1, j = 1,...n, we

obtain

Lo < H RS9 838 oloj+d;) ] H elmil(548;) p=8 i€ ¢
yen — i J
JEAL JEA2
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> H e Hi&i ;] H e Hi&itmlngl

JEA3 JEA,
For 7|n;| < p;€&; we have e %+l < 1 Hence in view of the estimate above,

we obtain the following estimate for the integral Z:
Z < Os’éRl_gl“.R;gne‘nﬂ(al"f'dl)"'ggl.“e|77’n,|(0-n+5n)+5€n.
Thus, with notation (; = r;e%i and o; = arctan(yu;/7) the inequality (2.6) gives
the following estimate for the function ¢:
\go(rew) | < cR™Teos 06((01+61)| sin 01 |+e1 cos 01)r1+...4+((0n+8,) | sin 0, |+e,, cos 0,7, (27)
if ‘9]| < ay, ] = 1, ., .
Observe that the inequality (2.7) can be written in the following form:
chosﬁlsp(rew)‘ < Ce((01+51)|sin91\+51 cosb1)r1+...+((on+0d,) | sin O, |+, cos@n)rn'
Therefore, taking its logarithm, for |6,| < «;, j = 1,...,n we obtain
n
In (R™%p(re|) < ¢ + Z (((gj 4+ 6;5)|sinb;| + € cosb;)r;) . (2.8)

J=1

Taking ¢ = 0 in the inequality (2.8), we obtain for any ¢ € R’}
In(R"|p(r)]) <c+<er> (2.9)

implying that 0 € T-,(0).
Next, in view of (2.2) and (2.3) we conclude that

1

In (R¥|o(k))# =0 as |k| — oo, (2.10)

implying that for any ¢ € R"} we have —e ¢ Tx-,,(0). Hence, by (2.9) and (2.10)
we obtain 0 € Mp-,(0).

Also, in view of the inequality (2.8) for any ¢ € R’} we have

((o1 4 61)|sinb| 4+ €1 cosby, ..., (o, + 0,)| sinb,| + €, cosb,,) € Tr:,, (),
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if |0;] <aj, j=1,..,n.
Therefore there exists v(0) = (v1(0), ..., v,(0)) € Mg-,(0) with the properties
vj(0) < (o; 4+ 6;)|sinb;| for |0;| <y, j=1,...,n.
For the components of v(#) we obtain
w— v;(0)

lim lim
O1,.5..0,)—00;=0 |0;]

SO’j, jZl,,n

Thus, the necessity of conditions of Proposition, and hence, of Theorem 2.1 is

proved.

2.1.3 Sufficiency of the conditions of Theorem 2.1

Let ¢ be an entire function satisfying conditions 1) and 2) of Proposition. We

show that the series (2.1) can be continued across the polyarc vy, r, X ... X Y5, R,

7T*O'j

To this end, we first observe that by condition 2) for any §; € (0, =) there exists

«; such that
v;(0) < (o;+6;)|sinb;|, if |0;] <a;, j=1,...,n.
Since v(0) € Mg=,,(#), we have
In (R™%p(re?)]) < (o1 + 61)|sin01])ry + ... + (o, + 8,)| sin b, |)ry + ¢,
implying the estimate

‘QO(TGZH” < ech—rl cos91“.R;rncosene((al—i—élﬂsin91|)r1+...+((an+5n)\sin9n|)rn. (2.11)

We introduce the following auxiliary function

n ZC]

g(CVZ) - Hma

J=1
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where (; = §;+n;, z; = x;+1y;, j = 1,...,n, and observe that it is meromorphic
in variables ¢ from C" and holomorphic in variables z from (C\ R )".

Denote D* := U,,czD1/4(m), and note that there exists a constant C' > 0

such that
o . e7r(|Imw|—Imw) ] H
e _ ] > e D*.
e | G or w
Therefore we have the estimate
9(¢,2) < O elé10g |2) = ((m—|m—arg 2[),|n) (2.12)

for ( € (C\ D*)" and z € (C\R,)". Using (2.11) and (2.12) for { € (A,, \ D*) x
X (A, \ D*) and z € (C\ R;)", we obtain

[(Olg(¢, 2)| < cRtelrtometloaleh=(mir=arg z|).ln) —

— cR¢e(&loglz))—((m—|r—arg 2| —0—0),|n])
Denoting
d(z) = (di(z1), ... dn(2n)), dj(2j) =7 —|m—argzj| —o; —90;, j=1,...,n,

we obtain

l0(O)|]g(¢, 2)| < cR—Eet&log |2)) = (d(2),[nl) (2.13)

Consider the sets

K DRej\( 0+20; UDR/Q) 8j>0, jzl,...,n

We show that
dj(Zj) > 5j for zj € Kj j=1,..n
Indeed, we have

di(zj) =m—0;—0; — |m—argz;|, j=1,..n.

47



Figure 7

Taking into account that z; € K;, we can write
Doj+2); <argzj <m, = dj(zj)=mm—0;—0; —m+0;+20; >0,

2)7’(’ <argzj < 27T—Uj _25j = dj(ZJ) :27T_0j_5j —27T—|—0'j+25j > 5]’-

Thus, for (21,...,2,) € (K1 X ... x K;;) and ((1,...,() € (0A,, \ D) x ... X
(0A,, \ D*) we obtain

19(¢, 2)||@(Q)] < cR~éeEloa =0 <

< cREe(EMoBREN=0nl) — ppl&2) =),

Taking 2¢; = d;sincj, j=1,...,n, we get

19(¢ 2)|1(Q)] < cet =KD, (2.14)

For each j € {1,...,n} consider the domain

Gj = DRj U Agj,

48



and let I'; = OG; be the boundary of this domain positively oriented with respect

to the origin. Then for each natural m; consider the following part of I'; :
L, ={G=¢&+m €T Smﬁr%}-
Denote by L/ the vertical segment with vertices (see Fig. 8)
(mj + %)(1 +itanc;) for m; € N,

oriented by movement upward. The domain bounded by the union F{;nj U L‘Zﬁj we
denote by G, and hence
oG}, =T, UL, .

~
N

Figure 8

Consider the following integral

I = / 9(C, 2)p(C)dC = (2.15)
OGT" x...xOG™

n ZCj ;
OG x..xaGy™ 7

Now we compute the integral in (2.15) by means of multidimensional residues.

To this end, observe first that the integrand in (2.15) defines the differential form

i G

W= Hm@(g)@l Ao A dG

J=1
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with poles on divisors

Qi={((,....¢)): fi=e9 —1=0}=ZxC" !,

Qn="{(Cl, ) s fn=€"—1=0}=C""' x Z

Next, since the intersection Z = ()1 N ...NQ,, = Z" 1is discrete and the Jacobian is
different from zero, that is, 9(f)/0(¢) = (2mi)" # 0 at points k = (ki, ..., k,,) € Z",
then for any point £ € Z" we can define the local residue (see [37], [31]) :

respw = = (k)" (2.16)

The position of the distinguished boundary and the polar divisors ()1, ..., (), is such
that

According to the terminology of [37], this means that the polyhedron G x...x G’
is consistent with the divisors (), ..., @),,. Therefore, according to the principle of
separating cycles the integral (2.15) after multiplication by (27i)~" is equal to the

sum of residues over all points

ke (Gi" X ..xGm)N(Z % ...x 7).

Hence, in view of (2.16) we obtain

mq my
I, = Z Z (K1, oy bon) 2t 20
ki=0  k,=0
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Now we represent the integral (2.15) as a sum of 2" integrals over the paths

LI x ... x L"

7 Tmy mp*

1 n
Ly X X I

For each of such path we split the integration variables (y, ..., (,, into two groups:
By and B, where B stands for the numbers j € {1,...,n} for which (; € L{ﬁj,
while B; stands for the numbers j € {1,...,n}, for which ¢; € FZL,LJ_. Then using

(2.13), we obtain the following estimate

9 Q) < O T ™% T e, (2.17)

jeB, j€By
where z € (Dp, N K?) x ... x (Dg, N K?).
It follows from (2.17) that if B; # ¢, then the integral over the corresponding
path tends to zero as m; — oo, j € Bj.

Finally, we consider the integral

1— [ s

Iyx..xT,

It follows from (2.14) that the integral I converges uniformly on z from the compact
set (K7 X ... x K},), and defines a holomorphic function in its interior.

Taking into account that /,, — Z for m; — oo, j = 1,...,n, we obtain

I(z) = f(z) for z € (Dr, N KY}) x ... x (Dg, N K?). This means that vy, 95 is a

polyarc of regularity for f, provided that ¢ is sufficiently close to zero. Thus, v,

is a polyarc of regularity for f, and the result follows.

2.2 Conditions of continuability of multiple power series

into a sectorial domain

Here we give sufficient conditions for analytic continuability of a multiple

power series to a sectorial domain. A domain G C C" is called sectorial if it

51



is defined by the conditions on the arguments ¢ = (argzy,...,argz,) of elements
z € C" only. As in Theorem 2.1, the conditions of continuability are expressed in
terms of a vector-function v/(6) with the values in M, (#), however, more precisely.
Recall that ¢ is an entire function interpolating the coefficients.

Denote

T,i= () Tolbr, .\ ).

Oj=%%

M, ={vel0n)": v+eceT, v—ec¢T, forany c € R}

Let GG be a sectorial set

G=J G (2.18)

where

G, = (C\A,) % ... x (C\ A,).

This set is a domain: it is open and connected because every polysector GG,
is connected and contains the point (—1, ..., —1).

Theorem 2.2. The sum of the series (2.1) extends analytically to a sectorial
domain G of the form (2.18) if there is an entire function () of exponential
type interpolating the coefficients f), and a vector-function v(f) on [—7,F]"

with values in M (0) to satisfy
vj(0) < a|sinb;| +bcosb;, j=1,..,n, (2.19)

with some constants a € [0,7), b€ [0,00).

We need the following proposition regarding the properties of the set 7,,. Let
I=(1,.,1)ez".

Proposition 1. If v € T,,(0) N T, (0 +7I) then v € RY,.
It follows that T, C RY,,.
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Proof. For a given entire function ¢ in C" consider the function

— 1 t
L.(z,¢) = lim M, zeC"

t—00

called the radial indicator of p. The function L,(z, ) is plurisubharmonic, posi-

tively homogenous in C" and has the following property ([22], Ch.3, §5):
L.(e™z, ) + L.(z,) > 0. (2.20)

From the definition of T,,(0) it follows that

> nln

for all v € T,,(¢). Analogously

—In \gp(trei(9+”)|

im,. 10 T
L(re, o) = Fim

<wry+ ...+ oy,

for all v € T,,(6 + nI).
According to (2.20) we see that for all v € T,(0), v € T,(0 + «l) the
inequality

(1 + 1)+ oo+ (Un + D)1 >0

hold for all r € R%. In particular, if v € T,,(¢) N T,,(0 + 7I) then
2(1r1 + ...+ vry) >0, forany r e RY,

hence v € RY,,.

Let now v € T,. Then
Ve Tw(—gl) N T@(gl) - Tw(—g]) N Tw(—gl + 7).

According to proved above, one has v € R%,.
Proof of Theorem 2.2. Let ¢ be an entire function satisfying the conditions

of Theorem 2.2. For all v € T,(f) this function satisfies the inequality

p(re’)| < Ay,96<y’r> Vr e Ry".

53



Hence for v € M,(0) it satisfies the inequality
lp(re®)| < A, ge o0 wr e R,

From (2.19) we get that for 0; < 7,7 =1,.

|90(7,610)‘ < A,/,g@a ijl ;| sin@;|+b Zj:1 T COS 0j+o(r)'

Write Cj = fj + 277] = Tjewj, then

()] < AyvgeaZ\meZfﬁO(\Cl) (2.21)

for (; € Arjp, j=1,...,n. Consider the following function

n ZCj

j=1
where z; = z; +1iy;, 7 = 1,...,n. It is meromorphic in ¢ € C" and holomorphic in

ze (C\Ry)™

Using (2.21) and (2.12) for ( € (A, \ D*)" and z € (C\ R;)", we obtain

A(Ol9(¢, ) < ce? SEHTINI T 5 |-lr-lr-angnlealch
— e S fz4b) =3 (m—a—|m—arg z;[)[n; | +o(|C])
Denoting d(z;) = 7 — a — |7 — arg z;| we get
l0(O)]]g(¢, 2)] < ce2= &l |z +0) =32 d(z)) n;l+o([C)

Let
K = D ba\( aﬂ;UD 2b)

Note that
d(zj)>9d as z;€e K j=1,...n
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Thus, for € K" and ¢ € (Az \ D*)" we get

19(C, 2)]]0(C)| < ce2=&ilnlzlFb)=0 2 InjlFollch, (2.22)

For any m = (my, ..., m,) € N" we consider the integral

I, - / o(O)g(¢, 2)dC, (2.23)

0G,

where 0G,, = 0Gy,, X ... X OGy,, . Each of the plane domains G, is bounded by
segments: 0Gy, =T, UL}, U F?nj ury,,
F11nj = [—imj,imj],
F%nj = [imj, a; + m; + z'mj],
F?nj = [aj + m; + imj, a; + m; — z'mj],
4 o . .
Lo, = laj +mj —imj, —imj]
1 3

where ; <a; <73

The integral [,,, can be represented as a sum of 4" integrals over paths

Mox oxTE T x oxIin T x . oxT

mi my? ) mi my? ) mi my*

where i1, ..., 1, are random collections of numbers 1,2,3.,4.

For each of such path we split the integration variables (1, ..., (,, into 2 groups
By and B, where B stands for the indexes j € {1,...,n}, for which (; € F}nj, and
Bj stands for the indexes j € {1, ..., n}, for which (; € I';, UT} UTy, .

Using inequalities (2.22) for K", we obtain

9. 21O < e T el TT eomsetteh.

JjEB, JEBy
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Thus, if By # 0, the integral over the corresponding contour vanishes as

m; — oo, j = 1,...,n. Therefore, for K, we get

I / g(¢, 2)d¢ = / 2)d¢ =1

On the other hand, the integral /,,, can be computed by means of multidimen-

as m; — Q.

tional residues, as was done in section 2.1.3.

The integrand in (2.23) defines the differential form

n

G
w = H mﬂod@ Ao NGy

J=1

with poles on divisors

Qr={(Cl,....C): fi=e9 -1 =0} =Z x C" !,

Qn =11y, C) i fo=e" —1=0}=C"' x Z

Since the intersection Z = ()1 N...NQ,, = Z" 1is discrete and the Jacobian is
different from zero, that is, O(f)/0(¢) = (2mi)" # 0 at k = (ky, ..., k,) € Z", then
for any point k£ € Z" the local residue can be defined (see Appendix A.2) :

= p(k)2". (2.24)

respw =

The integration set in (2. 23) s related with the polar dicisor ()1, ..., Q),, by

the relations:

QiN(OG., x .. x Gl )= (ZxC™ YN (0G,, x .. x G ) =1,



This means that the polyhedron G7" X ... x GI'™ is compatible with the divisors
Q1, ..., Q,. Therefore, by the Theorem from A.2 the integral (2.23) multiplied by

(2mi)~" is equal to the sum of residues at

ke (G, X..xGp)N(Z X% ...X L).

m

Taking into account (2.24) we see that

my My
ik
[m:E g o(k1y ., kn)2y ez
k1=0  k,=0

where ' = {C € C": ¢ =0,j =1,...,n} is the imaginary subspace iR".
Let us show that for ¢ € I'! ({; = in;) and z € G the absolute value of the

integrand |©(C)||g(¢, z)| is estimated by

190, 2)lp(Q)] < el

Indeed, it follows from the definition of the set 7T;, (7}, describes the growth

of the function ¢ along the imaginary subspace) that
p(Q)] < eorexml as ¢ e T,

where v; 1s a jth component of the vector » which run over the set 7,,.

From the previous inequality and (2.12), for ( € I'! and z € (C \ R, )" we get

P(Ollg(¢, 2)] < e 2B,

where d(z;) =7 —v; — |m — arg 2.
Note that
d(zj) >0
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for 2 € (C\ Ay ,5) X ... x (C\ A7 ), forany v; <.

1%

From two previous inequalities and Proposition 1 we have

P(Qllg(¢, 2)] < eIl

for ¢ € I'! and
ze Y G (2.25)

{veT,, vi<r}
From the definition of M, it follows that (2.25) 1s equivalent to

z € U G,.

Thus, the integral I converges for z € G.

Since I,, =1 as m; — o0, j=1,...,n, wegetl(z) = f(z) as z € (K°)".
Therefore the sum of the series (2.1) extends analytically to the sectorial set G,
which was to be proved.

To conclude the section let us note that along with Theorem 2.2 on extend-
ability to a sectorial domain by means of entire interpolation, one can ask about
extendability be means of meromorphic interpolation. Denote by W the class of

meromorphic functions v ({) that does not have poles in the set

{C:Re(; >0,7=1,....,n}.

For the function ¢({) € ¥ we can correctly define the sets 7,(6) and M, (6) for
0;| <% Jj=1,...,n. The same reasoning as in the proof of Theorem 2.2 leads us
to the following statement.

Theorem 2.3. The sum of the series (2.1) extends analytically to a sectorial
domain G of the form (2.18) if there is a meromorphic function 1(() of the class
W interpolating the coefficients fi. and a vector-function v(0) on [—%,5]" with

values in M (0) to satisfy
vj(0) < a|sinb;| +bcosb;, j=1,..,n
with some constants a € (0,7), b€ (0,00).
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2.3 Example

Consider a power series

21, ZQ Z COS v/ klkz Zl 22 . (226)

k1 ko €N?
Obviously the function ¢((1, () = COS(§1<2)% is entire and interpolates the
coefficients of the series (2.26). Write (; = r;¢'%, the absolute value of the function

admits an asymptotic expansion

1 iote 1 rir)? |sin( 102
(G1, )l = [ cos ((rara)be ™52 ) | = e B3] 4 (1)

as riry — 0o. Therefore, the set 7,,(0) is

T,(0) = {v € R?: (ryry)?] sin(91 0o

)| < viry 4+ vara + G,

and, consequently, consist of solutions v = v(6) of the inequality

1. 01+0
(r179)2] sin( ! 2

)| < iy +vare, 1,19 >0,

Taking r; = 0 we see that v; > 0, 7 =1,2.
To study this inequality for 179 # 0 we take into account that it is homoge-

neous with respect to r; and ro. Namely, divide it by 79, then

. 01+ 0 r r
|SlIl( 12 2)’§V1 ('r_;> + 2(7“?) ,
- (2)

()

Thus, the inequality reduces to the following (not homogeneous) inequality

=
[T

and denote

vit? — | sin( )\t +1vy, >0, t>0. (2.27)
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As stated above, we are interested only in solutions v with non negative coordinates.
It follows from Viéte’s formulas that for 141 > 0,15 > 0 the quadratic trinomial
(2.27) in t does not have negative roots, therefore we may consider the inequality
for all ¢ € R. Thus, the solutions v of the inequality (2.27) are defined by the

condition that its discriminant is non-positive:

ot 02)|2 — 4111y <0,

| sin(

1.€.

In the end we get

1 040
To(61,6) = {v € R s vywy > | sin( o

The set M, (61, 62) coincides with the topological boundary of 7,,(;,6>), that is
the positive part of the hyperbola

1 01 + 0o

M, (01,02) = {v € R* : 1y = Z’ sin( )Z, v >0, 1, >0} (2.28)

Obviously, T,,(£5,+7) consists of the quadrant v; > 0,15 > 0, if the signs
are the same, and {v € R% : vy1y > i}, if the signs are different.

As a result, the intersection T, = (T, (5, £5) is

1
TSD:{Z/ER2:V1UQZZ, v >0, 1 >0}

Thereby, the sets M, are of the form (see Fig. 9)
5 1
M(p:{l/e [0,71') CV1V2:Z}.

Now, make sure that the condition (2.19) of Theorem 2.2 is fulfilled. Taking

into account (2.28), it is enough to find constants a € [0,7), b € [0,00) such that

1 6, + 6
(a| sin 61| + b cos B1)(al sin B3] 4 bcos B3) > = sin(= e

2
> 7 5
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Figure 9

For a = 1, b =1 the left hand side
(|sin 01| + cos 01)(|sin Os| + coshy) > 1,

and the right hand side does not exceed }1, 1.e. the inequality holds.

Thus according to Theorem 2.2 the sum of the series extends into the union
G of polysectors G, = (C\ A,,) x ... x (C\ A,,) over all v € M,. Fig. 10
depicts the set of arguments 6 = (61, 62) defining the sectorial set G. It is a union

of rectangles (v, 2m — vy) X (v2,2m — 1p) over all (v — 1,15) € M,,.

5 St s Brres

prerrIGIIIIMNIL
................... mesessaads

......
.......

............................

shesataaa sabaaatan
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Figure 10
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2.4 Non extendable multiple power series

Here we consider two examples of double power series. The first one can
be viewed as a two-dimensional analog of the Fredholm example. Its coefficients
assume only two values: zero or one. The second series is of the same type, it is
a restriction of a geometric series to a cone. In the case the cone is rational such
a series represents a rational function of a certain type. We may conjecture that a
restriction to an irrational cone is a series with natural boundary.

Theorem 2.4. If the support A of a double power series

P (2.29)

(kl,]{}Q)EA

is ofthe type
A={(ki, ko) € Z. 2 ko > k"YU (ki ko) € Z.2 0k > koM7) € >0,
then the double series (2.29) is not extendable across the boundary of the bidisk
U? ={(z21,2) : |z1] <1, |2 < 1}
and represents an infinitely differentiable function in U*\ T?, where
T%={(21,2) : |21 = 1, || = 1}

Proof. We can represent the power series (2.29) by the sum of two series:

1+€ 1+5
E ' E :Zlkz1z2k2+ _|_ E E k‘1+ ko _

OkQ 0 0k2
k k +€ k 1+€
52225211,22 +Ez11§z2 21
00 00
1 1
= E Zlklzznkl + E zgl”zl”"?.
1— Z9 1— 21
k1=0 ko=0



Here [k;' "] denotes the integer part of the number k;' .

According to Theorem 1.4 the series

o0

D aha, (2.30)

k=0
if considered in the variable |z5| < 1, converges in the unit disk and does not
extend across the boundary circle when 0 < |z;]| < 1. Using the change of variables
e’ = z; and €' = 2o, we rewrite (2.30) as an exponential series
Z Mgkt
(k1,k2)€ A
where A; = {(k1, ks) € Z* : ky > ki{*°}. This represents an infinitely differentiable

function in
{(u,t) : Reu <0, Ret <0} \ {(u,t): Reu=0, Ret =0}.

Consequently, the series (2.30) represent an infinitely differentiable function in
02\ T2

The similar holds for the series

oo

T

ka=0
it converges in the unit disk, it does not extend with respect to the variable z;, if
0 < 25 < 1, and represents an infinitely differentiable function in U? \ T2
Therefore, we obtain the desired statement for the series (2.29).

Proposition 2. Let K be a sector with integer generating vectors m, =
(mq11,m12) and mo = (Mo1, may), then the series

f(z) = Z 2" 2"

keN2NK
represents a rational function of the form
P(z)
(1 _ Zlm1122m12)(1 — Zlm2122m22)’
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with

P(z) =1+ Z 29,

ae(N2nintD)
where intD is the interior of the parallelogram D with vertices (0,0), my, mo and
mi + Mmo.

Proof. We can cover all the integer points of K by the semigroup
L = {(lyma1 + lamaor, limaa + lamas), 1 € Z>o, i =1,2}

and its shifts L; = a; + L, where a; runs over N? U intD. Thus, we have
Z ZlklekQ = Z ZlklekQ + Z ZlkIZQkQ + ...+ Z Zlklzgkz,
keN2NK keL kel keL,
where p is the cardinality of N? N intD. Summing up the geometric series we get

Zzlklz2k2 — Z Zl1m1+lgm2 — Z (Zml)ll(zmg)lg —

kel ll,lgzo l1,1220

1 1

(1= z2m)(1—2m) (1= zymuizyme)(1 — 221 zym22)

E Zlk122k2 — ZlajleG,jg E Z1k122k2,

keL; keL

Obviously

therefore we obtain

k k 1 + Zla1122a12 + ...+ Zla”lzza’ﬂ
Z 212 = (1 — My m12)(1 — pyMaiy m22>
keN2NK b= b=
as desired.
In the end let us conjecture the following: The series (2.4) for an arbitrary
cone K (not necessary whit rational m, and my) is either non-extendable across

the boundary of convergence domain (2.4) or represent a rational function of the

form
P(z)
(1 — zym1zgmz)(1 — Zlm2122m22)’
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where P(z) is a polynomial. Such a statement can be seen as a two-dimensional
analog of Szeg0d’s theorem ( [4], [6]) on series whose coefficients take a finite

number of different values.
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APPENDIX

A.1 Growth indicator of entire functions

An entire function p(z) of a complex variable z € C is said to be of expo-

nential type if

— 1
— In ()

=0 |z

< +00

The indicator function of an entire function ¢(z) of exponential type is de-

fined as the upper limit [6]

1 160
ho(0) = Tim mlp(re)l 4 < g,

r—00 T

The indicator function describes the growth of the function ¢ on rays z = re? (here
r € Ry and 0 is fixed). It follows from the definition that h,(¢) is a real valued
function with the period 27. One of the basic properties of the indicator function
h,(0) is the trigonometric convexity [38],[6]:

If6; < 6 < 6, and 6, — 6; < 7 then

h(p(e) sin (92 — 01) S hw(el) sin (92 — 0) + hw(eg) sin (6 — 81)

If an entire function ¢(z) is represented by a power series

SO(Z) = Z CLka,
k=0
then the Laurent series
p=> apklz"! (3.1)
k=0

is called the Borel transform of ¢.

The connection between the set of singularities of ¢ and the indicator function ¢ is
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described by a theorem of Pdlya [34], [22]. Recall that the support function K(0)

for a convex set K 1is defined as

k() = sup Re(ze ™).
zeK

Note that if z = x + iy then
Re(ze™) =z cosf + ysin 6.

Theorem (Polya [34]) The indicator function hy,(0) for an entire function ¢
of exponential type and the support function k(0) of the minimal convex compact

set I, outside of which h, extends analytically, are related through

Note that K is convex implies that it is an intersection of half-planes
K = ﬂ {z: Re(ze ™) < v}.
0€[0,2m]
This fact has been taken as a basis of multidimensional formulation of Pélya’s
theorem.
In n variables by an entire function of exponential type we understand a
function ¢(z) = ¢(z1, ..., 2,), for which there exist positive A, o1, ..., 0, such that

Vze C" there holds an inequality
|QO(Z>‘ < Ae‘71|31\+---+0n\zn|.

As in one-dimensional case, to an entire function

o(z) =) (3.2)

keNn

where k = (ky, ..., k), 2F = zfl...zf;", there is an associated Borel transform

o

p(z) = apklzF,

1k|>0
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where k! = kq!...k,,.

For an entire function ¢ of exponential type we define the set
T,(0) = {v € R" : In|p(re”)| < viry 4 ... + vy + Cog},

where the inequality is satisfied for any » € R”" with some constant C, ¢.

Let C,(0) be a set of vectors v € R” such that the function ((z) extends into
the domain

Guo=1{z: Re(zje ) >v;, j=1,..,n},

from a neighborhood of (o0, ...,00) G, 4 is a direct product of half-planes.
Theorem (Ivanov-Stavski [28], [22]) Let (z) be an entire function of
exponential type, then

T,(6) = Cy(~0).
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A.2 Multidimensional residues and an analog of the

Jordan Lemma

Let w be a meromorphic differential form in C" of the form

h(z)dzy A ... N dzy,
_ 3
YT ) ) (3.3)

with poles on the divisors D; = {z : f;j(¢) = 0}, j = 1,...,n. Assuming the

intersection Z = Dy N ...N D, is discrete, for every a € Z we define the lo-
cal (Grothendieck) residue with respect to the system of divisors {D,} to be the
following integral (see [39], Chapter 5 or [37], §5)

1
res,w = i) /w, (3.4)
Lo
where I'y, = {2z € U, : |fi(2)] = ¢, j = 1,..,n} is a cycle in some small

neighborhood U, about a with orientation determined by the inequality
d(argfi) A ... Nd(argf,) > 0.

If fi,..., f, are such that the Jacobian O(f)/0(z) at a differs from zero then (by

Cauchy’s formula) the local residue equals

h
res,w = 8(f()a) (3.5)
30 (@)
Consider the question of when the integral
1
3.6
(2mi)" / “ (36)

Iy
of a meromorphic form (3.3) over the skeleton o of some polyhedron II equals
the sum of the residues (3.4) at points a € II. A polyhedron is the inverse image

g 1(0Q) of the domain G = G X ... x G,, under a proper mapping g : C" — C"
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with each G; being a domain with piecewise smooth boundary 0G; in the complex
plane. The skeleton of such polyhedron is the set ¢~ }(0G; x ... x 8G,,), with the
orientation determined by the order of parameters 7, ..., 7,, in parametrizations of
the boundaries 0G1, ..., 0G,,.

Given a multi-index K = {ki,...,ks} C {1,...,n} we associate with K the
face

ox ={2:gx(2) € Gy, k € K,gij(2) € Gj,j ¢ K}.

We say that a family of divisors {D;} is compatible with II if
DjﬂO'j =, ]: 1,...,n. (37)

If IT is a bounded polyhedron and {D,} is a family of divisors compatible
with II then the integral (3.6) equals the sum of the residues (3.4) over all points
a € II [36]. For an unbounded polyhedron we must additionally require that the
integrand vanishes at infinity in accordance with the classical one-dimensional Jor-
dan lemma [36]. Using the functions f; determining the divisors D;, we introduce

the functions
b — |f51°
AN

Given a multi-index J = {j1,...,Js} C {1,...,n} with 1 < s < n, we associate

where [[f||* = [fi* + ... + [ ful.

with J the (n, s — 1)-differential form
&= (=15 p;0p,[5] A
jeJ
where (7, J) indicates the position of j in .J and dps[j] = dpy A ...[j]... A Ops.
We say that a differential form &; satisfies the Jordan condition on the face
oo where J° = {1,...,n}\ J, if there is a sequence of reals R} converging to +oo

as k — oo and such that

lim / ¢ = (3.8)

k‘—)oo
ﬂ g jo
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where Sy is the sphere of radius R with center at some point of the skeleton
o= oy, of IL.

Theorem (the multidimensional abstract Jordan lemma [31], [48]). If the
family of divisors {D;} is compatible with the polyhedron 11 and for every multi-

index J the form £ satisfies the Jordan condition on the face o jo then

/w = (2m0)" ) resqw.

o a€ll

Observe that the sequence of spheres Sp, in the lemma may be replaced with
an arbitrary sequence of piecewise smooth surfaces such that the domains bounded
by the faces of the polyhedron and the surfaces of the sequence exhaust the whole

polyhedron as R — oc.

71



10.

11.

References

. Hadamard J. La série de Taylor et son prolongement analytique. C. Hérissey,

1901. Nel2. pp. 102.

. Lindelof E. L. Le calcul des résidus et ses applications a la théori des fonctions.

Gauthier-Villars. 1905 . pp. 143.

. Polya G. Uber Potenzreihen mit ganzzalhigen koeffizienten. Math. Ann. 1916.

77. pp. 497-513.

Szegd G. Uber Potenzreihen mit endlich vielen verschiedenen Koeffizienten.

Sitzgsber. prueB. Akad. Wiss., Math.-phys. K1. 1922. pp. 88-91.

. Carlson F. Sur une classe de séries de Taylor. Diss. Upsala. 1914.

Bieberbach L. Analytische Fortsetzung, Berlin, Springer-Verlag, 1955.

. Carlson F. Uber ganzwertige Funktionen. Math. Z. 1921. Nell. pp. 1-23.

. Faber G. Uber Reihenentwicklungen analytischer funktionen. Diss. Munchen

Univ. 1903.

Faber G. Uber die Fortsetzbarkeit gewisser Potenzreihen. Mathematische An-

nalen. 1903. Vol. 57. pp. 369-388.

Arakelian N. U. Approximation by entire functions and analytic continuation.
1992. Progress in approximation theory (FL: Tampa, 1990); Computational
Mathematical Series, Vol. 19 (New York: Springer), pp. 295-313.

Arakelian N., Luh W., Muller J. On the localization of singularities of lacu-
nar power series. Complex Variables and Elliptic Equations. 52 (2007). Ne7.
pp. 561-573.

72



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Pélya G. Untersuchungen iiber Liicken und Singularititen von Potenzreihen.

Mathematische Zeitschrift. 1929. 29. pp. 549-640.

Fabry E. Sur les séries de Taylor qui ont une infinit¢ de points singuliers. Acta

Mathematica. 1899. Vol. 22. Ne. 1. pp. 65-87.

Arakelian N. U., Martirosyan V. A. Localization of singularities on the bound-

ary of the circle of convergence. J. Contemp. Math. Anal. 1987. Vol. 22. no. 1.

Hadamard, J. Essai sur I’étude des fonctions données par leur développement

de Taylor. Journ. Math. Pur. Appl. 1892. 8, 4th series. pp. 101-186.
Fabry E. Sur les series de Taylor. CR Acad. Sci. Paris. 1897. 124. pp. 142-143.

Mittag-Leffeler G. Sur une transcendente remarquable trouvee par M. Fred-
holm. Extrait d‘une letter de M. Mittag-Leffler a M. Poincaré. Acta mathemat-
ica. 1891. 15 Imprime le 21.

Fabry E. Sur les points singuliers d’une fonction donnée par son développement

de Taylor. Paris: Ann. éc. norm. sup. 1896. Vol. 13. pp. 367-399.

Friot S., Greynat D. On convergent series representations of Mellin-Barnes

integrals. Journal of Mathematical Physics. 2012.

Zorich V. Mathematical Analysis of Problems in the Natural Science. Springer.

2011.

Passare M., Pochekutov D., Tsikh A. Amoebas of complex hypersurfaces in
statistical thermodynamics. Math. Phys., Analysis and Geometry. 2013. Vol.
16. Ne3. pp. 89-108.

Ronkin L. I. Introduction to the theory of entire functions of Several variables.

American Mathematical Soc., 1974. Vol. 44.

73



23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Lelong P., Gruman L. Entire functions of several complex variables. Springer-

Verlag. 1986.

Arakelian N. On efficient analytic continuation of power series. Math. USSR

Sbornik 52, no. 1, pp. 21-39, 1985.

Arakelian N., Martirosyan V. Power series: Analytic continuation and location

of singularities. University Press, Yerevan, 1991.

Sadykov T. M., Tsikh A. K. Hypergeometric and Algebraic Functions of Sev-
eral Variables. Nauka, Moscow, 2014.

Shabat V. V. Introduction to Complex Analysis. Nauka, Moscow, 1987.

Ivanov V. K. A characterization of the growth of an entire function of two
variables and its application to the summation of double power series. Mat.

sbornik. 1959. 47(89) (1), pp. 3-16, .

Antipova [.A., Mikhalkin E.N. Analytic continuations of a general algebraic
function by means of Puiseux series, Proceedings of the Steklov Institute of

Mathematics. 279 (2012), no. 1, pp. 3—13.

Bateman H., Erdélyi A. Higher Transcendental Functions. McGRAW-HILL
book company. Vol. 1-3. New-York. 1953.

Zhdanov O.N., Tsikh A. K. Investigation of multiple Mellin-Barnes integrals
by means of multidimensional residues. Sib. Mat. J., 1998. 39 (2), pp. 281-298.

Leont’ev A. F. Exponential Series. Moscow, Nauka, 1976.
Hardy G. H., Riesz M. The general theory of Dirichlet’s series. 1915.

Leont’ev A. F. Entire Functions. Exponential Series. Moscow, Nauka, 1983.

74



35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Antipova [LA. Inversion of many-dimensional Mellin transforms and solutions

of algebraic equations. Sbornik: Mathematics, 2007, 198:4, pp. 447-463.

Sidorov Yu. V., Fedoryuk M. V., Shabunin M. 1. Lectures on the Theory of

Functions of a Complex Variable. Moscow, Mir. 1985.
Tsikh A. K. Multidimensional residues and their applications. AMS. 103 1992.
Levin B. Ya. Distribution of Zeros of Entire Functions. Moscow, Nauka, 1956.

Griffiths P., Harris, J. Principles of algebraic geometry. John Wiley and
Sons, 2014.

Yger A. Théorie et analyse du signal: cours et initiation pratique via MATLAB
et SCILAB. Ellipses, 1999.

Vidras A, Yger A. On some generalizations of Jacobi’s residue formula. An-
nales scientifiques de I’Ecole normale supérieure. 2001. Vol. 34. Nel. pp. 131-
157.

Vidras A. Local residues and discrete sets of uniqueness. Complex Variables

and Elliptic Equations. 1999. Vol. 40. Nel. pp. 63-92.

Arakelian N. U., Martirosian V. A. The location of singularities of power series

on the circle of convergence. J. Contemp. Math. Anal. 23 (1988), Ne3.

Safonov K. V., Tsikh A. K. Singularities of the Grothendieck parametric
residue and diagonals of a double power series. Izv. Vyssh. Uchebn. Zaved.

Mat., 1984, no. 4, pp. 51-58.

Safonov K. V. The set of points of convergence of a double power series. 1zv.

Vyssh. Uchebn. Zaved. Mat., 1982, no 6. pp. 48-52.

Chirka E. M. Complex analytic sets. Springer. 1989.
75



47.

48.

49.

50.

51.

Vladimirov V. S. Methods of the theory of functions of many complex vari-

ables. Moscow, Nauka, 1964.

Passare M., Tsikh A., Zhdanov O. A multidimensional Jordan residue lemma
with an application to Mellin-Barnes integrals. Contributions to Complex Anal-

ysis and Analytic Geometry. Vieweg+ Teubner Verlag, 1994. pp. 233-241.

Authors publications

Mkrtchyan A. Power Series Nonextendable Across the Boundary of their
Convergence Domain. Journal of Siberian Federal University. Mathematics &

Physics. 2013. Vol. 6 Ne3. pp. 329-335.

Mkrtchyan A. J. On analytic continuation of multiple power series beyond
the domain of convergence. Journal of Contemporary Mathematical Analysis.

2015. Vol. 50. Nel. pp. 22-31.

Mkrtchyan A. Analytic Continuation of Power Series by Means of Interpolat-
ing the Coefficients by Meromorphic Functions. Journal of Siberian Federal

University. Mathematics & Physics. 2015. Vol. 8 Ne2. pp. 173-183.

76



