Федеральное государственное автономное образовательное учреждение высшего образования

«Сибирский федеральный университет»

На правах рукописи

Труфакин Сергей Сергеевич

СТОХАСТИЧЕСКАЯ ОПТИМИЗАЦИЯ ДОЛГОСРОЧНЫХ РЕЖИМОВ РАБОТЫ ГИДРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ И КОМПЛЕКСОВ

Специальность 05.14.01 – Энергетические системы и комплексы

Диссертация на соискание ученой степени кандидата технических наук

> Научный руководитель: Доктор технических наук, профессор Пантелеев Василий Иванович

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ
1. АНАЛИЗ СУЩЕСТВУЮЩИХ ЗАДАЧ УПРАВЛЕНИЯ РЕЖИМАМИ
ГИДРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ И МЕТОДОВ ИХ РЕШЕНИЯ 14
1.1. Анализ современных задач управления режимами гидроэнергетических систем
1.2. Анализ существующих подходов и методов управления режимами гидроэнергетических систем
1.3. Анализ методов оптимизации режимов работы гидроэнергетических систем
Выводы по главе 1
2. РАЗРАБОТКА МЕТОДИКИ ОЦЕНКИ ЭФФЕКТИВНОСТИ РЕЖИМОН
РАБОТЫ ГИДРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ4
2.1. Алгоритмы расчета рисков нарушения требований
2.1.1. Модель притока воды в водохранилища ГЭС
2.1.2. Алгоритм расчета риска нарушения минимальных попусков для целей водоснабжения
2.1.3. Алгоритм расчета риска нарушения минимальных навигационных
попусков
2.1.4. Алгоритм расчета риска нарушения уровненного режима в нижнем бьефе5
2.1.5. Алгоритм расчета риска нарушения максимальных попусков 5
2.1.6. Алгоритм расчета риска обеспечения баланса электроэнергии в
энергосистеме
2.1.7. Алгоритм расчета риска нарушений максимально допустимых перетоков мощности в контролируемых сечениях
2.2. Особенности расчета рисков нарушений требований для каскада ГЭС 5
2.3. Имитационный расчет рисков нарушения требований
2.4. Алгоритм расчета экономического эффекта от выработки электроэнергии на гидроэлектростанции
Выводы по главе 2

3.	РАЗРАБОТКА	МЕТОДИКИ	И	АЛГОРИТ	MOB	CTOXA	СТИЧЕСКОЙ
ΟI	ІТИМИЗАЦИИ	долгос	РОЧЕ	НЫХ	РЕЖИ	MOB	РАБОТЫ
ΓV	ІДРОЭНЕРГЕТИ	ЧЕСКИХ СИСТ	EM				73
3.1 pa	. Разработка м боты гидроэнерге	иетодики стохас тических систе					
3.2	д. Алгоритм ра	счета состояния	я сист	емы			78
3.2	.1. Алгоритмы м	модуля расчета	водно	-энергетичес	ских ре	жимов ра	аботы ГЭС. 80
	.1.1.Имитационн исейского каскад						
3.2	.2. Алгоритмы м	модуля расчета	электр	оического ре	жима з	нергосис	темы 87
3.2	.2.1.Линейные ур	оавнения узловь	іх нап	ряжений. Ре	ешение	методом	Гаусса 88
3.2	.2.2.Нелинейные	уравнения узло	вых н	апряжений.	Решен	ие метод	ом Ньютона90
	.2.3.Имитационн ектрического реж						
3.2	а.3. Разработка а	лгоритмов моду	/ЛЯ ВВ	ода в допуст	тимую (область	94
	3.1.Алгоритм вв ксимальному и м	•		-		-	
	3.2.Алгоритм вв ксимальному и м			-		-	
	.3.3.Алгоритм вв ксимальной или м						
	.3.4.Алгоритм вв ксимальным пере	•		-		-	
Вь	воды по главе 3			•••••	• • • • • • • • • • • • • • • • • • • •		103
4.	ИМИТАЦИОН	ные расчет	Ы Р	ЕЖИМОВ	РАБО	ты гэ	С АНГАРО-
EF	ІИСЕЙСКОГО К	ХАСКАДА, ФУ	нкці	ИОНИРУЮІ	ЦЕГО	в объ	ЕДИНЕННОЙ
ЭЕ	ІЕРГОСИСТЕМЕ	Е СИБИРИ			•••••		105
4.1 ис	. Описание ус ходных данных д	ловий функцио ля имитационно	-	-			
4.2		онный расчет де	-		-		-
	исейского каскад еспеченности			-	-		
ω	и и и почети почети						113

4.3. Оптимизационный расчет долгосрочных режимов работы Ангаро-	
Енисейского каскада ГЭС для объема годового притока равного 90 % обеспеченности)
	,
4.4. Оптимизационный расчет долгосрочных режимов работы Ангаро- Енисейского каскада ГЭС для объема годового притока равного 75 %	
обеспеченности	5
4.5. Оптимизационный расчет долгосрочных режимов работы Ангаро-	
Енисейского каскада ГЭС для объема годового притока равного 50 %	
обеспеченности	7
4.6. Оптимизационный расчет долгосрочных режимов работы Ангаро-	
Енисейского каскада ГЭС для объема годового притока равного 25 %	
обеспеченности)
4.7. Оптимизационный расчет долгосрочных режимов работы Ангаро-	
Енисейского каскада ГЭС для объема годового притока равного 10 %	
обеспеченности	L
4.8. Оптимизационный расчет долгосрочных режимов работы Ангаро-	
Енисейского каскада ГЭС для объема годового притока равного 5 %	_
обеспеченности	
Выводы по главе 4	
ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ144	ŀ
СПИСОК ЛИТЕРАТУРЫ146	(
ПРИЛОЖЕНИЕ А. Свидетельство о государственной регистрации программы для	[
ЭВМ «Программа расчета оптимальных режимов гидроэлектростанций Ангаро-	
Енисейского каскада»)
ПРИЛОЖЕНИЕ Б. Исходные данные по объемам притоков воды в	
водохранилища для имитационного расчета режимов работы Ангаро-Енисейского	
каскада ГЭС)
ПРИЛОЖЕНИЕ В. Результаты имитационных расчетов режимов работы ГЭС	
Ангаро-Енисейского каскада	
ПРИЛОЖЕНИЕ Г. Акт об использовании результатов лиссертационной работы 19.	3

ВВЕДЕНИЕ

Актуальность работы. В современных экономических условиях важной задачей является выбор оптимального режима работы гидроэнергетических Заблаговременное определение И планирование выработки систем. гидроэнергетических необходимо электроэнергии систем повышения ДЛЯ экономической эффективности работы, обеспечения надежности работы энергетических систем и более рационального использования водных ресурсов. Все это является основным условием, соблюдение которого дает возможность выполнения предъявляемых современным энергетическим и водохозяйственным комплексом требований.

Для энергетических систем восточных регионов Российской Федерации характерной является ситуация, в которой темпы освоения гидроэнергетического потенциала существенно превзошли развития темпы энергоемкой промышленности. Вследствие чего с целью вынужденного пропуска воды, например, для целей навигации или пропуска паводка, наблюдается высокий Ангаро-Енисейского уровень выработки электроэнергии каскада $(\Gamma \mathfrak{I} \mathcal{C})$. гидроэлектростанций Несмотря на возможность водохранилищ многолетнего регулирования аккумулировать сток, возникает проблема передачи электроэнергии в западную часть энергосистемы [73], связанная с недостаточной пропускной способностью линий электропередач системообразующей сети 500 κB, особенно проведения ремонтной во время кампании объектов электросетевого хозяйства.

Учитывая вероятностную природу стока, система заблаговременного определения выработки электроэнергии гидроэнергетических систем, планирования графика ремонтов объектов электросетевого хозяйства и определения показателей баланса электроэнергии и мощности должна учитывать возможность наступления любого притока воды в водохранилища ГЭС и вырабатывать решения на основании показателей комплексной эффективности

всех зависящих от режима работы гидроэнергетических систем технологических процессов.

Традиционно на этапах долгосрочного, на периоды в пределах календарного года, планирования балансов энергетических систем применяются подходы и методики, основанные на детерминированном представлении исходных данных и решений. При этом подходе выбирается несколько вариантов исходных данных и определяются оптимальные загрузки электростанций, а также другие режимные показатели. Этому подходу посвящены работы Е.В. Цветкова, Т.М Алябышевой, Т.А. Филипповой, В.М. Горнштейна, М. Регеіга и др. [17, 18, 62, 82, 84, 85, 93, 97, 103]. При таком подходе степень учета вероятностной природы стока определяется количеством использованных вариантов исходных данных. Поэтому при определении обоснованных решений, учитывающих вероятностную природу стока, возникает проблема большой размерности задачи.

Из работ, учитывающих вероятностную природу стока, можно отметить работы, основанные на использовании деревьев условий функционирования систем (сценарных деревьев) А. М. Клера, П.Ю. Елсукова, Е. С. Finardi, E.L. Da Silva и др. [23, 24, 25, 29, 30, 108]. Сценарные деревья могут порождать оптимизационные задачи весьма большой размерности - с тысячами и десятками тысяч оптимизируемых параметров, поэтому в данных работах в дополнение рассматриваются методы декомпозиции, уменьшающие размерность задач. Решая задачу учета вероятностной природы стока, методы, основанные использовании сценарных деревьев в сочетании с методами декомпозиции, не решают задачу согласованности технологических ограничений или требований к режимам работы гидроэнергетических систем. Например, в существующей ситуации высокого уровня выработки электроэнергии ГЭС в условиях пропуска воды для целей навигации в период проведения ремонтной кампании объектов электросетевого хозяйства, остается неразрешенным вопрос: какие именно требования необходимо соблюдать и в какой степени, если они несопоставимы друг с другом?

В работах А.Х. Мардиханова, В.Н. Шарифуллина [50, 51, 52, 70, 95] разработана и представлена методика, основанная на методе многокритериальной оптимизации, учитывающий наличие несопоставимых ограничений. Методика в соответствии с методом «уступок» определяет компромиссный водноэнергетический режим работы гидроэнергетических систем, при условии не полного выполнения несопоставимых требований. При этом степень выполнения зависит от ранжирования требований по важности, что является необходимым при использовании метода «уступок». Однако эта особенность является недостатком, так как ранжирование требований по важности противоречит нормативным документам [4, 26], в которых указывается только нормативная обеспеченность основных категорий требований. Также стоит отметить, что методика разработана в рамках детерминированной постановки задачи, не учитывающей вероятностную природу стока.

В рамках направления по рационализации использования водных ресурсов И согласованию стратегий водопользования работах В.И. Данилов-Данильяна, И.Л. Хранович [19] представлена модель учета вероятностной природы стока, основанная на методологии гарантированного водопользования [34] и на построении функций эффективности использования водных ресурсов от вероятности притоков воды. Приток воды в водохранилища в такой модели представлен характеристикой распределения вероятностей. Применяя функции эффективности использования водных ресурсов, возможно определять показатели эффективности без применения моделей большой размерности. Основной недостаток этой методики в сложности описания зависимостей эффективности, основанных на полном знании о получении эффекта в конкретной отрасли от использования водных ресурсов. Поэтому ее целесообразней использовать для целей проектирования, а не управления режимами работы гидроэнергетических систем, так как при управлении режимом работы гидроэнергетических систем необходимо исходить из уже определенных

требований водопользователей, на практике описанных в правилах использования водных ресурсов водохранилищ.

На основе анализа работ, посвященных оптимизации режимов работы гидроэнергетических систем, а также энергосистем с большой долей ГЭС и рационализации использования водных ресурсов водохранилищ, отмечая значительные научные результаты, полученные авторами этих работ, следует отметить ряд не до конца решенных задач.

- 1. В работах по оптимизации режимов энергосистем, включающих ГЭС, рассмотрены только модели с детерминированными исходными данными. Для учета вероятностной природы в исследованиях рассматриваются различные методы прогнозно-ситуационного планирования, диспетчерского управления и сценарных деревьев. Однако такие методы не позволяют обоснованно и точно определить режим гидроэнергетических систем в целях долгосрочного планирования при условии наличия различных требований водопользователей.
- 2. В работах по рациональному использованию водных ресурсов и согласованию стратегий водопользования рассмотрены стохастические модели, однако исследования ограничены рассмотрением функций эффективности некоторых процессов и в качестве показателя эффективности выбраны экономические показатели. В качестве показателей эффективности для системы управления режимами работы гидроэнергетических систем, экономические показатели не подходят, так как на практике отсутствуют точные связи технологических требований и экономической эффективности процессов.
- 3. Стохастические модели, описывающие показатели эффективности, целесообразно формировать на основании методологии гарантированного водопользования. Однако методология ограничена рассмотрением только требований поддержания минимальных параметров, в то время как существуют и требования не превышения максимальных параметров (максимальный расход воды или максимальные перетоки мощности в энергосистеме).

4. В рассматриваемых работах критерии оптимальности режимов работы гидроэнергетических систем определялись в зависимости от исследуемых авторами задач. В то время как для крупных гидроэнергетических систем критерием оптимальности целесообразнее считать комплексную эффективность всех процессов в составе электроэнергетического и водохозяйственного комплексов.

Таким образом, актуальной научной задачей ДЛЯ управления гидроэнергетическими комплексами является разработка адекватной методики планирования долгосрочных водно-энергетических режимов обеспечивающей максимальный гидроэнергетических систем, эффект использования электроэнергии в энергетической системе и минимальные риски нарушения требований остальных водопользователей.

Объект исследования. Гидроэнергетическая система, функционирующая в составе энергетической системы (на примере Ангаро-Енисейского каскада ГЭС, функционирующего в объединенной энергосистеме Сибири).

Предмет исследования. Методика планирования долгосрочных водноэнергетических режимов гидроэнергетических систем.

Целью настоящей диссертационной работы является разработка методики планирования долгосрочных водно-энергетических режимов гидроэнергетических систем, обеспечивающей максимальный эффект от использования электроэнергии в энергетической системе и минимальные риски нарушения требований остальных водопользователей, с использованием методов стохастической оптимизации.

В рамках сформулированной цели в диссертационной работе решаются следующие задачи:

1. Анализ особенностей работы гидроэнергетических систем, учитывающий специфику требований энергетического и водохозяйственного

комплекса, а также существующих методов планирования долгосрочных режимов гидроэнергетических систем и энергетических систем с большой долей ГЭС;

- 2. Разработка методики расчета показателей эффективности, учитывающей исходные параметры вероятностной природы и развивающей методологию гарантированного водопользования для расчета показателей рисков нарушения требований на максимальные параметры.
- 3. Разработка методики и алгоритмов стохастической оптимизации долгосрочных режимов работы гидроэнергетических систем, целевая функция в которой должна сочетать комплексную эффективность всех зависящих от режима работы гидроэнергетических систем процессов.
- 4. Имитационный расчет оптимальных долгосрочных режимов на примере Ангаро-Енисейского каскада ГЭС, функционирующего в объединенной энергосистеме Сибири, с последующим анализом полученных результатов.

Научная новизна:

- 1. Предложена и разработана методика оценки режимов работы гидроэнергетических систем, основанная на расчете вероятности нарушения требований энергетического и водохозяйственного комплекса, учитывающая характеристики распределения вероятностей притоков воды в водохранилища ГЭС;
- 2. Разработаны алгоритмы стохастической оптимизации режимов работы гидроэнергетических систем, обеспечивающей максимальный эффект от использования электроэнергии в энергетической системе и минимальные риски нарушения требований остальных водопользователей.
- 3. Разработана методика планирования оптимальных долгосрочных режимов работы гидроэнергетических систем, функционирующих в составе энергетических систем, с использованием алгоритмов стохастической оптимизации.

Теоретическая значимость работы заключается в том, что полученные результаты исследований позволили разработать новый методический подход к

планированию долгосрочных режимов работы гидроэнергетических систем, функционирующих в составе энергетических систем, основанный на использовании вероятностных показателей оценки эффективности режимов работы гидроэнергетических систем и методах стохастической оптимизации.

Практическая значимость работы:

- 1. Разработанная методика оценки режимов работы гидроэнергетических систем может быть использована для согласования различных стратегий использования водных ресурсов.
- 2. Разработанная методика и алгоритмы стохастической оптимизации режимов работы гидроэнергетических систем могут быть использованы в диспетчерских центрах энергосистемы в качестве основы для планирования согласования долгосрочных режимов энергосистем, графиков ремонтов энергетического электросетевого оборудования И И решения других На основании данной оптимизационной методики задач. разработан программный комплекс «Программа расчета оптимальных режимов гидроэлектростанций Ангаро-Енисейского каскада» (Свидетельство государственной ЭВМ №2019661972 регистрации программы ДЛЯ OT 12.09.2019 г.).
- 3. Разработан программный комплекс «Водно-энергетический расчет ГЭС Ангаро-Енисейского каскада» (Свидетельство о государственной регистрации программы для ЭВМ №2017618953 от 11.08.2017 г.), который используется в Филиале АО «СО ЕЭС» ОДУ Сибири и Филиале АО «СО ЕЭС» Красноярское РДУ на этапах долгосрочного и краткосрочного планирования водно-энергетического режима работы ГЭС Ангаро-Енисейского каскада и в целом энергетического режима работы объединенной энергосистемы Сибири.
- 4. Полученные результаты имитационных расчетов Ангаро-Енисейского каскада ГЭС, функционирующего в объединенной энергосистеме Сибири, для притоков воды различной обеспеченности позволяют определить «узкие места», которые необходимо контролировать при управлении режимом работы.

Методы исследования. В работе используются положения теории вероятности и математической статистики, методы скалярной и многокритериальной оптимизации.

Основные тезисы, выносимые на защиту:

- 1. Методика оценки режимов работы гидроэнергетических систем учитывает вероятностную природу притока воды в водохранилища и позволяет оценивать стратегии различных водопользователей в едином поле относительных показателей эффективности.
- 2. Алгоритмы стохастической оптимизации режимов работы гидроэнергетических систем обеспечивают максимальный эффект от использования электроэнергии в энергетической системе и минимальные риски нарушения требований остальных водопользователей.
- 3. Методика планирования оптимальных долгосрочных режимов работы гидроэнергетических систем позволяет определять оптимальные режимов работы, с учетом предъявляемых энергетическим и водохозяйственным комплексом требований.

Личный вклад автора заключается в проведении исследований, разработки методик и алгоритмов, выборе методологической и информационной базы, разработке программного комплекса.

Соответствие диссертации паспорту специальностей. Сведения, содержащиеся в диссертационной работе, соответствуют следующим пунктам Паспорта специальности 05.14.01 – «Энергетические системы и комплексы»:

- пункт 1. Разработка научных основ исследования общих свойств, создания и принципов функционирования энергетических систем и комплексов, фундаментальные и прикладные системные исследования проблем развития энергетики городов, регионов и государства, топливно-энергетического комплекса страны.

- пункт 3. Использование на этапе проектирования и в период эксплуатации методов математического моделирования с целью исследования и оптимизации структуры и параметров энергетических систем и комплексов, и происходящих в системах энергетических процессов.

Апробация работы. Основные положения и результаты диссертационной работы докладывались на международной молодежной научно-технической конференции «Электроэнергетика глазами молодежи» в г. Казань в 2016 и 2018 годах, г. Самара в 2017 году, на международной научно-технической конференции «Актуальные проблемы электронного приборостроения» в г. Новосибирск в 2018 году, на международной научно-технической конференции «Пром-инжиниринг» в г. Сочи в 2019 году, на всероссийской научно-технической конференции «Борисовские чтения» в г. Красноярск в 2019 году.

Публикации. По результатам выполненных в работе исследований опубликованы 13 печатных работ, в том числе 2 статьи в изданиях, индексируемым в международных базах данных Scopus и Web of Science, 3 в рецензируемых изданиях, рекомендованных ВАК РФ, 7 публикаций в прочих изданиях и 1 свидетельство о государственной регистрации программы для ЭВМ.

Объем и структура диссертации. Диссертация изложена 193 страницах машинописного текста и состоит из введения, четырех глав, основных результатов работы и библиографического списка, включающего 109 наименований. Работа проиллюстрирована 55 рисунками, 31 таблицей. Приложения занимают 35 страницы.

1. АНАЛИЗ СУЩЕСТВУЮЩИХ ЗАДАЧ УПРАВЛЕНИЯ РЕЖИМАМИ ГИДРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ И МЕТОДОВ ИХ РЕШЕНИЯ

Задачи управления режимами гидроэнергетических систем являются комплексными и должны учитывать многообразие критериев эффективности режимов работы. При рассмотрении каскадов ГЭС, и особенно таких крупных как Ангаро-Енисейский каскад ГЭС, Волжско-Камский каскад ГЭС, каскад ГЭС на реке Янцзы, каскад ГЭС на реке Хуанхэ и тд., необходимо учитывать, что их влияние на различные сферы жизнедеятельности человека и на экологию, относительно влияния одиночных ГЭС, усиливается многократно в связи с использованием огромных водохранилищ, больших расходов воды через гидроузлы и больших мощностей ГЭС.

Сложности, возникающие при управлении крупными каскадами ГЭС, можно описать следующими категориями: сложности управления в период ледостава, сложности согласования стратегий или требований различных технологических систем, сложности выдачи мощности в период паводка. Имея общие характерные сложности управления, у каждого каскада ГЭС существуют собственные естественные особенности управления, так, например,

- при управлении Волжско-Камским каскадом ГЭС, в связи с расположением каскада в Центральной Европейской части России, где проживает большое количество населения, необходимо учитывать многообразие требований потребителей водных ресурсов водохозяйственного комплекса, а также экологических требований [9, 40, 50];
- при управлении Ангаро-Енисейским каскадом ГЭС, в связи с большой мощностью ГЭС и относительно небольшим местным потреблением электроэнергии, необходимо учитывать особенности выдачи мощности и ограничения перетоков мощности в энергосистеме [73];
- при управлении каскадом ГЭС на реке Хуанхэ, в связи с относительно большим местным потреблением электроэнергии и расположением ГЭС вблизи

крупных населенных пунктов, необходимо учитывать надежность электроснабжения местных энергосистем, а также рисков затопления [104].

1.1. Анализ современных задач управления режимами гидроэнергетических систем

Большинство отечественных ГЭС имеет многоцелевое назначение и обеспечивает удовлетворение интересов многих отраслей. В соответствии с основными нормативными документами [4, 26] водные объекты могут использоваться для следующих целей:

- для производства электрической энергии;
- для водного транспорта;
- для сплава древесины;
- для питьевого и хозяйственного-бытового водоснабжения;
- для орошения;
- для сброса сточных вод и т.д.

Учитывая многообразие водопользователей и необходимость каждого из них в определенной надежности или эффективности водопользования, возникает множество задач в обеспечении всех требований. Рассматривая системы управления режимами ГЭС, отметим, что использование водохранилищ ГЭС осуществляется в соответствии с правилами использования водохранилищ (ПИВР), в которых описаны все требования водопользователей [4].

Долгое время в системе экономических отношений с точки зрения эффективности использования водных ресурсов в приоритете была эффективность режимов работы электроэнергетических систем (ЭЭС). В рамках этого направления были исследованы и разработаны различные модели оптимизации электроэнергетических режимов, включающих как ГЭС, так и тепловые электростанции. Этому этапу посвящены работы таких авторов как Е.В. Цветков, Т.М Алябышева, Т.А. Филиппова, В.М. Горнштейн, А.Г. Русиной, М. Регеіга, R. Ferrero и др. [17, 18, 57, 81, 83, 84, 92, 102, 109].

Со временем изменилось отношение к эффективному использованию водных ресурсов и в настоящем эффективность режимов работы ЭЭС уже не

является исключительно приоритетной, хотя и имеет существенную значимость. В соответствии с регламентирующими документами [4, 26], использование водных объектов для целей производства электрической энергии должно осуществляться с учетом интересов других водопользователей. Модель управления водными ресурсами должна основываться на принципах рационального использования и охране окружающей среды, ставя приоритет охраны водных объектов перед их использованием.

Учитывая современную трактовку эффективности использования водных ресурсов, уравнивающую всех водопользователей, нельзя не отметить, что наибольший эффект от использования сверх требуемых водных ресурсов имеет электроэнергетика. Это объясняется тем, что большинство водохозяйственных систем построено исходя из условия поддержания некоторого гарантированного минимального уровня водного режима. Поэтому при превышении параметров режима над гарантированным такие водохозяйственные системы не вырабатывают дополнительного эффекта.

Традиционно требования таких водопользователей при построении оптимизационных моделей определяют систему ограничений. Однако, на практике для удовлетворения требований таких водопользователей недостаточно точно соблюдать систему ограничений при определении планового режима. Причина этой особенности выражается в вероятностной природе притока воды в водохранилища ГЭС. На практике точно спрогнозировать приток воды возможно только на следующий месяц или в лучшем случае квартал. Поэтому при определении планового режима на длительный период (до года), в месяцы, на которые отсутствуют достоверные прогнозы, плановый режим должен учитывать вероятность наступления «любого» притока воды.

На основании этого положения сформулируем критерий эффективности для водопользователей, которым необходимо поддержание некоторого уровня водного режима, как риск нарушения заявленных требований.

С учетом индивидуальных особенностей объединим требования водопользователей и водопотребителей, а также других связанных с

технологическим режимом ГЭС процессов в группы, представленные в таблице 1.1, выделив параметры и задачи планирования.

Таблица 1.1 - Классификация задач планирования режимами гидроэлектростанций

Задача планирования	Контролируемый	Целевая функция
	параметр	
Производство	Выработка	Максимальная выработка
электрической энергии	электроэнергии ГЭС	электроэнергии (прибыль
		от продажи
		электроэнергии)
Обеспечение	Попуск воды, глубины	
навигационных попусков	(отметки) в контрольных	
	створах	
Обеспечение надежности	Баланс электроэнергии и	
энергосистемы	мощности, перетоки	
	мощности в	
	контролируемых	Минимальная
	сечениях	вероятность нарушения
Обеспечение попусков	Попуск (сток) воды,	требуемых параметров
для целей водоснабжения,	глубины (отметки) в	
орошения и др.	контрольных створах	
Обеспечение надежности	Попуск (сток) воды	
гидротехнических		
сооружений в нижнем		
бьефе		

Из представленной в таблицы 1.1 информации можно выделить процесс производства электрической энергии и остальные процессы, которые в целевой функции управления представляются вероятностными функциями рисков нарушения требований.

1.2. Анализ существующих подходов и методов управления режимами гидроэнергетических систем

В работах Е.В. Цветкова, Т.М Алябышевой, Т.А. Филипповой, В.М. Горнштейна, А.Г. Русиной М. Pereira, R. Ferrero и др. [17, 18, 56, 57, 81, 83, 84, 92, 96, 102, 109], посвященных исследованиям и разработкам различных моделей оптимизации электроэнергетических режимов, включающих как ГЭС, так и планировании электростанции, отмечено, при ЧТО энергосистем на любой момент или период времени должен быть обеспечен баланс между ресурсами и потреблением. Так как получение сбалансированных планов является главной целью планирования режимов определяемых на их основе технико-экономических показателей, что реализует главные для управления энергосистем критерии бесперебойности и надежности энергоснабжения. А если существует множество способов сведения балансов между ресурсами и потреблением, то следует стремиться к определению оптимальных балансов мощности и энергии, отвечающих критерию минимума зависящих от режимов эксплуатационных издержек или максимума выработки электроэнергии на ГЭС.

Основными способами учета факторов вероятностной и неопределенной природы, таких как речной сток, потребление электроэнергии и т.д., рассматриваются: прогнозно-ситуационное планирование и диспетчерское планирование.

Прогнозно-ситуационное планирование основывается на расчете некоторого предварительного плана и последовательной его корректировке в будущем, в зависимости от изменения складывающихся условий и их прогнозов. Наглядно представим пример использования прогнозно-ситуационного планирования на рисунке 1.1.

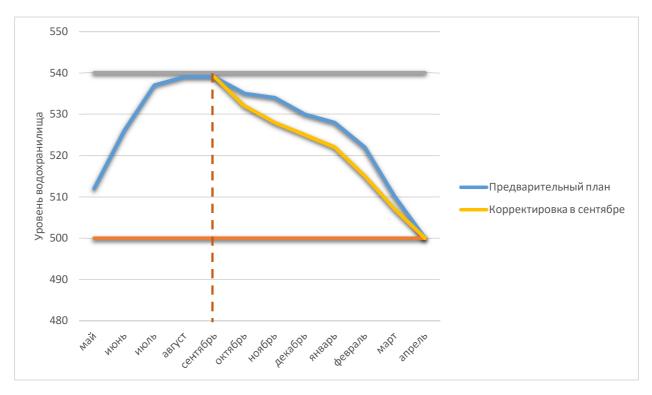


Рисунок 1.1 - Пример прогнозно-ситуационного планирования.

Диспетчерское планирование позволяет осуществлять управление водохранилищами в отсутствии гидрологической информации, недостаточной заблаговременности точности прогнозов, управление реализуется диспетчерским графикам. Построение диспетчерских графиков – методика водохозяйственных расчетов, в основе которой лежит стохастическая задача математического программирования с минимумом ущербов по многолетнему набору гидрографов притока, в принципе, всего диапазона обеспеченностей объемов притока [2, 47, 55, 93]. Диспетчерский график представляет собой набор линий, связывающих водо- и энергоотдачу гидроузлов с уровнем или объемом воды в водохранилище. По оси ординат откладываются объемы водохранилища или соответствующие им уровни верхнего бьефа, а по оси абсцисс - время года. Координатное поле диспетчерского графика разделено на несколько зон, каждой соответствует работы которых определенный режим водохранилища. общепринятую Используя настоящее время систему планирования диспетчерского графика, опишем схему разделения объема водохранилища.

Зона I: изображает неиспользуемый объем водохранилища, расположенный ниже уровней водозаборов (ниже УМО).

Зона II: изображает зону перебоев, при попадании в которую отдача должна назначаться ниже гарантированной.

Зона III: изображает зону гарантированного режима и является наиболее ответственной зоной, где назначается гарантированная отдача воды или мощности. При гарантированных отдачах обеспечивается нормальное водообеспечение или энергообеспечение.

Зона IV: в этой зоне возможно повышение отдач сверх гарантированных. Обычно такое повышение отдач дает дополнительный эффект лишь в энергетике, поэтому режимы водохранилищ в этой зоне имеют, главным образом, энергетический характер. В этой зоне выделяют подзоны с разными значениями мощности ГЭС— от гарантированной до полной мощности.

Зона V: в этой зоне назначаются максимальные допустимые расходы воды в нижний бьеф. Линия, разделяющая зоны IV и V, есть нижняя линия зоны максимальных допустимых расходов воды в нижний бьеф ГЭС.

Зона VI: это зона повышенных холостых сбросов. В ней по условию безопасности гидросооружений открыты все водосливы. В верхней части этой зоны иногда выделяют подзону, в которой дополнительно включается сброс воды через шлюзы.

В качестве примера приведем на рисунке 1.2 диспетчерский график Иркуской ГЭС.

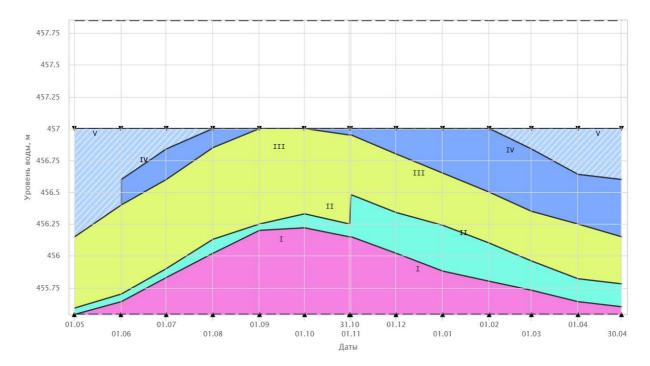


Рисунок 1.2 - Диспетчерский график Иркуской ГЭС

Порядок использования диспетчерских графиков:

- на поле диспетчерского графика наносится отметка уровня воды в водохранилище на начало расчетного интервала времени и определяется зона, в которой будет работать гидроузел в этот интервал времени;
- назначаются средние за интервал мощность ГЭС или расход воды в нижнем бьефе гидроузла (или отбор из верхнего бьефа) в соответствии с диспетчерской зоной, в которой окажется вышеуказанная отметка воды в водохранилище;
- определяется отметка уровня воды в водохранилище на конец расчетного интервала;
- проверяется, в какой зоне диспетчерского графика оказывается вычисленная конечная отметка уровня воды; если зона графика по сравнению с первоначальной не изменяется, то расчет для данного интервала заканчивается, если изменяется, то уточняется первоначально заданное значение мощности ГЭС или расхода воды в нижнем бъефе гидроузла;
- повторяется расчет для средних значений мощности ГЭС или расхода воды в нижнем бъефе гидроузла, соответствующих зоне, куда попадает конечная отметка уровня воды в водохранилище; если и при этом начальная и конечная

отметки воды в водохранилище не совпадают, то конечная отметка уровня воды в водохранилище в данный интервал времени назначается равным отметке на границе зон и вычисляется промежуточное значение средних за расчетный интервал значений мощности ГЭС или расхода воды в нижнем бъефе гидроузла.

Преимущество прогнозно-ситуационного планирования над диспетчерским в более приближенном к реальности режимам работы и более гибким подходом к определению режимов работы. При этом необходимость использования диспетчерских графиков при управлении режимом водохранилищ закреплена на законодательном уровне [26]. На практике обычно эти подходы дополняют друг друга, т.е. находятся оптимальные решения внутри зон диспетчерского графика, либо некоторые компромиссные решения.

В современной практике водохозяйственной эксплуатации водохранилища его отдачу обычно связывают с необходимой надежностью удовлетворения требований водопользователей. Надежность водоотдачи характеризуется числом (процентом) лет или месяцев в многолетнем ряду с поддержанием заданного объема или расхода воды и называется обеспеченностью водоотдачи. В водном хозяйстве показателем надежности является гарантированная отдача водохранилища, под которой подразумевается минимальная среднесуточная, среднемесячная, среднесезонная или среднегодовая отдача, которая может быть предоставлена водопользователям с заданной расчетной обеспеченностью.

В работах Крицкого С.Н., Менкеля М.Ф., Патера А. и др. [22, 34, 54] рассматриваются различные методы И решения задачи обеспечения гарантированного водопользования при управлении режимом водохранилищ. Недостатком такой постановки задачи является отсутствие каких-либо показателей эффективности режимов работы водохранилища и наличие большой области возможных режимов, обеспечивающих гарантированные показатели энергетическим водопользования, отличающихся ПО экономическим показателям.

В работах Александровского А.Ю., Борщ П.С., Лобанова Н.Ю. [6, 8, 15, 46] достаточно подробно описаны зависимости выработки ГЭС от стокообразующих

и климатических факторов. Однако, кроме выработки электростанции, других критериев эффективности, описывающих эффективность выполнения требования водопользователей, не описано.

В работах А.Х. Мардиханова, В.Н. Шарифуллина [50, 51, 52, 70, 95] разработана и представлена методика, основанная на методе многокритериальной оптимизации, учитывающий наличие несопоставимых ограничений. Методика в методом «уступок» определяет компромиссный энергетический режим работы каскадов ГЭС, при условии не полного выполнения несопоставимых требований. При этом степень выполнения зависит от ранжирования требований по важности, что является необходимым при использовании метода «уступок». Однако эта особенность метода «уступок» является недостатком подхода, так как ранжирование требований по важности противоречит нормативным документам [4, 26], в которых указывается только нормативная обеспеченность основных категорий требований. Также стоит отметить, что методика разработана в рамках детерминированной постановке задачи, не учитывающей вероятностную природу стока.

В работах Данилов-Данильяна В.И., Хранович И.Л. [19] рассматриваются вопросы согласования стратегий водопользования. Согласование стратегий рассматривается неопределённости гидрологических, водопользования при экологических И социально-экономических условий. Особенностью методологического подхода к выработке согласованных стратегий управления водохозяйственных систем в условиях неопределённости является, по мнению авторов, учёт, наряду с объёмами реальных водных ресурсов, их ориентиров (гарантированных значений), которые выступают как виртуальные ресурсы, влияющие на хозяйственную деятельность водохозяйственных систем и смежных с ними систем.

Функционирование и развитие водохозяйственных систем описывается нелинейными двухэтапными задачами стохастического программирования и управления, в которых потоки, изображающие ориентиры, играют роль

(первого стратегических переменных этапа), потоки, соответствующие реализуемым расходам и объёмам водных ресурсов, и массам примесей, (второго этапа). выступают тактическими переменными Методология гарантированного водопользования и его надежности даёт возможность построения производственных функций, оценивающих результаты использования как водных, так и других ресурсов в условиях неопределенности. Значения этих функций f(X,x) зависят от двух групп переменных, соответствующих используемым в хозяйственной деятельности ресурсам x и их ориентирам X. Количество используемых ресурсов может принимать значения x^{ω} при различных реализациях стохастических условий функционирования системы из множества $\Omega, x = \{x^{\omega} | \omega \in \Omega\}$. С ориентирные количествами используемых ресурсов Х связано планирование необходимых подготовительных работ и других ресурсов, не учитываемых явно при оценке результатов производства. Величина X одна и та же при всех $\omega \in \Omega$. Отклонение $\Delta x^{\omega} = x^{\omega} - X$ реализуемого количества ресурсов от ориентира приводит к необходимости корректировки принятых решений и потерям в результатах хозяйственной деятельности.

Функцию f(X,x) оценивающую результат использования ресурсов, без нарушения общности можно представить в виде суммы функций

$$f(X,x) = f^{1}(X,x) + f^{2}(X,x)$$
(1.18)

Функция $f^1(X,x)$ характеризует результат использования ресурсов в объеме, равном ориентиру. Зависимость $f^2(X,x)$, обычно называемая функцией ущербов, описывает потери результата, обусловленные отклонениями объемов используемых ресурсов от их ориентирных величин. Для определенности под функцией $f^2(X,x)$ понимают математическое ожидание ущербов, обусловленных функционированием потребителей ресурсов в различных стохастических условиях.

$$f^{2}(X,x) = Mf^{\omega}(X,x^{\omega}) = \sum_{\omega \in \Omega} p^{\omega} f^{2\omega}(X,x^{\omega})$$
 (1.19)

где p^{ω} — вероятность исхода стохастических условий ω . Множество стохастических условий Ω полагаем конечным. Из соотношений (1.18) и (1.19)

следует, что функция f(X,x) представляет собой математическое ожидание производственных функций, оценивающих результат деятельности системы в различных стохастических условиях:

$$f(X,x) = \sum_{\omega \in \Omega} p^{\omega} f^{\omega}(X,x^{\omega}) = \sum_{\omega \in \Omega} p^{\omega} \left(f^{1}(X) + f^{2\omega}(X,x^{\omega}) \right)$$
 (1.20)

При использовании ориентирного объема ресурсов, когда $x^{\omega} = X$ нет необходимости в коррекции запланированного решения, поэтому $f^{2\omega}(X,X) = 0$.

В режиме использования избытков ресурсов, т.е. в случае $\Delta x^{\omega} = x^{\omega} - X \ge 0$, утилизация дополнительных ресурсов возможна только при наличии потребности в них и условий для ее удовлетворения (например, речной транспорт может использовать избыточные глубины только при наличии судов с большой осадкой и дополнительных грузов, которые необходимо перевезти). Неравенство $\Delta x^{\omega} \ge 0$ означает, что все координаты вектора Δx^{ω} неотрицательны и хотя бы одна больше. Использование избыточных ресурсов осуществляется со значительно меньшей эффективностью, чем предполагаемых (т.е. ориентира). Поэтому при $\Delta x^{\omega} \ge 0$ составляющая $f^{2\omega}(X,x^{\omega})$ функции $f^{\omega}(X,x^{\omega})$ неотрицательна и ее значения возрастают незначительно.

Использование ресурсов при их дефиците, т.е. в случае $\Delta x^{\omega} < 0$ увеличивает стоимость вырабатываемой продукции, а при превышении значением $|\Delta x^{\omega}|$ некоторого предела делает невозможным ее производство. Дополнительные затраты на поддержание данного уровня производства (в первом случае) и компенсации потерь от недодачи продукции (во втором) значительно превосходят эффект от использования предполагаемых объемов ресурсов. Это означает, что в диапазоне значений $\Delta x^{\omega} < 0$ функция $f^{2\omega}(X,x^{\omega})$ отрицательна и ее значения резко убывают с ростом $|\Delta x^{\omega}|$. В терминах производственных функций сказанное означает, что при одном и том же значении модуля приращения аргумента $|\Delta x^{\omega}| = |x^{\omega} - X|$, величины приращений функции $f^{\omega}(X,x^{\omega})$ связаны неравенствами:

$$[f^{\omega}(X, x^{\omega}) - f^{\omega}(X, X)]_{\Delta x^{\omega} \ge 0} = f^{2\omega}(X, x^{\omega})|_{\Delta x^{\omega} \ge 0} \le$$

$$\le [f^{\omega}(x^{\omega}, x^{\omega}) - f^{\omega}(X, X)]_{\Delta x^{\omega} \ge 0} \le$$

$$\le -f^{2\omega}(X, x^{\omega})|_{\Delta x^{\omega} < 0} = -[f^{\omega}(X, x^{\omega}) - f^{\omega}(X, X)]_{\Delta x^{\omega} < 0}$$

$$(1.21)$$

Неравенства (1.21) являются основными соотношениями, показывающими целесообразность включения ориентирных величин используемых ресурсов в оценку результатов функционирования производства. Первое неравенство в (1.21) указывает, что результат использования дополнительных ресурсов превосходит результата использования того же ориентирного количества. Последнее неравенство в (1.21) означает, что снижение результата производства при непредусмотренном дефиците ресурсов не меньше, чем то, которое является следствием уменьшения ориентирной величины ресурса. Вся цепочка неравенств (1.21) демонстрирует, что результат использования ресурсов в ориентирных объемах (это - «идеальные» условия) выше результата использования ресурсов в тех объемах, которые получаются в реальных стохастических условиях, когда поставляемые объемы отклоняются от ориентиров.

Концепция рассмотрения оптимизации производственных функций, а также многоцелевой или многокритериальной оптимизации режимов ГЭС достаточно хорошо отражает сложившуюся практику управления режимами ГЭС. В этой концепции рассматривается максимизация общего социально-экономического эффекта при планировании режимов ГЭС. Это обуславливается наличием в нашей стране огромных каскадов ГЭС с водохранилищами годового и многолетнего регулирования (Волжско-Камский и Ангаро-енисейский каскады), а также расположением вдоль рек и водохранилищ крупных городов и социально-значимых объектов, в связи с чем возникает сложный комплекс связанных с гидрологическим режимом производственных процессов.

Применение подобной концепции исследовано в работе Si. Yuan [104] об оптимизации режимов работы ГЭС на реке Хуанхэ в Китае. В качестве методов многокритериальной оптимизации применялось определение оптимального множества решений по Парето, имеющих форму граничной кривой компромисса между максимальной выработкой ГЭС и стабильной (гарантированной) мощностью, обеспечивающую требования водопользователей и надежность дефицитной прилегающей части энергосистемы Китая.

Определение множества решений по Парето при разработке правил управления ГЭС в отечественной практике исследовано в работах А.В. Лотова [47, 48]. Эта технология может применяться при определении диспетчерского графика управления режимами ГЭС или при планировании режимов ГЭС в качестве помощи в принятии решений. Сравнивая методы векторной и скалярной решению поставленных задач оптимизации онжом отметить, принципиальное отличие скалярной оптимизации в единственности решения, в то время как построение оптимального множества предполагает дальнейший выбор решения. Рассматривая экспертный анализ И режимы гидроэлектростанций, можно точно утверждать, что при наличии ограничений на режимы с максимальными попусками и минимальными попусками, оптимальное множество решений при отсутствии допущений будет стремиться к множеству возможных решений. Так как при любом изменении режима в сторону уменьшения рисков нарушения по одному ограничению, увеличиваются риски по противоположному.

1.3. Анализ методов оптимизации режимов работы гидроэнергетических систем

В работах Е.В. Цветкова, Т.А. Филипповой, В.М. Горнштейна, М. Регеіга, А.Г. Русиной, Ш.М. Султонова, и др. [17, 18, 57, 63-69, 81, 83, 84, 92, 102, 109] в качестве оптимизационных методов рассматриваются различные вариации методов нелинейного программирования, такие как: методы внутренней и внешней точки, методы проекции градиента в совокупности с методом неопределенных множителей Лагранжа и т.д. Суть всех методов нелинейного программирования в построении последовательности точек $X^0, X^1, X^2, ..., X^k$, стремящихся к X^* - экстремуму F. Здесь X — вектор независимых переменных размерностью n; X^0 — вектор переменных начального (исходного приближения). Во всех методах построение этой траектории подчиняется общему рекуррентному выражению

$$X^{i+1} = X^i + t^i \Delta X^i \tag{1.1}$$

Здесь ΔX определяет направление изменения переменной и величину ее изменения.

Методы нелинейного программирования отличаются следующим: способом выбора направления ΔX ; тем, как это направление используется (способом определения шага t).

Градиентный метод [1, 38, 81, 83]

Если в точке X^0 (рисунок 1.3) проведена касательная к F = const, то нормаль к этой касательной покажет направление наибольшей скорости возрастания F. Этот вектор называют градиентом функции F в точке X^0 и обозначают $grad\ F^0 = \nabla F^0$. Противоположное ему направление называют направлением антиградиента $(-\nabla F^0)$, и оно является наилучшим из возможных направлений убывания. В градиентном методе движение всегда осуществляется в направлении наибольшего возрастания или убывания целевой функции.

$$\Delta X^{i} = \pm \operatorname{grad} F(X^{i}) = \pm \nabla F(X^{i}) \tag{1.2}$$

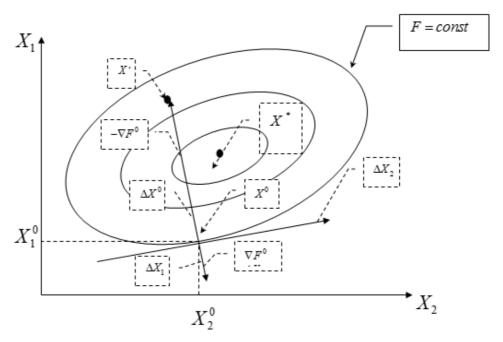


Рисунок 1.3 - Графическая интерпретация градиентного метода

Вектор-градиент определяется через производные F(X) по всем n — независимым переменным.

$$\nabla F = \begin{vmatrix} \frac{dF}{dX_1} \\ \dots \\ \frac{dF}{dX_n} \end{vmatrix}$$
 (1.3)

Чтобы воспользоваться рекуррентным выражением градиентного метода

$$X_{i+1} = X_i + t_i \nabla F(X_i) \tag{1.4}$$

необходимо на каждом шаге итерационного процесса вычислять по соответствующим аналитическим выражениям значения производных $\frac{dF}{dX_i}$.

На рисунке 1.3 показана траектория наискорейшего спуска к минимуму функции по градиентному методу. Критерий окончания расчета основан на сравнении значений целевой функции на двух соседних интервалах. Если убывание функции мало, т.е. $|F(X_{i+1}) - F(X_i)| \le \varepsilon$, то найдено приближенное значение минимума.

Более строгой является проверка длины градиента, который сравнивается с заданной малой величиной, поскольку в точке экстремума все частные производные $\frac{dF}{dX_i}$ равны нулю.

$$|\nabla F| = \sqrt{\sum_{j=1}^{n} \left(\frac{dF}{dX_j}\right)^2}, |\nabla F| \le \varepsilon$$
 (1.5)

Таким образом, градиентный метод дает направление спуска. Но чтобы организовать наискорейшее движение к минимуму, показанное на рисунке 1.3, на каждой итерации необходимо определять оптимальную длину шага, а он зависит от выбора коэффициента t. Так как методика определения длины шага хорошо исследована и представлена в [1, 81, 83] описывать ее не целесообразно.

Метод Ньютона [1, 38, 81, 83]

Этот метод относится к методам второго порядка и обладает лучшей сходимостью, чем градиентные методы. Идея метода заключается в квадратичной аппроксимации целевой функции. Для примера представим аппроксимацию функции F(X) в точке X_i :

$$\varphi(X_i) = F(X_i) + (X - X_i)F'(X_i) + \frac{1}{2}(X - X_i)^2 F''(X_i)$$
 (1.6)

Такая аппроксимация соответствует замене исходной функции $F(X_i)$ параболой $\varphi(X_i)$. Необходимым условием экстремума будет равенство нулю функции $\varphi(X_i)$. В общем виде рекуррентное соотношение для метода Ньютона имеет вид:

$$X_{i+1} = X_i - [F''(X_i)]^{-1}F'(X_i)$$
(1.7)

Графическая интерпретация формул (1.6) и (1.7) приведена на рисунке 1.4.

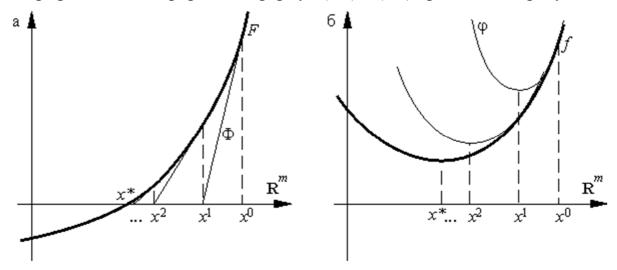


Рисунок 1.4 - Графическая интерпретация метода Ньютона

Сопоставляя метод Ньютона и градиентный метод, можно отметить, что в градиентном методе движение осуществляется по направлению градиента или антиградиента с некоторым шагом t, в методе Ньютона отыскивается вектор $[F''(X_i)]^{-1}F'(X_i)$, который приводит в центр эллипса. Таким образом, метод Ньютона дает и направление, и величину шага.

При решении задач оптимизации режима энергетических систем приходится иметь дело с различными типами ограничений: типа равенств и неравенств. Например, мощности станций должны находиться в определенных границах, токи или потоки мощности линий электропередач должны быть меньше допустимых значений. Эти ограничения определяют допустимую область, в которой и определяется условный экстремум. Далее рассмотрим методы условной оптимизации, применяемые при оптимизации электроэнергетических режимов энергосистем.

Метод внутренней или внешней точки (метод штрафных функций) [17, 18, 83]

Это методы, в которых выход за границу происходит в направлении вектора-антиградиента целевой функции, а возврат — на основе штрафных функций.

Пусть точка $x^{(0)}$ лежит вне допустимой области. Рассмотрим процесс спуска этой точки на границу допустимой области на основе критерия минимизации суммарных штрафов:

$$min\coprod(x) = min\sum\coprod_{i}(x),$$
 (1.8)

где

$$\coprod_{j}(x) = \begin{cases} \beta \left(\sum a_{ji}x_{i} - b_{j} \right)^{2} \\ 0, \text{ если нет нарушения ограничений} \end{cases}$$

где β — достаточно большое положительное число.

В соответствии с градиентной методикой новое значение независимых переменных будем вычислять по следующей формуле:

$$x_i^{(1)} = x_i^{(0)} - a_0 \frac{\partial III}{\partial x_i^{(0)}}$$
 (1.9)

где a_0 — штрафной коэффициент, в общем случае разный для различных переменных.

Метод проекции градиента [92]

Это метод, в котором учет ограничений в форме неравенств производится путем проектирования вектор-градиента целевой функции на плоскости этих ограничений; учет ограничений в форме неравенств осуществлен методом проекции градиента (производится зигзагообразный обход границ этих ограничений с использованием алгоритма проектирования точки на поверхность ограничений).

Рассмотрим наиболее эффективные алгоритмы при решении задач оптимизации длительных режимов энергосистем с ГЭС в детерминированной постановке.

Пусть требуется найти минимум целевой функции f(x) при условии, что независимые переменные $x=(x_1,x_2,...,x_n)$ удовлетворяют системе из m линейных ограничений в форме неравенств:

 $f(x) \rightarrow min$

$$Ax \leq b,$$

$$\{Ax \leq b\} = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \leq b \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b \end{cases}$$

$$(1.10)$$

Предположим, что начальная точка (начальное приближение) удовлетворяет всем ограничениям задачи. В начальной точке $x^{(0)}$ вычисляется вектор-градиент целевой функции и в обратном направлении производится движение заграницу допустимой области до точки $x^{(1)}$:

$$x^{(1)} = x^{(0)} - a_0 \frac{\partial f}{\partial x^{(0)}}, \tag{1.11}$$

где a_0 – некоторая положительная константа.

Следующим этапом решения задачи (1.10) является проектирование точки $x^{(1)}$ на поверхность ограничений $Ax \leq b$, в результате которого определится точка $\hat{x}^{(1)}$. Далее из точки $\hat{x}^{(1)}$, как и из точки $x^{(0)}$, вновь совершаем движение за границу допустимой области до точки $x^{(2)}$:

$$x^{(2)} = \hat{x}^{(1)} - a_1 \frac{\partial f}{\partial \hat{x}^{(1)}}, \tag{1.12}$$

Затем точка $x^{(2)}$ проектируется на поверхность ограничений, получаем точку $\hat{x}^{(2)}$ и т.д. Значение множителя a на каждой итерации выбирается из условия обеспечения монотонного убывания значений целевой функции f(x) в граничных точках. В силу выпуклости целевой функции f(x) и свойств проекции точки на выпуклое замкнутое множество последовательность точек $\{\hat{x}^{(v)}\}$, вопервых, лежит в допустимой области и, во-вторых, при $v \to \infty$ сходится к точному решению задачи.

Проектирование точки x на поверхность ограничений это процесс поиска такой точки \hat{x} на ограничениях $Ax \leq b$, расстояние которой до точки x будет минимальным:

$$\{\sum_{i=1}^{n} \hat{x}_{i}^{2} - 2\sum_{i=1}^{n} \hat{x}_{i} x_{i} + \sum_{i=1}^{n} x_{i}^{2}\} \to min$$
 (1.13)

Авторами Г.П. Кюнци и В. Крелле [38] предлагается решать не исходную задачу (1.13), а перейти к двойственной задаче тоже квадратичного программирования:

$$\varphi(u) = \left\{ \frac{1}{4} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ji} u_i \right)^2 - \sum_{j=1}^{m} \left(a_{j1} x_1 + a_{j2} x_2 + \dots + a_{jn} x_n - b_j \right) u_j \right\} \to min, \quad (1.14)$$

где $u = (u_1, u_2, ..., u_m)$ — вектор двойственных переменных, число компонент вектора u соответствует числу ограничений в задаче (1.10).

Решение задачи (1.14) связано с решением задачи (1.13) следующими соотношениями:

$$\hat{x}_i = x_i - \frac{1}{2}\Delta x_i \tag{1.15}$$

$$\Delta x_i = \sum_{j=1}^m a_{ji} u_i \tag{1.16}$$

Целесообразность перехода к двойственной задаче состоит в том, что в новой задаче (1.14) будет более простая область ограничений. Ограничения накладываются только на независимые переменные, учет которых способом «срезки» не вызывает трудностей.

Для решения двойственной задачи квадратичного программирования (1.14) предлагаются два основных алгоритма: первый основан на методе наискорейшего спуска, второй — на модифицированном методе Хилдрета (покоординатный спуск).

Метод неопределенных множителей Лагранжа [17, 18, 107]

Это метод, который позволяет определить «условный» экстремум целевой функции при наличии заданных ограничений на ее переменные в виде равенств.

Пусть требуется найти минимум целевой функции f(x) при условии, что независимые переменные $x=(x_1,x_2,...,x_n)$ удовлетворяют системе из m линейных ограничений в форме равенств:

$$f(x) \to min$$

$$g(x) = 0,$$

$$\{g(x) = 0\} = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + c_1 = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + c_2 = 0 \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + c_m = 0 \end{cases}$$

$$(1.10)$$

Метод множителей Лагранжа позволяет задачу поиска условного экстремума целевой функции на множестве допустимых значений преобразовать к задаче безусловной оптимизации функции.

В случае если функции f(x) и g(x) непрерывны вместе со своими частными производными, то существуют такие переменные λ не равные одновременно нулю, при которых выполняется следующее условие:

$$\nabla L(x) = \nabla f(x) + \sum_{i=1}^{m} \lambda_i \cdot \nabla g(x) = 0$$
 (1.11)

Таким образом, в соответствии с методом множителей Лагранжа для поиска экстремума целевой функции на множестве допустимых значений составляют функцию Лагранжа $L(x, \lambda)$, которую в дальнейшем оптимизируют:

$$L(x) = f(x) + \sum_{i=1}^{m} \lambda_i \cdot g(x)$$
 (1.12)

где λ - вектор дополнительных переменных, называемых неопределенными множителями Лагранжа.

Таким образом, задача нахождения условного экстремума функции f(x) свелась к задаче поиска безусловного экстремума функции $L(x,\lambda)$.

Далее в соответствии с методом определяют частные производные функции Лагранжа и необходимое условие экстремума функции Лагранжа задается системой уравнений.

$$\begin{cases} \frac{\partial L(x,\lambda)}{\partial x} = \frac{\partial f(x)}{\partial x} + \sum_{i=1}^{m} \lambda_i \cdot \frac{\partial g(x)}{\partial x} = 0\\ \frac{\partial L(x,\lambda)}{\partial x} = g(x) = 0 \end{cases}$$
(1.13)

Решение данной системы уравнений позволяет определить аргументы функции (X), при которых значение функции $L(x,\lambda)$, а также значение целевой функции f(x) соответствуют экстремуму.

Метод множителей Лагранжа позволяет решить задачу оптимизации с ограничениями в виде равенств. Применяя дополнительно метод Куна-Такера, возможно применить метод множителей Лагранжа с ограничениями как в виде равенств, так и в виде неравенств.

выбраны Описанные оптимизации методы авторами ПО причине детерминированного подхода к рассмотрению задач планирования режимов энергосистем, включающих ГЭС. Это связано с особенностями планирования режимов энергосистем. При рассмотрении вопроса планирования режимов ГЭС, в соответствии с поставленными в 1.1 задачами, детерминированная постановка не подходит, так как необходимо не только искать оптимальный режим внутри допустимой области, но и учитывать стохастическую природу исходных параметров, чтобы снизить вероятность нарушения какого-либо ограничения. Несмотря на это сами методы могут быть применены и в стохастической постановке задачи.

Для учета вероятностной природы речного стока авторами предлагается способ расчета по выборке гидрографов. Основным недостатком которого является не полная информативность результатов расчета, так как выбранные гидрографы не охватывают наиболее вероятные варианты речного стока. На практике этот способ обычно претерпевает изменения и в результате расчет уже проводится не по выборке гидрографов, а по гидрографу с нормированным притоком воды.

Дальнейшее развитие подходов, основанных на использовании методов нелинейного программирования при оптимизации режимов энергосистем, шло в направлении повышения размерности решаемых задач.

С появлением достаточно быстродействующих вычислительных машин начали появляться работы по оптимизации режимов энергосистем, основанные на применении метода динамического программирования Ferrero R., Легалов Д.И.

<u>Метод динамического программирования</u> [12, 37, 41-44, 58, 60, 85-91, 98, 99, 103]

Динамическое программирование - это математический аппарат оптимизации многошаговых управляемых процессов. Задачи математического программирования, решение которых можно представить в виде многошагового процесса могут решаться методом динамического программирования.

Сущность метода динамического программирования состоит в замене одной задачи со многими переменными множеством последовательно решаемых задач с существенно уменьшенным числом переменных (в пределе с одной переменной). Оптимизация многошагового процесса осуществляется с использованием принципа оптимальности Беллмана. Классическая формулировка звучит так: «Оптимальное поведение обладает тем свойством, что каково бы не было первоначальное состояние и первоначальное решение (предшествующий шаг), последующее решение (следующий шаг) должно определять оптимальное поведение относительно состояния, полученного в результате первоначального (предшествующего) решения».

Для применения динамического программирования важно, чтобы соблюдались следующие условия:

- 1. Оптимизируемый процесс должен расчленяться на шаги и обладать Марковским свойством. Это означает, что изменение рассматриваемой нами физической системы, начиная с некоторого состояния s_j , должно зависеть только от этого состояния и последующих управлений и не зависеть от предшествующих, то есть от того, как система пришла в состояние s_i .
- 2. Критерий оптимальности решаемой задачи должен быть аддитивным относительно искомых переменных, то есть его можно было бы представить суммой частных значений этого критерия, рассматриваемых на отдельных шагах многошагового процесса.

$$F = \sum_{i=1}^{n} f_i(x_i) \tag{1.17}$$

В процессе оптимизации методом динамического программирования многошаговый процесс проходится дважды;

- первый раз в одном направлении (прямой ход), в результате находятся условно-оптимальные управления на каждом шаге.
- второй раз в обратном направлении, в результате чего находятся уже оптимальные управления на всех шагах (обратный ход).

Рассмотрим базовый алгоритм динамического программирования:

На первом шаге определяются значения $f_1(x_1)$ при изменении x_1 с каким-то шагом при нулевых значениях всех x_j кроме x_1 ($x_{1min} \le x_1 \le x_{1max}$). Выбирается лучшее значение $F = f_1(x_1)$ и соответствующий ему \hat{x}_1 .

На втором шаге определяется минимум $F=f_1(x_1)+f_2(x_2)$ при нулевых значениях всех x_j кроме x_1 и x_2 . Так как $x_{12}=x_1+x_2$, то $x_1=x_{12}-x_2$ и $F=f_1(x_{12}-x_2)+f_2(x_2)$, при $x_{2min}\leq x_2\leq x_{2max}$ и $x_{12min}\leq x_{12}\leq x_{12max}$.

При каждом x_{12} изменяется x_2 с каким-то шагом, определяются и запоминаются лучшие значения F и соответствующие им значения \hat{x}_2 . Их количество соответствует количеству шагов по x_{12} .

Затем третий шаг при $F=f_1(x_1)+f_2(x_2)+f_3(x_3)=f_{12}(x_{12})+f_3(x_3)$. Так как $x_{13}=x_{12}+x_3$, то $x_{12}=x_{13}-x_3$ и $F=f_{12}(x_{13}-x_3)+f_3(x_3)$, при $x_{3min}\leq x_3\leq x_{3max}$ и $x_{13min}\leq x_{13}\leq x_{13max}$.

При каждом x_{13} изменяется x_3 с каким-то шагом, определяются и запоминаются лучшие значения F и соответствующие им значения \hat{x}_3 .

Пройдя от начала к концу, вовлекая в процесс последующие переменные, определяются условно- оптимальные решения на каждом шаге, то есть то управление, которое надо применить на шаге j, если шаг j-1 закончился определённым образом. Таким образом, на каждом шаге ищется такое управление, которое обеспечивает оптимальное продолжение процесса относительно достигнутого в данный момент состояния. Этот принцип выбора управления называется принципом оптимальности.

После этого определяются уже не условные, а действительно оптимальные управления на каждом шаге x, двигаясь в обратном направлении (от конечного состояния). При известном конечном состояние процесса на последнем шаге

найденное условно- оптимальное управление становиться оптимальным решением этого шага x_n . Переходя на предпоследний шаг, по условно- оптимальным решениям этого шага определяется оптимальное решение x_{n-1} , и так далее.

Преимуществом метода является независимость от характеристик самой модели объекта исследований, они могут быть заданы как в виде функциональных зависимостей, так и набором значений. Также данный метод возможно использовать для расчетов со стохастическими исходными данными.

Недостатком методов, основанных на динамическом программировании, является экспоненциальный рост объема вычислений с увеличением размерности вектора состояний системы, то есть числа ГЭС с водохранилищами.

Для преодоления этого недостатка был разработан метод двойственного стохастического динамического программирования, позволяющий оптимизировать режимы энергосистем, включающих более ста ГЭС М. Pereira, L. Pinto, Kelman R. [102, 109].

Методы векторной (многокритериальной) оптимизации [1, 39, 48]

Все вышеперечисленные методы оптимизации относятся к скалярным методам, в то время как постановка задачи оптимизации режимов работы гидроэлектростанций присутствует множество критериев, в соответствии с классификацией с таблицей 1.1. Методы, оптимизирующие функцию, в которую входят несколько критериев, называются методами векторной или многокритериальной оптимизации (МКО).

МКО — комплекс методов решения задач математического программирования, в которых критерий оптимальности представляет собой вектор, компонентами которого являются в свою очередь несводимые друг к другу критерии оптимальности подсистем, входящих в данную систему. Оптимизация по одному из критериев называется субоптимизацией. Другой способ — при ранжировании приписывать критериям определенные веса (соответственно их важности) и на этой основе строить единый скалярный

критерий, отражающий общую цель системы («Скаляризация векторного критерия»).

Принцип оптимальности по Парето сводит задачу к поиску множества эффективных планов. При этом принимают, что, если улучшение какого-то критерия потребует ухудшения хотя бы одного из остальных, оптимум достигнут, т.е для выбора наилучшего варианта решения необходим компромисс между оценками по различным критериям.

Наиболее важный из способов классификации — по роли лица принимающего решения (ЛПР). В этом случае методы поддержки принятия решений в задачах многокритериальной оптимизации принято классифицировать следующим образом:

- 1. методы поиска решения без участия ЛПР;
- 2. методы, использующие предпочтения ЛПР для построения правила выбора единственного или небольшого числа парето-эффективных решений;
 - 3. итеративные процедуры решения задачи с участием ЛПР;
- 4. методы, основанные на аппроксимации паретовой границы и информировании ЛПР о ней в том или ином виде; далее ЛПР указывает наиболее предпочтительную критериальную точку на паретовой границе; по этой критериальной точке находят предпочтительное решение.

Методы первых двух групп основываются на построении решающего правила, т.е. правила нахождения одного или нескольких решений из допустимого множества. Отличие первой группы методов от второй состоит в том, что в первой группе решающее правило строится без участия ЛПР, а в методах второй группы используется информация о предпочтениях ЛПР.

Методы поиска решения без участия ЛПР

Методы поиска решения без участия ЛПР строятся на основе использования либо некоторой аксиоматики, либо эвристических принципов. В эвристических подходах обычно предлагается выбрать скалярный критерий оптимизации, не привлекая ЛПР к решению этой проблемы. Обоснование выбора критерия оптимизации базируется на более или менее логичном содержательном

объяснении того, почему в качестве него выбирается та или иная функция. Далее на основе оптимизации этой функции находится одно из допустимых решений и предъявляется ЛПР как наиболее подходящее. Если ЛПР соглашается с найденным решением, оно считается наилучшим. Встречаются, например, такие скалярные критерии, как

- 1) $U(y) = \sum_i y_i$;
- 2) $U(y) = min_i(y_i)$;
- 3) $U(y) = \sum_{i} \ln y_i$;
- 4) U(y) = -p(y', y''), где p(y', y'') каким-то образом определенное расстояние между критериальными точками y' и y''.

Эти функции обычно используются в том случае, когда критерии задачи имеют одинаковую размерность. В противном случае величины требуется предварительно сделать безразмерными.

Надо отметить, что методы принятия решений без участия ЛПР не подходят для использования в системах поддержки принятия решений,поскольку устраняют ЛПР из этого процесса. В то же время, такие методы могут быть приемлемы для ЛПР, не желающего нести ответственность за негативные последствия принимаемого решения.

<u>Методы, использующие предпочтения ЛПР при построении решающего</u> правила

Наиболее распространенным подходом к построению решающего правила на основе предпочтений ЛПР является построение функции полезности (ценности), полностью отражающей предпочтения ЛПР по отношению к величинам частных критериев. В таком случае поиск решения сводится к нахождению допустимого решения, которое максимизирует значение функции полезности.

В связи со сложностью теоретически обоснованных процедур построения функции полезности, рассмотрим подходы построения решающего правила, используемые в практике МКО.

Целевой подход

Целевой подход основан на том, что лицо, принимающее решение, должно назначить цель — некоторую критериальную точку $\hat{}$ у, отражающую его желания. В задачах многокритериальной максимизации рассматривается конус точек, удовлетворяющих требованиям ЛПР . В качестве функции полезности используется функция $U(y) = -\rho(y, Z)$, где $\rho(y, Z)$ — отклонение точки y от Z. Решающее правило состоит в выборе допустимого решения, минимизирующего $\rho(y, Z)$ на множестве Y = f(X), т.е. решения, последствия которого наиболее близки к конусу точек, удовлетворяющих требованиям ЛПР , в смысле используемого понятия отклонения от конуса. Достоинством подхода является его простота — от ЛПР требуется лишь один раз указать цель, после чего автоматически находится решение. С другой стороны, если последствия найденного решения далеки от цели, это может вызвать недовольство у ЛПР. Кроме того, если целевая точка сильно отклоняется от совокупности достижимых критериальных векторов, полученное решение больше зависит от того, какая функция $\rho(y, Z)$ используется, чем от самой цели.

Благодаря своей простоте целевой подход является наиболее распространенным методом MKO.

Использование линейных функций полезности

Зачастую исследователи вместо построения сложных нелинейных функций полезности пытаются ограничиться простой линейной сверткой критериев U(y) = $\sum_i c_i y_i$, коэффициенты c_i которой должен указать ЛПР .Эта функция имеет существенные недостатки. Прежде всего, непонятно, почему предпочтения ЛПР простой Функции должны выражаться такой форме. полезности, рассматриваемые в теории многокритериальной полезности, обычно вогнуты, и это отражает существо дела — веса, показывающие важность критериев, должны зависеть от значений самих критериев. При недостаточной величине одного из быть критериев его важность должна велика, полезность несбалансированного набора не может быть большой. Скажем, недостаточную скорость самолета нельзя компенсировать его отличной маневренностью. В линейной же функции малое значение одного критерия всегда можно

компенсировать избыточным значением другого. Поэтому линейные функции могут использоваться только для эффективно-выпуклых задач, в противном же случае часть недоминируемых точек не может быть получена на основе максимизации линейной функции. Из-за этого некоторые недоминируемые критериальные точки, быть может наиболее предпочтительные для ЛПР, остаются за рамками анализа.

Итеративные процедуры решения задачи

Итеративная процедура строится таким образом, что ЛПР анализирует результаты, полученные компьютером на очередной итерации, и высказывает свои предпочтения, которые реализуются в виде параметров задачи, решаемой на следующей итерации. Выделяют следующие категории итерационных процедур:

- 1) Итеративное назначение весов в линейной свертке критериев;
- 2) Лексикографический метод (метод уступок);
- 3) МетодДжоффриона-Дайера-Файнберга;
- 4) Процедура Зайонца-Валлениуса;
- 5) МетодШтойера;
- 6) Методысцелевыми точками;
- 7) МетодSTEМ;
- 8) Метод проектирования на паретову границу
- 9) Методы Корхонена-Лааксо и "Бег по множеству Парето"
- 10) Метод "Шагпо паретовой границе"

Итерационные процедуры продолжаются до тех пор, пока ЛПР не будет удовлетворен полученной критериальной точкой или не будет выполнено иное правило остановки.

Методы информирования ЛПР о паретовой границе

Основным недостатком большинства итерационных методов является отсутствие у ЛПР целостного представления о паретовой границе. В связи с этим ЛПР даже при явно осознаваемых предпочтениях может не понимать, куда и как имеет смысл перемещать текущее решение. Такого недостатка лишены методы, направленные на информирование ЛПР о паретовой границе в целом. В таких

методах ЛПР сначала изучает паретову границу, не высказывая своих предпочтений, и только потом, после осознания потенциальных возможностей выбора и связи между возможными значениями критериев, выражает свои предпочтения — указывает предпочтительную точку паретовой границы. Если требуется, ЛПР может выбрать несколько "интересных" точек паретовой границы и получить несколько решений для дальнейшего детального анализа. Для реализации этого подхода требуется разработать методы аппроксимации паретовой границы и способы информирования ЛПР об этой границе.

Выводы по главе 1

На основании рассмотренных в 1.2 и 1.3 подходов и методов управления режимами ГЭС можно отметить следующие нерешенные задачи:

- 1) В работах по оптимизации режимов энергосистем, включающих ГЭС, рассмотрены только модели с детерминированными исходными данными. Для учета стохастической природы в исследованиях рассматриваются различные методы прогнозно-ситуационного планирования и диспетчерского управления. Однако такие методы не позволяют обоснованно и точно определить режим ГЭС в целях долгосрочного планирования.
- 2) В работах по рациональному использованию водных ресурсов и согласованию стратегий водопользования рассмотрены стохастические модели, однако исследования ограничены рассмотрением функций эффективности качестве показателя эффективности некоторых процессов и в выбраны экономические показатели. В качестве унифицированных показателей эффективности, выбранных в 1.1 процессов, экономические показатели не подходят, так как отсутствуют точные связи технологических требований и экономической эффективности процессов.
- 3) Стохастические модели, описывающие риски нарушения требований, целесообразно формировать на основании методологии гарантированного водопользования. Однако методология ограничена рассмотрением только требований поддержания минимальных параметров, в то время как существуют и

требования не превышения максимальных параметров (максимальный расход воды или максимальные перетоки мощности в энергосистеме).

4) В рассматриваемых работах критерии оптимальности режимов работы ГЭС определялись в зависимости от научного направления, в котором проводились исследования. В то время как в регламентирующих документах [4, 26] продиктован принцип равноправного использования водных ресурсов.

На основании изложенных нерешенных задач сформулируем направления совершенствования методов и алгоритмов управления режимами ГЭС:

- 1) Формирование методики оптимального управления режимами ГЭС, учитывающей принцип равноправного использования водных ресурсов.
- 2) Разработка математической модели оптимизации режимов работы ГЭС, целевая функция управления в которой должна отражать минимум отклонений от оптимальных показателей эффективности каждой задачи, описанной в 1.1.
- 3) Разработка методики расчета показателей эффективности, учитывающей исходные параметры стохастической природы. При этом необходимо усовершенствовать методологию гарантированного водопользования для расчета показателей рисков нарушения требований на максимальные параметры.

2. РАЗРАБОТКА МЕТОДИКИ ОЦЕНКИ ЭФФЕКТИВНОСТИ РЕЖИМОВ РАБОТЫ ГИДРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ

С учетом выявленных в 1.3 актуальных направлений совершенствования методов и алгоритмов управления режимами гидроэлектростанций, а также описания задач планирования режимов гидроэлектростанций сформулируем принципы оценки эффективности режимов работы гидроэлектростанций.

Точно оценивать режим работы, если он зависит от множества других процессов, целесообразно в рамках единого поля показателей эффективности. Для поставленных в 1.1. задач планирования режимов гидроэлектростанций имеется несколько областей или векторов оценки эффективности, каждый из которых соответствует определенным отраслевым требованиям и имеет свои единицы измерения. Некоторые единицы измерения векторов одинаковы по характеру, например, вероятность нарушения того или иного ограничения в относительных единицах, поэтому, полагая что все нарушения имеют равный или какой-то заданный приоритет, их возможно сравнивать друг с другом. Однако присутствуют и несопоставимые единицы измерения, такие как выработка электроэнергии в кВт · ч и вероятности нарушения в о.е. Имея несопоставимые критерии, возможно решать оптимизационную методами задачу многокритериальной оптимизации или скалярной оптимизации, преобразовав критерий максимальной выработки электроэнергии в критерий, выраженный в относительных единицах, например критерий минимального отклонения от максимальной выработки.

Для преобразования критерия максимальной выработки электроэнергии в критерий минимального отклонения от максимальной выработки необходимо предварительно рассчитать водно-энергетический режим, при котором обеспечивается максимальная выработка электроэнергии без учета требований других водопользователей, и в дальнейшем сравнивать его с результатом расчета.

Далее опишем алгоритмы расчета отраслевых, функций, соответствующих поставленным задачам планирования режимов гидроэлектростанций [106].

2.1. Алгоритмы расчета рисков нарушения требований

Риски нарушения требования определяется вероятностью притока воды, при котором некоторого запаса (запаса объема гидроресурсов или запаса объема до максимального уровня водохранилища) станет недостаточно для обеспечения тех или иных требований водопользователей.

Особенность в том, что риски зависят только от параметров системы на момент планирования. Например, рассчитывается режим гидроэлектростанции на некоторый период. При этом основным параметром будет являться запас гидроресурсов на начало периода. Учитывая, что характерных расчетных интервалов внутри периода может быть несколько, необходимо рассматривать риски для возможных комбинаций интервалов. Комбинация по сути выражается в учете интервалов нарастающим итогом. Например, рассматривая период 5 месяцев, расчетные интервалы должны соответствовать таблице 2.1.

Таблица 2.1 - Расчетные интервалы для периода равного 5 месяцам

T ₁				
$T_1 + T_2$	T ₂			
$T_1 + \cdots + T_3$	$T_1 + T_3$	T ₃		
$T_1 + \cdots + T_4$	$T_1 + \cdots + T_4$	$T_1 + T_4$	T ₄	
$T_1 + \cdots + T_5$	$T_1 + \cdots + T_5$	$T_1 + \cdots + T_5$	$T_1 + T_5$	T ₅

В результате расчета рисков нарушения требований в соответствии с заданным количеством интервалов, аналогично таблице 2.1, получается некоторая матрица показателей. Например, рассматривая период 5 месяцев, риски должны соответствовать таблице 2.2.

 $\begin{array}{|c|c|c|c|c|c|}\hline R(T_1) & & & & & & \\ R(T_1+T_2) & R(T_2) & & & & \\ \hline R(T_1+\cdots+T_3) & R(T_1+\cdots+T_3) & R(T_3) & & & \\ \hline R(T_1+\cdots+T_4) & R(T_1+\cdots+T_4) & R(T_1+\cdots+T_4) & R(T_4) & & \\ \hline \end{array}$

 $R(T_1 + \dots + T_5) R(T_1 + \dots + T_5) R(T_1 + \dots + T_5) R(T_1 + \dots + T_5) R(T_5)$

Таблица 2.2 - Риски для периода равного 5 месяцам

Для применения в оптимизационных методах необходимо определять значение некоторого комплексного показателя из представленной таблицы (далее комплексный риск) в зависимости от запасов гидроресурсов на начало каждого интервала. Для рассматриваемой задачи интерес представляют предельные значения рисков, т.е. из таблицы 2.2 необходимо выбрать максимальные или минимальные (в случае использования показателей надежности) значения.

Далее в разделе рассмотрим методику расчета показателей рисков в отдельности. В связи с применением стохастических моделей и методов оптимизации также рассмотрим математическое представление исходных данных.

2.1.1. Модель притока воды в водохранилища ГЭС

Модель притоков водных ресурсов, которая является одной из основных случайных величин в рассматриваемых моделях, обычно выражается функцией обеспеченности (вероятности превышения) приточности.

$$p = f(W_{\text{np}}) \tag{2.1}$$

где p – обеспеченность некоторого объема годового притока $W_{\rm np}$.

Для определения модели оценки рисков будем использовать следующие функции распределения притоков воды: вероятность превышения некоторого объема притока воды p^+ , вероятность не превышения некоторого объема притока воды p^- .

Функции распределения вероятности превышения строятся ПО статистическим данным приточности рек в соответствии с [34]. Вероятность превышения определяется по формуле

$$p = \frac{m}{n+1} \tag{2.2}$$

где m — порядковый номер члена ряда,

n — общее число членов ряда.

Для построения зависимости p^+ необходимо сформировать статистический ряд в порядке убывания, и соответственно для построения зависимости p^- - в порядке возрастания.

В результате зависимости будут иметь вид, представленный в таблице 2.3. Таблица 2.3 - Эмпирическая функция распределения вероятности f(W)

W	W_1	 W_i	
p	p_1	 p_i	

В гидрологии редко имеются данные по длительному наблюдению за стоком водотоков. Для получения нужных значений приходится экстраполировать ход эмпирической кривой обеспеченности в областях крайних значений или интерполировать между имеющимися значениями, что уменьшает точность расчетов. В настоящее время в водохозяйственной и гидроэнергетической практике для преобразования эмпирической функции распределения вероятности [14, 33] в аналитическую функцию используются двух – и трехпараметрическое гамма-распределения. Наибольшее распространение в гидрологии получило трехпараметрическое гамма-распределение Крицкого—Менкеля [27, 28, 34], которое имеет следующий вид:

$$p(x; x_0, \gamma, b) = \left[\frac{\Gamma(\gamma + b)}{\Gamma(\gamma)}\right]^{\gamma/b} \frac{1}{\Gamma(\gamma) \cdot |b| \cdot x_0} \left(\frac{x}{x_0}\right)^{\frac{\gamma}{b} - 1} \cdot exp\left\{-\left[\frac{x}{x_0} \cdot \frac{\Gamma(\gamma + b)}{\Gamma(\gamma)}\right]^{\frac{1}{b}}\right\}$$
(2.3)

где x_0 – центр (среднее) распределения;

 γ и b — параметры, каждому сочетанию которых соответствуют определенные значения коэффициента изменчивости \mathcal{C}_v и коэффициента асимметрии \mathcal{C}_s ;

 $\Gamma(\gamma)$ — символ гамма-функции (интеграла Эйлера II рода) $\Gamma(\gamma) = \int_0^\infty t^{\gamma-1} \cdot e^{-t} dt$, где t — переменная, исключаемая подстановкой пределов интегрирования).

Коэффициенты изменчивости C_v и асимметрии C_s выражаются через параметры γ и b следующими выражениями:

$$C_v = \left[\frac{\Gamma(\gamma)\Gamma(\gamma + 2b)}{\Gamma^2(\gamma + b) - 1}\right]^{0.5}$$

$$C_{S} = \left[\frac{\Gamma^{2}(\gamma)\Gamma(\gamma+3b)}{\Gamma^{3}(\gamma+b)} - \frac{3\Gamma(\gamma)\Gamma(\gamma+2b)}{\Gamma^{2}(\gamma+b)} + 2 \right] / \left[\frac{\Gamma(\gamma)\Gamma(\gamma+2b)}{\Gamma^{2}(\gamma+b)} - 1 \right]^{1,5}$$

Также отметим, что при определении рисков нарушения необходимо будет рассчитывать вектор рисков, размерность которого соответствует количеству интервалов. Поэтому функция обеспеченности годового объема притока воды подходит только для расчета рисков нарушения на год вперед. Для меньших временных интервалов необходимо иметь функцию обеспеченности, соответствующую определенному внутригодовому распределению.

2.1.2. Алгоритм расчета риска нарушения минимальных попусков для целей водоснабжения

Попуск или расход для целей водоснабжения это некоторый минимальный (обычно его называют базовым) расход, который должен обеспечиваться постоянно. Выразить зависимость расхода гидроэлектростанции от притока возможно через водный баланс в водохранилище.

$$W_{Z_{\rm RFo}} + W_{\rm IID} - W_{\rm HF} - W_{Z_{\rm RFe}} = 0 (2.4)$$

где $W_{Z_{\rm B50}}$ — объем водохранилища на момент начала расчетного периода,

 $W_{\rm np}$ – объем притока воды в водохранилище,

 $W_{\mathrm{H}\mathrm{B}}$ – объем стока из водохранилища,

 $W_{Z_{\rm BEK}}$ - объем водохранилища на момент конца расчетного периода, который для водохранилищ годового и сезонного регулирования обычно равен объему, соответствующему «уровню мертвого объема» или «уровню предполоводной сработки».

В представленном водном балансе все возможные потери воды из водохранилища не учитываются в связи с не высокой значимостью на результат исследований.

Мгновенный расход в нижний бьеф гидроэлектростанции связан с объемом стока из водохранилища следующим соотношением:

$$Q_{\rm HB} = \frac{W_{\rm HB} \cdot 10^9}{T} \tag{2.5}$$

где T — время расчётного периода, выраженное в секундах.

Ограничение расхода воды в нижний бьеф обозначим $Q_{\rm вод}$ и введем запас расхода воды, соответствующий разнице расходов $Q_{\rm H \bar b}$ и $Q_{\rm вод}$.

$$Q_{3\mathrm{a}\Pi} = Q_{\mathrm{H}\mathrm{B}} - Q_{\mathrm{B}\mathrm{O}\mathrm{J}} \tag{2.6}$$

Событие нарушения минимального расхода в нижний бьеф $Q_{\rm Bod}$ возникнет тогда, когда запас расхода воды $Q_{\rm 3an}$ станет меньше или равно нулю.

$$Q_{3a\pi} \leq 0$$

В связи с тем, что приток воды в водохранилище $W_{\rm np}$ случайная величина, необходимо определить зависимость $Q_{\rm 3an}$ от $W_{\rm np}$ и вероятности не превышения p^- .

$$Q_{\text{зап}} = \frac{(W_{Z_{\text{BE}0}} - W_{Z_{\text{BE}K}} + W_{\text{пр}}) \cdot 10^9}{T} - Q_{\text{вод}} \le 0$$
 (2.7)

Для определения вероятности, при которой может произойти нарушение ограничения $Q_{\rm вод}$, приравняем выражение (2.7) к нулю, выразим $W_{\rm пр}$ и по

зависимости $p^-=f(W_{\rm пp})$ рассчитаем риск нарушения требований водоснабжения $R_{Q_{\rm вол}}.$

$$R_{Q_{\text{вод}}} = p^{-} \left(\frac{Q_{\text{вод}} \cdot T}{10^{9}} - \left(W_{Z_{\text{B}50}} - W_{Z_{\text{B}5\text{мин}}} \right) \right)$$
 (2.8)

При этом может произойти, что $R_{Q_{\text{вод}}}$ получится меньше нуля. Это может произойти, если зависимость $Q_{\text{зап}}(p)$ не пересекает ось абсцисс. В таких случаях ограничим возможные значения внутри $0 \le R_{Q_{\text{вод}}} \le 1$.

2.1.3. Алгоритм расчета риска нарушения минимальных навигационных попусков

Особенностью требований водного транспорта является поддержание определенного уровня расходов в течение некоторого периода времени, называемого навигационным периодом. Поэтому необходимо учитывать, что общий расчетный период T разбивается на навигационный $T_{\rm нав}$ и остальной равный $T-T_{\rm нав}$, в котором необходимо обеспечивать другой минимальный расход, например, для целей водоснабжения.

Основываясь на уравнениях (2.5) – (2.9), выразим риск нарушения навигационных требований.

$$R_{Q_{\text{HAB}}} = p^{-} \left(\frac{Q_{\text{HAB}} \cdot T_{\text{HAB}} + Q_{min} \cdot (T - T_{\text{HAB}})}{10^{9}} - \left(W_{Z_{\text{BE0}}} - W_{Z_{\text{BEMUH}}} \right) \right)$$
(2.9)

где $Q_{\text{нав}}$ – расход, обеспечивающий требования навигации,

 Q_{min} — расход, соответствующим другим ограничениям в ненавигационный период.

Выражения (2.9) и (2.10) описывают риски, которые можно разделить на ограничения, действующие постоянно, и на ограничения, которые действуют в течении некоторого определенного периода. В соответствии с этими признаками выражения (2.9) и (2.10) можно использовать для оценки рисков, связанным с обеспечением попусков для целей орошения, сплава древесины, разбавления сточных вод и д.р., в зависимости от особенностей конкретных условий.

2.1.4. Алгоритм расчета риска нарушения уровненного режима в нижнем бъефе

В некоторых случаях требования навигации, сплава древесины и д.р. могут быть выражены в виде минимально допустимых уровней в контролируемых водпостах. В этих случаях необходимо дополнить математическую модель уравнениями связи расходов гидроэлектростанции и уровней в контролируемых водпостах.

Определить уровни в конкретном створе возможно на основании зависимости типа Z = f(Q), в которой Q это расход воды в этом же конкретном створе, а сама функция представляет характеристику рельефа местности. Поэтому необходимо представить зависимость расходов в створе контролируемого водпоста и створа гидроэлектростанции. В связи с законом о неразрывности потоков воды [35, 94], эта зависимость представляется в виде:

$$Q_{\rm BH} = Q_{\rm DC} + Q_{\rm for} \tag{2.10}$$

где $Q_{\rm BH}$ – расход воды в створе водпоста,

 $Q_{
m rэc}$ — расход воды гидроэлектростанции,

 $Q_{
m 60k}$ — боковой приток воды от гидроэлектростанции до водпоста.

$$Q_{\text{бок}} = W_{\text{бок}} \cdot 10^9 /_T$$
, $W_{\text{бок}} = f(p)$ (2.11)

Из соотношения (2.12) видно, что боковой приток воды также является случайной величиной, и также может быть описан функциями p^- и p^+ .

Ограничение по уровню водпоста обозначим Z_{min} и введем запас уровня воды, соответствующий разнице уровней $Z_{\rm BII}$ и Z_{min} .

$$Z_{3\mathrm{a}\Pi} = Z_{\mathrm{B}\Pi} - Z_{min} \tag{2.12}$$

Событие нарушения минимального уровня по водпосту Z_{min} возникнет тогда, когда запас уровня воды $Z_{\rm san}$ станет меньше или равно нулю.

$$Z_{\rm 3an} \leq 0$$

Выразив запас уровня воды можно увидеть, что он зависит от двух случайных величин $W_{\rm np}$ и $W_{\rm 60 \kappa}$.

$$Z_{3a\pi} = f\left(\frac{(W_{Z_{BE0}} - W_{Z_{BEK}} + W_{\pi p} + W_{6oK}) \cdot 10^9}{T}\right) - Z_{min} \le 0$$
 (2.13)

Поэтому для выражения риска нарушения уровня по водпосту $R_{Z_{\rm BII}}$ необходимо определить функцию распределения случайных величин $W_{\rm пр}$ и $W_{\rm 60 \kappa}$.

Для определения вероятности, при которой может произойти нарушение ограничения Z_{min} , приравняем выражение (2.14) к нулю, выразим $W_{\rm np}+W_{\rm 60k}$ и по зависимости $p^-=f(W_{\rm np}+W_{\rm 60k})$ рассчитаем риск нарушения требований водоснабжения $R_{Z_{\rm BR}}$.

$$R_{Z_{\text{BH}}} = p^{-} \left(\frac{f^{-1}(Z_{min}) \cdot T}{10^{9}} - \left(W_{Z_{\text{BE0}}} - W_{Z_{\text{BEMUH}}} \right) \right)$$
 (2.14)

2.1.5. Алгоритм расчета риска нарушения максимальных попусков

Ограничение расхода воды в нижний бьеф обозначим Q_{max} и введем запас расхода воды, соответствующий разнице расходов Q_{max} и $Q_{\rm HB}$.

$$Q_{3\mathrm{a}\Pi} = Q_{max} - Q_{\mathrm{H}\mathrm{B}} \tag{2.15}$$

Событие нарушения максимального расхода в нижний бьеф Q_{max} возникнет тогда, когда запас расхода воды $Q_{\rm 3an}$ станет меньше или равен нулю.

$$Q_{3\mathrm{a}\Pi} = Q_{max} - Q_{\mathrm{H}\mathrm{B}} \le 0 \tag{2.16}$$

Для определения вероятности, при которой может произойти нарушение ограничения Q_{max} , приравняем выражение (2.17) к нулю, выразим $W_{\rm np}$ и по зависимости $p^+ = f(W_{\rm np})$ рассчитаем риск нарушения требований водоснабжения $R_{Q_{max}}$.

$$R_{Q_{max}} = p^{+} \left(\frac{Q_{max} \cdot T}{10^{9}} + \left(W_{Z_{BE}max} - W_{Z_{BE}0} \right) \right)$$
 (2.17)

2.1.6. Алгоритм расчета риска обеспечения баланса электроэнергии в энергосистеме

Баланс электроэнергии в энергосистеме выражается в следующем соотношении

$$E_{\rm r} + E_{\rm cn} - E_{\rm norp} = 0 \tag{2.18}$$

где E_{Γ} – выработка электроэнергии на электростанциях,

 $E_{\rm cn}$ — сальдо-переток электроэнергии по межсистемным линиям электропередач,

 $E_{\text{потр}}$ – потребление электроэнергии.

Выработку электроэнергии на электростанциях можно представить выработкой групп электростанций в соответствии с видом используемого топлива или, выделив выработку гидроэлектростанций от остальных, что представляется более целесообразным в рамках исследования.

$$E_{\Gamma} = E_{T \ni C} + E_{\Gamma \ni C} + E_{A \ni C} + E_{B \ni C} = E_{\Gamma \ni C} + E_{Ap}$$
 (2.19)

Выработку электроэнергии на гидроэлектростанции можно представить классической формулировкой или упрощенной, через удельный расход.

$$E_{\Gamma \ni C} = 9.81 \cdot H \cdot Q_{T} \cdot \eta \cdot T = Q_{T} \cdot q \cdot T \tag{2.20}$$

Расход через турбины $Q_{\rm T}$ связан с расходом в нижний бьеф $Q_{\rm H ar 6}$ следующим соотношением:

$$Q_{\mathrm{T}} + Q_{\mathrm{x.c6p}} = Q_{\mathrm{H6}} \tag{2.21}$$

Расход в нижний бьеф $Q_{\rm Hб}$ определяется по водному балансу (2.5) и (2.6).

Удельный расход определяется по расходу в нижний бьеф $Q_{\rm H6}$ и среднему уровню водохранилища, который является функцией от среднего объема водохранилища $(W_{Z_{\rm B60}} + W_{Z_{\rm B6k}})/2$.

Особенностью данной задачи, является то, что условие обеспечения баланса является строгим равенством, обеспечения которого выработка гидроэлектростанций $E_{\Gamma \ni C}$ должна находиться в некотором диапазоне.

Границы диапазона $E_{\Gamma \ni C}$, при котором обеспечивается баланс определим из выражения (2.16):

$$E_{\text{rэc}}^{max} = E_{\text{потр}} - E_{\text{др}}^{min} - E_{\text{сп}}^{max}$$

$$E_{\text{rэc}}^{min} = E_{\text{потр}} - E_{\text{др}}^{max} - E_{\text{сп}}^{max}$$

$$(2.22)$$

Выразим $E_{r \ni c}^{max}$ и $E_{r \ni c}^{min}$ через приток воды

$$\begin{pmatrix} \frac{(W_{Z_{\text{BE0}}} - W_{Z_{\text{BEK}}} + W_{\text{пр}}) \cdot 10^{9}}{T} - Q_{\text{x.c6p}} \end{pmatrix} \cdot q \cdot T = E_{\text{потр}} - E_{\text{др}}^{min} - E_{\text{сп}}^{max} \\
\begin{pmatrix} \frac{(W_{Z_{\text{BE0}}} - W_{Z_{\text{BEK}}} + W_{\text{пр}}) \cdot 10^{9}}{T} - Q_{\text{x.c6p}} \end{pmatrix} \cdot q \cdot T = E_{\text{потр}} - E_{\text{др}}^{max} - E_{\text{сп}}^{max} \end{pmatrix} (2.23)$$

Выразим $W_{\rm пр}$ и по зависимости $p^- = (W_{\rm пp})$ рассчитаем риск нарушения требований обеспечения баланса электроэнергии $R_{\mathfrak{I}_6}$ как $min(R_{\mathfrak{I}_{6max}}; R_{\mathfrak{I}_{6min}})$.

$$R_{\mathfrak{I}_{6max}} = p^{+} \left(\frac{E_{\Pi \text{OTP}} - E_{Z\Pi}^{min} - E_{C\Pi}^{max}}{q \cdot 10^{9}} + \frac{Q_{\text{x.c6p}} \cdot T}{10^{9}} - \left(W_{Z_{\text{BEMAKC}}} - W_{Z_{\text{BE0}}} \right) \right)$$

$$R_{\mathfrak{I}_{6min}} = p^{-} \left(\frac{E_{\Pi \text{OTP}} - E_{Z\Pi}^{max} - E_{C\Pi}^{max}}{q \cdot 10^{9}} + \frac{Q_{\text{x.c6p}} \cdot T}{10^{9}} - \left(W_{Z_{\text{BE0}}} - W_{Z_{\text{BEMUH}}} \right) \right)$$
(2.24)

2.1.7. Алгоритм расчета риска нарушений максимально допустимых перетоков мощности в контролируемых сечениях

Сечение — совокупность таких сетевых элементов одной или нескольких связей, отключение которых приводит к полному разделению энергосистемы на две изолированные части. Применяется также понятие «частичное сечение» как совокупность сетевых элементов (часть сечения), отключение которых к делению энергосистемы на две изолированные части не приводит [3].

При решении задачи определения риска нарушения максимально допустимых перетоков по контролируемым сечениям возможно использовать

методику, основанную на расчете балансов мощности в частях энергосистемы, ограниченной сечениями.

Баланс мощности в частях энергосистемы, ограниченной сечениями

$$P_{\Gamma \ni C} + P_{\mu p} - P_{\text{norp}} \pm P_{c\pi} = 0 \tag{2.25}$$

Знак $\pm P_{\rm cn}$ определяется направлением перетока мощности, на который накладывается ограничения. + в энергосистему, - из нее.

Событие нарушения максимально допустимого перетока по контролируемому сечению $P_{\rm cn}^{max}$ возникнет тогда, когда запас мощности воды $P_{\rm 3an}$ станет меньше или равно нулю.

$$P_{3\mathrm{a}\Pi} = P_{\mathrm{c}\Pi}^{max} - P_{\mathrm{c}\Pi} \ge 0 \tag{2.26}$$

Для определения вероятности, при которой может произойти нарушение ограничения $P_{\text{сп}}^{max}$, приравняем выражение (2.27) к нулю, выразим $W_{\text{пр}}$ и по зависимости $p^+ = f(W_{\text{пр}})$ рассчитаем риск нарушения требований $R_{\text{МДП}}$.

$$R_{\text{МДП}} = p^+ \left(\left(\frac{P_{\text{сп}}^{max} - P_{\text{потр}} - P_{\text{др}}^{min}}{q} + Q_{\text{х.сбр}} \right) \cdot \frac{T}{10^9} - \left(W_{Z_{\text{ВБмакс}}} - W_{Z_{\text{ВБо}}} \right) \right)$$
 (2.27)

Основным недостатком такой методики является невозможность расчета рисков превышения максимально допустимых перетоков по «частичным» сечениям. Поэтому опишем алгоритм расчета рисков превышения максимально допустимых перетоков сечениям, состоящим из произвольного количества элементов электрической сети, основанном на применении матриц чувствительности [11, 31, 32, 36, 45, 76, 96, 100, 101], расчет которых описан в 3.2.3.4.

Матрица чувствительности установившегося режима определяет коэффициенты связи между изменениями мощности узлов генерации $dP_{\Gamma \supset C}$ и изменениями напряжений в узлах электрической сети. Имея изменения напряжений в узлах электрической сети возможно рассчитать изменения

перетоков мощности во всех ветвях математической модели электрической сети $dP_{\mathrm{KC}}.$

В соответствии с 2.27 рассчитаем запас по сечению $P_{\text{зап}}$. Далее рассчитаем при какой мощности генерации $P_{\Gamma \ni C}$ запас по сечению станет равным нулю.

$$P^{1}_{\Gamma \ni C} = P^{0}_{\Gamma \ni C} + \frac{dP_{\Gamma \ni C}}{dP_{KC}} \cdot P_{3a\pi}$$
 (2.28)

Для определения вероятности, при которой может произойти нарушение ограничения $P_{\text{кс}}^{max}$, выразим $W_{\text{пр}}$ и по зависимости $p^+ = f(W_{\text{пр}})$ рассчитаем риск нарушения требований $R_{\text{МДП}}$.

$$R_{\text{МДП}} = p^+ \left(\left(\frac{P^1_{\Gamma \ni C}}{q} + Q_{\text{х.сбр}} \right) \cdot \frac{T}{10^9} - \left(W_{Z_{\text{ВБмакс}}} - W_{Z_{\text{ВБ0}}} \right) \right)$$
 (2.29)

2.2. Особенности расчета рисков нарушений требований для каскада ГЭС

Рассмотрим особенности расчета рисков нарушения требований на примере Ангаро-Енисейского каскада ГЭС. Ангаро-Енисейского каскад ГЭС включает семь гидроэлектростанций, из которых Саяно-Шушенская ГЭС, Маинская ГЭС и Красноярская ГЭС находятся на р. Енисей и Иркутская ГЭС, Братская ГЭС, Усть-Илимская ГЭС и Богучанская ГЭС находятся на р. Ангара [20, 21].

В связи с расположением на одной реке гидроэлектростанции оказываются зависимы по водному режиму между собой, т.е. попуск вышележащей гидроэлектростанции является притоком в водохранилище нижележащей. Поэтому при расчете тех или иных рисков или возможностей необходимо рассчитывать общий приток от верхнего водохранилища до рассматриваемого водохранилища. На этом основании рассмотрим схему учета притоков воды и объемов водохранилищ в расчетах для гидроэлектростанций отдельно Енисейского и Ангарского каскадов.

Енисейский каскад гидроэлектростанций.

При расчете режима Саяно-Шушенской ГЭС должен учитываться приток воды в собственное водохранилище (Wпр1.1 на рис.2.1) и его полезный объем, так как это первая гидроэлектростанция в каскаде. В качестве параметра, характеризующего режим работы гидроэлектростанции, выберем попуск воды и выразим его через приток и объем.

$$W_{\text{сшгэс}} = W_{\text{пр1.1}} \pm \Delta W_{1.1} \tag{2.30}$$

где $\Delta W_{1,1}$ – объем воды в водохранилище Саяно-Шушенской ГЭС.

При расчете рисков нарушений требований водопользователей характер ΔW может иметь разное значение. Например, при расчете рисков нарушений минимальных расходов учитывается объем водохранилища равный разнице объема при текущей отметке и минимального объема (УМО или УПС) и в уравнении $2.31~\Delta W$ имеет знак плюс, так как имеется ввиду возможность использования этого объема в качестве объема сработанной воды. При расчете рисков нарушений максимальных расходов учитывается объем водохранилища равный разнице максимального объема (НПУ) и объема при текущей отметке и в уравнении $2.31~\Delta W$ имеет знак минус, так как имеется ввиду возможность использования этого объема для наполнения.

При расчете режима Красноярской ГЭС должен учитываться приток воды равный сумме бокового притока воды от створа Саяно-Шушенской ГЭС до створа Красноярской ГЭС (Wпр1.2 на рис. 2.1) и попуска воды Саяно-Шушенской ГЭС (Wсшгэс на рис. 2.1).

$$W_{\text{Krэc}} = W_{\text{пр1.2}} + W_{\text{сшгэс}} \pm \Delta W_{1.2}$$
 (2.31)

Подставим уравнение 2.31 в уравнение 2.32, получим выражение попуска воды Красноярской ГЭС через притоки и объемы водохранилищ.

$$W_{\text{Krgc}} = W_{\text{пр1.1}} + W_{\text{пр1.2}} \pm (\Delta W_{1.1} + \Delta W_{1.2})$$
 (2.32)

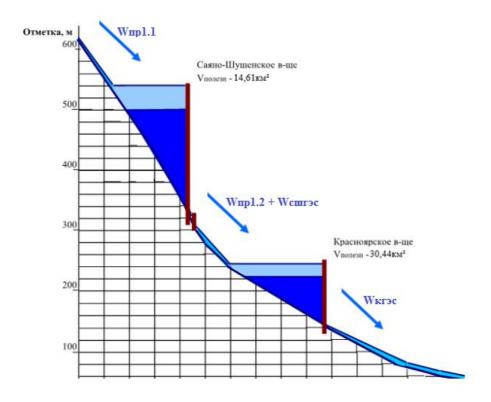


Рисунок 2.1 - Схема расположения гидроэлектростанций в Енисейском каскаде

На основании выражений в уравнениях 2.31 и 2.33, можно определить зависимость попуска воды от притока и объема водохранилищ, входящих в один каскад, в общей форме:

$$W_i = \sum_{1}^{i} W_{\text{np}i} \pm \sum_{1}^{i} \Delta W_i \tag{2.33}$$

где i — номер гидроэлектростанции в каскаде.

Ангарский каскад гидроэлектростанций.

На основании расположения гидроэлектростанций в каскаде, изображенным на рисунке 2.2, и уравнения 2.34 выразим попуски гидроэлектростанций через притоки воды и объемы водохранилищ.

Иркутская ГЭС:

$$W_{\text{Unrac}} = W_{\text{un2.1}} \pm \Delta W_{2.1} \tag{2.34}$$

Братская ГЭС:

$$W_{\text{fprəc}} = W_{\text{np2.1}} + W_{\text{np2.2}} \pm (\Delta W_{2.1} + \Delta W_{2.2}) \tag{2.35}$$

Усть-Илимская ГЭС:

$$W_{\text{уигэс}} = W_{\text{пр2.1}} + W_{\text{пр2.2}} + W_{\text{пр2.3}} \pm (\Delta W_{2.1} + \Delta W_{2.2} + \Delta W_{2.3})$$
 (2.36)

Богучанская ГЭС:

$$W_{\rm forsc} = W_{\rm np2.1} + W_{\rm np2.2} + W_{\rm np2.3} + W_{\rm np2.4} \pm (\Delta W_{\rm 2.1} + \Delta W_{\rm 2.2} + \Delta W_{\rm 2.3} + \Delta W_{\rm 2.4}) \ (2.37)$$

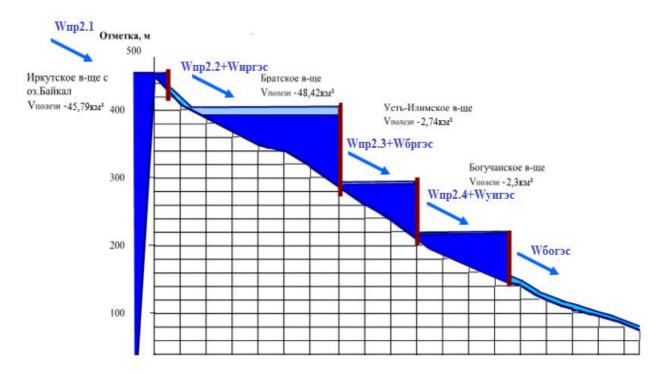


Рисунок 2.2 - Схема расположения гидроэлектростанций в Ангарском каскаде

Помимо связи гидроэлектростанций по водному режиму они все взаимосвязаны электроэнергетическим режимом в составе объединённой электроэнергетической системы Сибири (далее ОЭС Сибири). Расположение гидроэлектростанций на упрощенной структурной схеме изображено на рисунке 3.

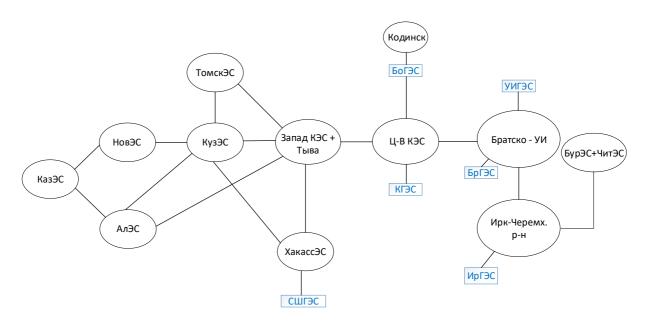


Рисунок 2.3 - Схема расположения гидроэлектростанций Ангаро-Енисейского на упрощенной структурной схеме ОЭС Сибири

Структурная энергорайонов состоит ИЗ эквивалентных схема ИЛИ собой энергосистем, соединенных между эквивалентными линиями. Эквивалентирование производится по принципу выделения районов, внутри передаваемой которых отсутствуют ограничения ПО мощности. Связи энергорайонов представляют сечения, состоящие из одной или нескольких линий электропередач, по которым существует ограничения передаваемой мощности в некоторых режимах. На рисунке 2.4 изображены наименования сечений, по которым осуществляется контроль не превышения допустимых перетоков мощности.

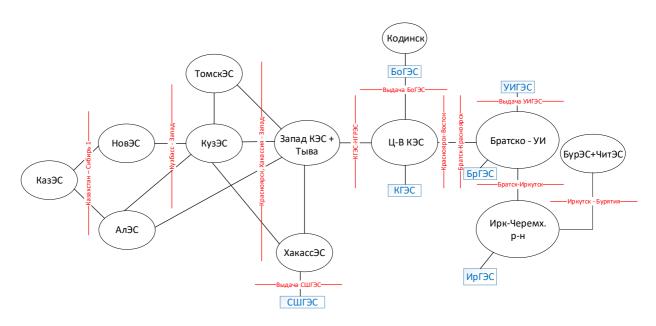


Рисунок 2.4 - Упрощенная структурная схема ОЭС Сибири с нанесенными контролируемыми сечениями

Рассчитывая риски или надежность обеспечения балансов энергорайона отдельно или нескольких объединенных энергорайонов в зависимости от притоков воды в водохранилища гидроэлектростанций и их возможностей необходимо учитывать их связи по водному режиму. Например, рассчитывая баланс «Иркутско-Черемховского» района, в которую из гидроэлектростанций входит только Иркутская ГЭС, необходимо учитывать только приток воды в водохранилище Иркутской ГЭС и его объем в соответствии с уравнением 5. В случае рассмотрения баланса «Братско-Усть-Илимского» района, в которую из гидроэлектростанций входит Братская ГЭС и Усть-Илимская ГЭС, необходимо учитывать не только притоки и объемы этих водохранилищ, но и приток и объем Иркутской ГЭС, так как она является вышележащей в каскаде. Эти особенности выражаются в суммировании уравнений 2.31-2.33 и 2.35-2.38. Также стоит отметить, что при таком суммировании учет вышележащих притоков и объемов происходит несколько раз. Это обуславливается тем, что один и тот же объем воды используется несколько раз на каждой гидроэлектростанции в каскаде.

2.3. Имитационный расчет рисков нарушения требований

В качестве исходных данных примем результаты расчета водноэнергетических режимов в п. 3.2.1 таблице 3.3. Количественные показатели требований обеспечения водоснабжения и водного транспорта представим в виде минимального расхода воды, требования обеспечения надежности энергосистемы представим в виде максимальных перетоков мощности по контролируемым сечениям. Данные представим в таблицах 2.4 – 2.6.

Показатели требований обеспечения водоснабжения предъявляются к каждой ГЭС, в нижнем бъефе которых есть населенный пункты, поэтому в таблице 2.4. представим показатели для каждой ГЭС Ангаро-Енисейского каскада.

Таблица 2.4 - Показатели требований обеспечения водоснабжения

Период	СШГЭС	МГЭС	КГЭС	ИрГЭС	БрГЭС	УИГЭС	БоГЭС
	м ³ /с	M^3/c	M^3/c	M^3/c	M^3/c	M^3/c	M^3/c
01.05	700	700	1800	1300	1000	2000	2000
01.06	700	700	1800	1300	1000	2000	2000
01.07	700	700	1800	1300	1000	2000	2000
01.08	700	700	1800	1300	1000	2000	2000
01.09	700	700	1800	1300	1000	2000	2000
01.10	700	700	1800	1300	1000	2000	2000
01.11	700	700	1800	1300	1000	2000	2000
01.12	700	700	1800	1300	1000	2000	2000
01.01	700	700	1800	1300	1000	2000	2000
01.02	700	700	1800	1300	1000	2000	2000
01.03	700	700	1800	1300	1000	2000	2000
01.04	700	700	1800	1300	1000	2000	2000

Показатели требований обеспечения водного транспорта могут предъявляться к ГЭС, а также к некоторым контролируемым водопостам, расположенным в нижнем бъефе. В связи с тем, что основная часть навигации функционирует на Енисее после Красноярской ГЭС, а также Ангаре после Богучанской ГЭС, в таблице 2.5 представим требования в виде расходов воды, обеспечивающих нормальные уровни по контролируемым водпоста: в/п Красноярск, в/п Енисейск, в/п Богучаны, в/п Татарка. Отметим также, что навигация функционирует с мая по октябрь, однако в связи с тем, что риски оцениваются для всего гидрологического года, дополним остальные месяцы санитарными или бытовыми расходами.

Таблица 2.5 - Показатели требований обеспечения водного транспорта

Период	в/п Красноярск	в/п Енисейск	в/п Богучаны	в/п Татарка
	м ³ /с	M^3/c	M^3/c	M^3/c
01.05	2700	4500	2800	2000
01.06	2900	4500	2800	2800
01.07	3000	5500	2800	2800
01.08	3000	5500	2800	2900
01.09	3000	5500	2800	2900
01.10	2800	5500	2800	2900
01.11	1800	3800	2000	2000
01.12	1800	3800	2000	2000
01.01	1800	3800	2000	2000
01.02	1800	3800	2000	2000
01.03	1800	3800	2000	2000
01.04	1800	3800	2000	2000

Показатели требований обеспечения надежности энергосистем предъявляются к перетокам мощности по контролируемым линиям электропередач или сечениям,

поэтому в таблице 2.6 представим требования в виде максимальных перетоков мощности по основным контроллируемым сечениям ОЭС Сибири.

Таблица 2.6 - Показатели требований обеспечения надежности энергосистемы

Период	Каз	Кузб -	Крск,	Крск -	Крск,	Назаро.	Выдача	КГЭС -
	Сибирь	Запад	Кузб	Запад	Хакас		СШГЭС	НГРЭС
			Запад		Запад			
01.05	1700	1750	2400	2250	3750	1700	5250	1700
01.06	1700	1750	2400	2250	3750	1700	5250	1700
01.07	1700	1750	2400	2250	3750	1700	5250	1700
01.08	1700	1750	2400	2250	3750	1700	5250	1700
01.09	1700	1750	2400	2250	3750	1700	5250	1700
01.10	1700	1750	2400	2250	3750	1700	5250	1700
01.11	1700	1750	2400	2250	3750	1700	5250	1700
01.12	1700	1750	2400	2250	3750	1700	5250	1700
01.01	1700	1750	2400	2250	3750	1700	5250	1700
01.02	1700	1750	2400	2250	3750	1700	5250	1700
01.03	1700	1750	2400	2250	3750	1700	5250	1700
01.04	1700	1750	2400	2250	3750	1700	5250	1700
Период	Выдача	Енисей -	Тайшет,	Крск -	Братск -	Братск -	Иркутск -	Бурятия -
	БоГЭС	КГЭС	Ангара -	Восток	Крск	Иркутск	Бурятия	Чита
			Запад					
01.05	2400	1350	1750	1900	1900	2000	565	280
01.06	2400	1350	1750	1900	1900	2000	565	280
01.07	2400	1350	1750	1900	1900	2000	565	280
01.08	2400	1350	1750	1900	1900	2000	565	280
01.09	2400	1350	1750	1900	1900	2000	565	280
01.10	2400	1350	1750	1900	1900	2000	565	280
01.11	2400	1350	1750	1900	1900	2000	565	280
01.12	2400	1350	1750	1900	1900	2000	565	280
01.01	2400	1350	1750	1900	1900	2000	565	280
01.01	2400	1000						1
01.01	2400	1350	1750	1900	1900	2000	565	280
				1900 1900	1900 1900	2000 2000	565 565	280 280

Результаты расчетов представим в графиков максимальных месячных рисков по каждой категории требований.

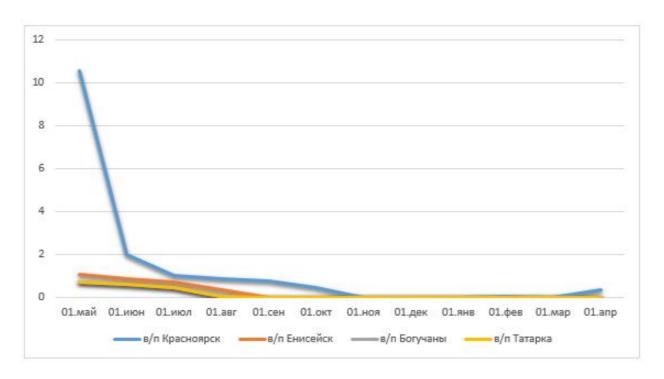


Рисунок 2.5 - Результаты расчета рисков нарушения требований обеспечения водоснабжения

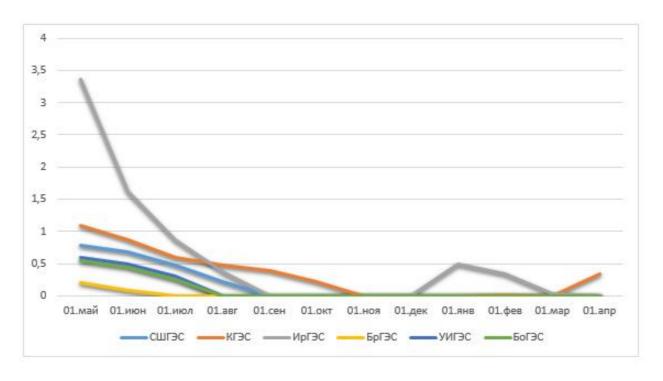


Рисунок 2.6 - Результаты расчета рисков нарушения требований обеспечения водного транспорта

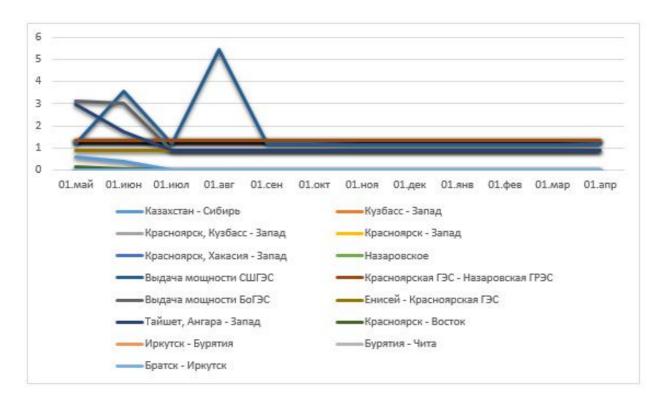


Рисунок 2.7 - Результаты расчета рисков нарушения требований обеспечения надежности энергосистемы

2.4. Алгоритм расчета экономического эффекта от выработки электроэнергии на гидроэлектростанции

Большинство критериев, на основании которых определяется режим работы гидроэлектростанций, связаны с обеспечением надежности той или иной области и определяются через показатели рисков нарушений требований. Экономический эффект от выработки электроэнергии отличается от рисков более конкретной интерпретацией через показатели выработки электроэнергии или финансовые показатели. Однако в связи с необходимостью учета всех факторов и их сравнения, а также отсутствием возможности оценить конкретные ущербы от требований определить нарушений представляется целесообразным экономический эффект через некоторые относительные показатели в сравнении с По будет возможным. сути ЭТОТ показатель недополученный экономический эффект, а выражаться будет в относительных единицах. Рассчитать недополученный экономический эффект возможно по формуле:

$$\mathfrak{Z} = \frac{(\mathfrak{I}_{\text{Makc}} - \mathfrak{I}_{\text{ПЛАН}})}{\mathfrak{I}_{\text{Makc}}} \tag{2.38}$$

где $\theta_{\text{макс}}$ – максимальный экономический эффект,

Эплан – плановый экономический эффект.

Расчет планового экономического эффекта Э_{план} представляет собой сумму всех интервальных экономических эффектов на расчетном периоде. Расчет максимального экономического эффекта Э_{макс} представляет собой алгоритм с применением оптимизационных методов. Целевой функцией в котором будет выступать максимальная выработка электроэнергии или максимальный доход с учетом некоторых прогнозных цен на электроэнергию. Обе целевые функции могут выражены друг через друга по линейной зависимости 2.39.

Где Д – доход от продажи электроэнергии,

E — выработка электроэнергии,

Ц – средняя цена на расчетном периоде.

На основании возможности расчета дохода от продажи электроэнергии через выработку и цену опишем только алгоритм расчета максимальной выработки электроэнергии.

$$E = \sum_{i=1}^{k} E_i \to max$$

Для определения целевой функции используется традиционная методика водно-энергетических расчетов [5, 10, 35, 49, 78], на основании которой зависимость выработки электроэнергии от попусков воды выражается уравнением 2.41.

$$E = \sum_{i=1}^{k} \frac{W_i}{3600} \cdot f^q \left(f^{Zv} \left(W_{i-1}^{B} + W_{i-1}^{\Pi p} - W_i \right) - f^{Zn} \left(\frac{W_i}{T} \right) \right)$$
(2.40)

где f^q – зависимость удельного расхода воды,

 f^{Zv} – зависимость объемов водохранилища,

 f^{Zn} – зависимость горизонтов и расходов.

Независимыми параметрами в оптимизационной модели выступают объемы попусков воды гидроэлектростанций, представим их в виде матрицы Ү.

$$Y = \begin{bmatrix} W_{1,1} & W_{2,1} & \dots & W_{n,1} \\ W_{1,2} & W_{2,2} & \dots & W_{n,2} \\ \dots & \dots & \dots & \dots \\ W_{1,i} & W_{2,i} & \dots & W_{n,k} \end{bmatrix}$$

В связи с наличием аналитических уравнений, связывающих независимые параметры с целевой функцией, а также нелинейным характером зависимостей рассмотрим применение нелинейных методов оптимизации. Основными и наиболее используемыми нелинейными методами оптимизации являются градиентный метод и метод ньютона. Метод ньютона имеет более высокую скорость сходимости, а градиентный метод более простую возможность учета ограничений. В связи достаточным количеством ограничений таких как: максимальный и минимальный уровень водохранилища, максимальный расход воды, интенсивность наполнения и тд., - будем использовать градиентный метод оптимизации.

В общем виде градиент вектор определяется по выражению 2.41.

$$\nabla E = \frac{\partial E}{\partial Y} \tag{2.41}$$

Для построения градиент вектора необходимо найти частные производные по всем независимым параметрам матрицы Y. Распишем частную производную на примере одного параметра в общем виде:

$$\frac{\partial E}{\partial W_{i,j}} = \frac{\partial E_{i,j}}{\partial W_{i,j}} + \sum_{i=i+1}^{k-1} \frac{\partial E_{i,j}}{\partial W_{i,j}} + \frac{\partial \mathcal{I}_{TSCk}}{\partial W_{i,j}} + \sum_{i=1}^{k} \sum_{j=j+1}^{n} \frac{\partial E_{i,j}}{\partial W_{i,j}}$$
(2.42)

Уравнение показывает, что если в интервале i изменить объем попуска на ∂W , то это вызовет изменение выработки этой гидроэлектростанции на ∂E . За счет изменения попуска на этом интервале произойдет изменение отметок водохранилища и напора в последующих интервалах, изменение напора приведет к изменению выработки этой же гидроэлектростанции. И в последнем балансирующем k-ом интервале режим вынужденный и будет также зависеть от ∂W и режима в предыдущих интервалах. Также изменение ∂W приведет к изменению отметок и напоров на нижележащих станциях, изменение напора приведет к изменению выработки других гидроэлектростанций. Представим составляющие уравнения 2.42 производными, полученными дифференцированием явных функций.

Действительно выработка гидроэлектростанции может меняться при изменении расхода либо напора (удельного расхода), т.е. получим производные $\frac{\partial E}{\partial W}$ и $\frac{\partial E}{\partial q}$, а удельный расход меняется за счет изменения попуска на $\frac{\partial q}{\partial W}$. Так как изменение удельного расхода также зависит от попуска в нижний бьеф, то производная $\frac{\partial E}{\partial W}$ представляет произведение зависимых производных, решением которых будет являться сумма производных по каждому параметру. Дополнив эти выражения зависимостью удельного расхода от напора $\frac{\partial q}{\partial W}$, а напора от объема попуска $\frac{\partial H}{\partial W}$, представим поочередно выражения слагаемых уравнения 2.42.

$$\frac{\partial E_{i,j}}{\partial W_{i,j}} = q_{i,j} + W_{i,j} \frac{\partial q_{i,j}}{\partial H_{i,j}} \left(\frac{\partial Zvb_{i,j}}{2 \cdot \partial W_{i,j}} - \frac{\partial Znb_{i,j}}{\partial W_{i,j}} \right)$$
(2.43)

где $\frac{\partial Zvb_{i,j}}{\partial W_{i,j}}$ - зависимость уровня верхнего бъефа от стока;

 $\frac{\partial Znb_{i,j}}{\partial W_{i,i}}$ - зависимость уровня нижнего бъефа от стока.

Эти зависимости получаются преобразованием стандартных характеристик гидроэлектростанций: характеристики объемов водохранилища и характеристики горизонтов и расходов.

$$\sum_{i=i+1}^{k-1} \frac{\partial E_{i,j}}{\partial W_{i,j}} = \sum_{i=i+1}^{k-1} \left(W_{i,j} \frac{\partial q_{i,j}}{\partial H_{i,j}} \frac{\partial Zvb_{i,j}}{\partial W_{i,j}} \right)$$
(2.44)

Выражение 2.44 описывает связь изменения выработки электроэнергии на интервалах от i+1 до k-1 с изменением попусков на интервале i. Особенность выражения в том, что попуск на интервале i никак не влияет на попуск и на уровень нижнего бъефа на других интервалах, поэтому эти зависимости в уравнении 2.44 отсутствуют.

$$\frac{\partial E_{i,j}}{\partial W_{i,j}} = -q_{k,j} - W_{k,j} \frac{\partial q_{k,j}}{\partial H_{k,i}} \left(\frac{\partial Zvb_{k,j}}{\partial W_{k,i}} - \frac{\partial Znb_{k,j}}{\partial W_{k,i}} \right)$$
(2.45)

Выражение 2.46 описывает связь изменения выработки электроэнергии на интервале k с изменением попусков на интервале i. Особенность выражения в том, что интервал k это балансирующий интервал и все изменения на нем носят обратный характер, т.е. если увеличить попуск на интервале i, то это уменьшит попуск на интервале k на эту же величину.

$$\sum_{i=1}^{k} \sum_{j=j+1}^{n} \frac{\partial E_{i,j}}{\partial W_{i,j}} = \sum_{i=1}^{k} \sum_{j=j+1}^{n} \left(W_{i,j} \frac{\partial q_{i,j}}{\partial H_{i,j}} \frac{\partial Zvb_{i,j}}{\partial W_{i,j}} \right)$$
(2.46)

Выражение 2.46 описывает связь изменения выработки электроэнергии на следующих j+1 в каскаде гидроэлектростанциях с изменением попусков гидроэлектростанции j на интервале i. Особенность выражения в отсутствии прямой связи между стоками вышележащих и нижележащих гидроэлектростанций, поэтому единственные связи, по зависимости верхнего бьефа нижележащей гидроэлектростанции от попуска вышележащей, будут иметь соседние в каскаде гидроэлектростанции.

Вычислив градиент вектор, по рекуррентному выражению 2.47 происходит переход от начальной точки Y_n к следующей точке Y_{n+1} .

$$Y_{n+1} = Y_n + t_n \nabla E(Y_n) \tag{2.47}$$

Шаг t_n при этом может быть равным некоторой заданной константе, при этом такой процесс называют покоординатным спуском, или рассчитываться на основе некоторого оптимального шага, при этом процесс называют

наискорейшим спуском. Рассмотрим методику расчета оптимального шага для нашей задачи.

Вычислим значение целевой функции в точке Y^n . Затем в соответствии с рекуррентным соотношением 2.48 и целевой функцией выразим зависимость выработки на шаге Y_{n+1} от величины шага.

$$E(Y_{n+1}) = \sum_{i=1}^{k} \frac{(W_i + t^n \nabla E(W_i))}{3600} \cdot f^q \left(f^{Zv} \left(W_{i-1}^B + W_{i-1}^{np} - (W_i + t^n \nabla E(W_i)) \right) - f^{Zn} \left(\frac{(W_i + t^n \nabla E(W_i))}{T} \right) \right)$$
(2.48)

Найдем такой шаг t_n , при котором целевая функция достигала бы максимума вдоль рассчитанного направления. Из необходимого условия существования экстремума функции, т.е. производная функции $E(Y_{n+1})$ равна нулю, вычислим значение шага.

Выводы по главе 2

В условиях существования различных векторов оценки эффективности, каждый из которых соответствует определенным отраслевым требованиям и имеет свои единицы измерения возможно решать оптимизационную задачу методами многокритериальной оптимизации или скалярной оптимизации. Разработанная методика создает единое поле показателей эффективности, выраженных в относительных единицах, и позволяет перейти от многокритериальной к скалярной оптимизации при сохранении сущности поставленных задач.

В главе подробно описаны алгоритмы расчета показателей эффективности для различных отраслевых требований, при этом учтены требования поддержания минимального и не превышения максимального расхода воды, требования поддержания минимального и не превышения максимального уровня воды на водпостах, расположенных в нижнем бъефе, требования обеспечения баланса электроэнергии в энергосистеме, требования не превышения максимальных перетоков мощности в энергосистемы, а также показателя экономической эффективности от реализации электроэнергии в энергосистеме.

3. РАЗРАБОТКА МЕТОДИКИ И АЛГОРИТМОВ СТОХАСТИЧЕСКОЙ ОПТИМИЗАЦИИ ДОЛГОСРОЧНЫХ РЕЖИМОВ РАБОТЫ ГИДРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ

Выбрав несопоставимые критерии, в соответствии с задачами в 1.1,: минимум рисков нарушения требований, сформулированных в главе 2, и максимум выработки электроэнергии - возможно решать оптимизационную задачу методами многокритериальной оптимизации или, преобразовав критерий максимальной выработки электроэнергии в критерий, выраженный в относительных единицах, решать методами скалярной оптимизации.

Задача скалярной оптимизации математически формулируется в задачу минимизации некоторой функции F, которая представляет собой сумму функций в направлении каждого вектора эффективности.

$$F = \sum_{i=1}^{n} f_i \to min, \tag{3.1}$$

где f_i — функция описывающая эффективность в соответствие с каждой задачей планирования.

Задача многокритериальной оптимизации формулируется следующим образом [13, 48]. Возможные решения должны принадлежать множеству допустимых или оптимальных решений, т.е. решения должны быть такими, при которых значение каждого частного показателя эффективности не может быть улучшено без ухудшения других. Такое множество решений называется множеством Парето.

В методах многокритериальной оптимизации применяется два основных подхода к построению этого множества решений — использование больших списков многокритериальных точек, полученных в результате аппроксимации границы Парето, и визуализации границы Парето. Как известно [1], выбор из большого числа многокритериальных точек является задачей, слишком сложной для человека, т.е. дальнейшее использование области решений при таком подходе затруднено.

Сравнивая предлагаемые группы методов оптимизации для решения задач можно отметить, что принципиальное отличие скалярной оптимизации в единственности решения, в то время как построение оптимального множества предполагает дальнейший экспертный анализ и выбор решения. Рассматривая оптимизацию режимов работы гидроэлектростанций, можно точно утверждать, что при наличии ограничений на режимы с максимальными попусками и минимальными попусками, оптимальное множество решений при отсутствии допущений будет стремиться к множеству возможных решений. Так как при любом изменении режима в сторону уменьшения рисков нарушения по одному ограничению, увеличиваются риски по противоположному. Поэтому для решения поставленных в работе задач целесообразнее применять методы скалярной оптимизации.

Оптимальным планируемым режимом работы гидроэлектростанций будем считать режим, в котором композиция F всех отраслевых функций имеет минимальное значение. В связи с особенностью соотношения отраслевых функций друг с другом, а именно отличием единиц измерения, целесообразной которой представляется такая модель, В все показатели определяются относительно идеальных значений по каждой отраслевой функции. Идеальной будем считать ситуацию, в которой плановый экономический эффект является максимально возможным, а риски нарушения требований равны нулю [71, 72, 75, 77, 79, 105].

В соответствии с постановкой задачи оптимизации наиболее точным отражением будет целевая функция, которая представляет минимизацию максимального значения из всех показателей эффективности. Однако в связи с нацеленностью диссертации на разработку нового подхода к планированию режимов работы гидроэнергетических систем, а также исследованием эффективности реализации предлагаемого подхода в действующей системе планирования, дальнейшую разработку алгоритмов произведем на основании используемых на практике [62] методов нелинейного программирования. В связи

с этим целевая функция должна представлять линейную композицию отклонений показателей эффективности от идеальных значений.

3.1. Разработка методики стохастической оптимизации долгосрочных режимов работы гидроэнергетических систем

Оптимальное управление осуществляется при помощи методов скалярной оптимизации. Целевой функцией является минимизация суммы отклонений показателей эффективности от идеальных значений.

В связи с наличием в функциях рисков нелинейных зависимостей, а именно зависимостей обеспеченности В водохранилища притока воды гидроэлектростанций, характеристик верхнего и нижнего бъефов необходимо использовать нелинейные методы оптимизации: градиентные методы или метод Ньютона. Стоит отметить, что на практике характеристики обеспеченности притока воды в водохранилища используются не в аналитическом виде, а в графическом или табличном, построенным на основании методик оценивания параметров распределения эмпирических данных о притоках воды и стандартных трехпараметрического распределения Крицкого-Менкеля Характеристика обеспеченности в табличном виде представляет дискретный набор точек, соответствующих определенным значения объема воды и обеспеченности, полагая, что остальные промежуточные значения лежат на прямых отрезках между точками в таблице. Стоит отметить, что в связи с кусочно-линейным представлением функции необходимо ограничивать длину шага, которая в частности зависит от детализации зависимости и определяется опытным путем.

Целевая функция представляет сумму рисков нарушений требований водопользователей и отклонение от максимально экономически эффективного режима.

$$F = \sum R + \Im \to min \tag{3.2}$$

Для каждой конкретной задачи риски $\sum R$ могут быть различными, но тем не менее они все могут быть описаны зависимостями, определенными в 2.2.

Независимыми параметрами в оптимизационной модели выступают объемы попусков воды гидроэлектростанций или средние на интервал расчета расходы воды, представим их в виде матрицы Y.

$$Y = \begin{bmatrix} Q_{1,1} & Q_{2,1} & \dots & Q_{n,1} \\ Q_{1,2} & Q_{2,2} & \dots & Q_{n,2} \\ \dots & \dots & \dots & \dots \\ Q_{1,i} & Q_{2,i} & \dots & Q_{n,k} \end{bmatrix}$$

Для построения градиент-вектора необходимо найти частные производные по всем независимым параметрам матрицы Y. В связи с выбранной классификацией задач планирования в 1.1, представим составляющие градиент-вектора

$$\nabla F = \frac{\partial F}{\partial Y} = \frac{\partial R_{Q_{\text{BO},A}}}{\partial Y} + \frac{\partial R_{Q_{\text{HAB}}}}{\partial Y} + \frac{\partial R_{Q_{\text{9C}}}}{\partial Y} + \frac{\partial 9}{\partial Y}, \tag{3.3}$$

где $R_{Q_{\text{вод}}}$ – риски функционирования систем водоснабжения,

 $R_{Q_{\mathrm{HaB}}}$ – риски функционирования водного транспорта,

 $R_{Q_{
m 3C}}$ — риски функционирования энергетических систем.

Выразим каждую составляющую уравнения 3.3 в явном виде на примере первой составляющей матрицы Y.

Риски функционирования систем водоснабжения и водного транспорта соответствуют рискам обеспечения минимального расхода воды, дифференциал которых определяется по выражениям 2.8 и 2.9.

$$\frac{\partial R_{Q_{min/max}}}{\partial Q_{i,j}} = \pm f'(p)/T_i \cdot 10^{-9} \tag{3.4}$$

где f'(p) — производная характеристики обеспеченности, T_i - интервал расчетного периода.

Составляющая $\frac{\partial \Im}{\partial Y}$ определяется величиной обратной градиенту ∇E , который подробно описан в 2.4.

Стоит отметить, что сумма частных производных не дает позитивных результатов в случаях близости каждой из величин. Поэтому для более точного ориентирования движения к экстремальным точкам будем использовать модифицированный градиент-вектор, представляющий собой сумму произведений частных производных с соответственными составляющими целевой функции 3.2.

Движение к оптимальному режиму в общем виде происходит в соответствии с рекуррентным выражением 3.6.

$$Y_{i+1} = Y_i - h \cdot \nabla F \tag{3.6}$$

Проверка достижения оптимального состояния происходит путем поиска минимального значения в области допустимых значений и выбора наименьшего из локальных экстремумов и граничных точек функции F.

Идентификация локального экстремума происходит путем сравнения разности значений целевой функции на текущем и предыдущем интервале с заданной допустимой погрешностью, при условии равенства первой производной нулю.

$$F_{i+1} - F_i \le \varepsilon$$

$$F'_{i+1} = 0$$

$$(3.7)$$

В связи с тем, что целевая функция F представляется полиномом степени n, в зависимости от степени аналитических зависимостей используемых характеристик, в алгоритм производит поиск оптимального состояния на всей допустимой области значений. Это несколько увеличивает скорость вычислений, но при условии современной высокой скорости операций вычислительной техники этот недостаток является несущественным.

Общий ход вычислений представим в виде блок схемы, изображенной на рисунке 3.1. Начальные данные это матрица Y, заполненная допустимыми

значениями расходов воды гидроэлектростанций в нижний бьеф. Основные этапы оптимизационных вычислений: расчет градиента, движение в направлении антиградиента, проверка достижения оптимального состояния — описаны выражениями 3.3, 3.5 и 3.6 соответственно. Расчет целевой функции и ее составляющих в соответствии с 3.2 подробно описан в 2.2 — 2.4.

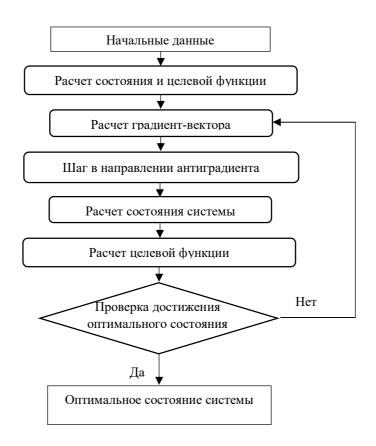


Рисунок 3.1 - Схема оптимизационного процесса

Блоки расчета целевой функции, градиент-вектора и блок движения в направлении антиградиента описан выше. Далее опишем алгоритм расчета состояния системы.

3.2. Алгоритм расчета состояния системы

В алгоритме расчета состояния системы можно выделить водноэнергетический расчет и расчет электрического режима энергосистемы и модуль
ввода параметров в допустимую область. Представим на рисунке 3.2 блок схему
алгоритма расчета состояния системы.

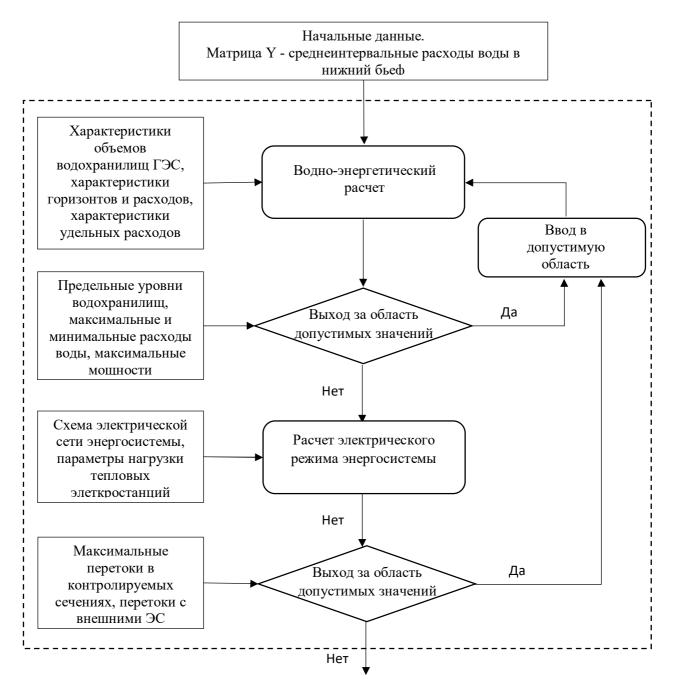


Рисунок 3.2 - Блок схема алгоритма расчета состояния системы

Далее в п. 3.2.1, 3.2.2 и 3.2.3 более подробно рассмотрим алгоритмы следующих представленных модулей:

- модуль расчета водно-энергетического режима работы ГЭС;
- модуль расчета электрического режима энергосистемы;
- модуль ввода в допустимую область.

3.2.1. Алгоритмы модуля расчета водно-энергетических режимов работы ГЭС

Традиционно [5, 7, 10, 35, 49, 59, 61, 73, 80, 81, 94] рассматриваются несколько групп водно-энергетических расчетов, которые отличаются типом исходных данных. Выделяют четыре категории: расчет с постоянным расходом воды, с постоянным уровнем верхнего бьефа, с постоянной выработкой и постоянной мощностью. В связи с тем, что в качестве исходных данных выступают расходы воды в нижний бьеф необходимо рассмотреть алгоритм расчета с постоянным расходом воды. В тоже время для ввода ограничений по уровню воды в водохранилище и максимальной мощности в допустимую область необходимо рассмотреть алгоритмы с постоянным уровнем верхнего бьефа и постоянной мощностью.

Алгоритм расчета с постоянным расходом воды

Исходными данными для расчета является вектор расходов воды гидроэлектростанции Q_{ges} , вектор притоков воды в водохранилище Q_{pr} , количество интервалов k, вектор длительности каждого интервала t и начальная отметка водохранилища Z_{v0} .

Рассчитывается приращение объема водохранилища ΔW

$$\Delta W(i) = (Q_{pr}(i) - Q_{qes}(i)) \cdot t(i) \tag{3.7}$$

Рассчитывается объем водохранилища для интервала і.

$$W(i) = W(i-1) + \Delta W(i) \tag{3.8}$$

При этом для первого интервала $W(i-1)=f_{z_{-}w}(Z_{v0}),$ где $f_{z_{-}w}-$ характеристика объемов водохранилища, связывающая уровни и объемы водохранилища.

Определяется уровень водохранилища для интервала i.

$$Z_{\nu}(i) = f_{z \ w}(W(i)) \tag{3.9}$$

Определяется уровень нижнего бьефа гидроэлектростанции \mathbb{Z}_n .

$$Z_n(i) = f_{z_Q}(Q_{ges}(i))$$
 (3.10)

где $f_{z_{-}Q}$ — характеристика горизонтов и расходов гидроэлектростанции, связывающая уровни нижнего бъефа с расходами гидроэлектростанции.

Рассчитывается напор воды H.

$$H(i) = \frac{(Z_v(i) + Z_v(i-1))}{2} - Z_n(i)$$
 (3.11)

Определяется удельный расход $q_{\rm уд}$

$$q_{yA}(i) = f_{q_H}(H(i))$$
 (3.12)

Рассчитывается мощность P(i)

$$P(i) = Q_{ges}(i) \cdot q_{yA}(i) \tag{3.13}$$

Рассчитывается выработка электроэнергии

$$E(i) = P(i) \cdot t(i) \tag{3.14}$$

Алгоритм расчета с постоянным уровнем верхнего бьефа

Исходными данными для расчета является вектор уровней верхнего бьефа Z_v , вектор притоков воды в водохранилище Q_{pr} , количество интервалов k, вектор длительности каждого интервала t и начальная отметка водохранилища Z_{v0} .

Определяется объем водохранилища для интервала i.

$$W(i) = f_{Z|W}(Z(i))$$
 (3.15)

Рассчитывается приращение объема водохранилища ΔW

$$\Delta W(i) = (W(i) - W(i-1)) \tag{3.16}$$

При этом для первого интервала $W(i-1) = f_{z_{-}w}(Z_{v0})$.

Рассчитывается расход гидроэлектростанции $Q_{\it ges}$

$$Q_{ges}(i) = Q_{pr}(i) - \Delta W(i)/t(i)$$
(3.17)

Определяется уровень нижнего бьефа гидроэлектростанции \mathbb{Z}_n .

$$Z_n(i) = f_{z_Q}(Q_{ges}(i))$$
 (3.18)

Рассчитывается напор воды H.

$$H(i) = \frac{(Z_v(i) + Z_v(i-1))}{2} - Z_n(i)$$
 (3.19)

Определяется удельный расход $q_{\text{уд}}$

$$q_{yA}(i) = f_{qH}(H(i))$$
 (3.20)

Рассчитывается мощность P(i)

$$P(i) = Q_{ges}(i) \cdot q_{VA}(i) \tag{3.21}$$

Рассчитывается выработка электроэнергии

$$E(i) = P(i) \cdot t(i) \tag{3.22}$$

Алгоритм расчета с постоянной мощностью

Исходными данными для расчета является вектор мощностей P, вектор притоков воды в водохранилище Q_{pr} , количество интервалов k, вектор длительности каждого интервала t и начальная отметка водохранилища Z_{v0} .

В связи с тем, что из представленных исходных данных невозможно напрямую получить все остальные параметры водно-энергетического режима, необходимо задать начальный удельный расход q_0 и далее итерационно рассчитывать параметры, пока разницы между удельным расходом на итерации j и удельным расходом на итерации j-1 не станет меньше некоторой погрешности ε .

Рассчитаем расход гидроэлектростанции Q_{ges} .

$$Q_{ges}(i) = P(i)/q_{VI}(i)$$
 (3.23)

Рассчитывается приращение объема водохранилища ΔW

$$\Delta W(i) = (Q_{pr}(i) - Q_{ges}(i)) \cdot t(i)$$
 (3.24)

Рассчитывается объем водохранилища для интервала і.

$$W(i) = W(i-1) + \Delta W(i)$$
 (3.25)

При этом для первого интервала $W(i-1) = f_{z_{-}w}(Z_{v0})$.

Определяется уровень водохранилища для интервала і.

$$Z_{v}(i) = f_{z_{-}w}(W(i))$$
 (3.26)

Определяется уровень нижнего бьефа гидроэлектростанции \mathbb{Z}_n .

$$Z_n(i) = f_{z,0}(Q_{ges}(i))$$
 (3.27)

Рассчитывается напор воды H.

$$H(i) = \frac{(Z_v(i) + Z_v(i-1))}{2} - Z_n(i)$$
 (3.28)

Определяется удельный расход $q_{\rm уд}$

$$q_{yA}(i) = f_{q_H}(H(i))$$
 (3.29)

При выполнении условия $\left(q_{\rm yg}(i)-q_{\rm yg}(i-1)\right)\leq \varepsilon$ итерационный процесс останавливается.

Рассчитывается выработка электроэнергии

$$E(i) = P(i) \cdot t(i) \tag{3.30}$$

3.2.1.1. Имитационный расчет водно-энергетического режима работы Ангаро-Енисейского каскада ГЭС

В качестве исходных данных примем 12 расчетных интервалов длительностью в месяц, которые соответствуют гидрологическому году (с 01 мая по 30 апреля), приток воды в водохранилища, соответствующий норме притока, начальные уровни водохранилищ равные уровню мертвого объема или уровню принудительной предполоводной сработки. Притоки воды в водохранилища ГЭС представим в виде гидрографов на рисунке 3.3, типы расчетов и соответствующие им значения представим в таблицах 3.1 и 3.2 (тип расчета Q – по расходу, Zvb – по уровню верхнего бьефа).

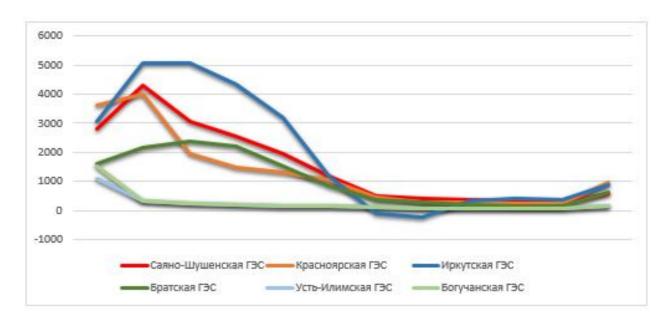


Рисунок 3.3 - Гидрографы притоков воды в водохранилища ГЭС

Таблица 3.1 - Исходные данные для водно-энергетического расчета Енисейского каскада ГЭС

Инте	ервал	CII	ІГЭС	M	ГЭС	КΓ	ЭС
		Тип	Значение	Тип	Значение	Тип	Значение
01.05	31.05	Q	1200	Zvb	323	Q	2800
01.06	30.06	Q	1200	Zvb	323	Q	3000
01.07	31.07	Zvb	540	Zvb	323	Q	3000
01.08	31.08	Zvb	540	Zvb	323	Q	3000
01.09	30.09	Zvb	540	Zvb	323	Q	3000
01.10	31.10	Q	1200	Zvb	323	Q	3000
01.11	30.11	Q	1200	Zvb	323	Q	2800
01.12	31.12	Q	1010	Zvb	323	Q	2000
01.01	31.01	Q	1200	Zvb	323	Q	2543
01.02	28.02	Q	1200	Zvb	323	Q	3000
01.03	31.03	Q	1200	Zvb	323	Q	3000
01.04	30.04	Zvb	500	Zvb	323	Zvb	230

Таблица 3.2 - Исходные данные для водно-энергетического расчета Ангарского каскада ГЭС

Инте	рвал	ИрІ	ЭС	БрГ	ЭС	УИ	ГЭС	БоГ	ЭС
		Тип	Знач.	Тип	Знач.	Тип	Знач.	Тип	Знач.
01.05	31.05	Q	1300	Q	2000	Q	2000	Q	2800
01.06	30.06	Q	1300	Q	2000	Q	2050	Q	3000
01.07	31.07	Q	1300	Q	2000	Q	2678	Q	3000
01.08	31.08	Zvb	457	Q	2000	Q	3103	Q	3000
01.09	30.09	Zvb	457	Q	2498	Q	2559	Q	3000
01.10	31.10	Q	1300	Q	2900	Q	3000	Q	3000
01.11	30.11	Q	1300	Q	2000	Q	2000	Q	2000
01.12	31.12	Q	1300	Q	2000	Q	2000	Q	2000
01.01	31.01	Q	1300	Q	2000	Q	2000	Q	2000
01.02	28.02	Q	1665	Q	2000	Q	2000	Q	2000
01.03	31.03	Q	4000	Q	2000	Q	2000	Q	2498
01.04	30.04	Zvb	457	Q	2800	Zvb	294,5	Zvb	207

Результаты представим в виде расчетных уровней верхнего бьефа (Zvb), расходов воды (Q) и выработки электроэнергии (E) в таблицах 3.3 и 3.4.

Таблица 3.3 - Результаты водно-энергетического расчета Енисейского каскада ГЭС

Интервал		СШГЭС				МГЭС			КГЭС		
		Zvb	Q	Е	Zvb	Q	Е	Zvb	Q	Е	
		M	M^3/c	млн.	M	M^3/c	млн.	M	M^3/c	млн.	
				кВтч			кВтч			кВтч	
01.05	31.05	512,9	1500	1838	323,0	1500	140	234,2	2800	1569	
01.06	30.06	531,1	1500	1959	323,0	1500	135	238,0	3000	1707	
01.07	31.07	537,4	1966	2825	323,0	1966	179	239,3	3000	1819	

Продолжение таблицы 3.3

Инте	Интервал		СШГЭС			МГЭС	1		КГЭС	
		Zvb	Q	Е	Zvb	Q	Е	Zvb	Q	Е
		M	M^3/c	млн.	M	M^3/c	млн.	M	M^3/c	млн.
				кВтч			кВтч			кВтч
01.08	31.08	540,0	1970	2874	323,0	1970	179	240,0	3000	1842
01.09	30.09	540,0	1940	2739	323,0	1940	171	240,3	3000	1793
01.10	31.10	539,9	1200	1751	323,0	1200	115	239,2	3000	1845
01.11	30.11	537,0	1200	1694	323,0	1200	111	237,6	2800	1642
01.12	31.12	534,0	1010	1469	323,0	1010	99	235,4	2763	1637
01.01	31.01	527,8	1500	2118	323,0	1500	140	234,6	2252	1318
01.02	28.02	520,6	1500	1860	323,0	1500	126	232,8	3000	1547
01.03	31.03	510,1	1500	1953	323,0	1500	140	230,7	3000	1663
01.04	30.04	500,0	1622	1918	323,0	1622	145	230,0	3000	1576

Таблица 3.4 - Результаты водно-энергетического расчета Ангарского каскада ГЭС

Инте	ервал		ИрГЭС			БрГЭС			УИГЭС			БоГЭС	
		Zvb	Q	Е									
		M	м ³ /с	млн.									
				кВтч			кВтч			кВтч			кВтч
01.05	31.05	456,1	1300	243	395,5	2000	1297	296,1	2000	1151	207,8	2800	1305
01.06	30.06	456,5	1300	235	396,3	2000	1262	296,5	2050	1147	207,1	3000	1353
01.07	31.07	456,8	1300	243	397,3	2000	1323	295,9	2678	1548	207,0	3000	1393
01.08	31.08	456,9	3000	555	399,0	2000	1341	294,7	3000	1724	207,2	3000	1394
01.09	30.09	456,9	3183	569	400,1	2491	1627	294,7	2647	1421	207,0	3000	1349
01.10	31.10	456,9	1300	244	399,7	2900	1956	294,7	3000	1663	207,2	3000	1393
01.11	30.11	456,8	1300	236	399,5	2000	1304	294,6	2200	1183	207,3	2196	991
01.12	31.12	456,6	1300	244	399,2	2187	1476	294,7	2187	1214	207,1	2400	1118
01.01	31.01	456,6	1300	243	398,9	2200	1487	294,6	2300	1280	207,1	2400	1117

Продолжение таблицы 3.4

Инте	ервал		ИрГЭС			БрГЭС			УИГЭС			БоГЭС	
		Zvb	Q	Е									
		M	м ³ /с	млн.									
				кВтч			кВтч			кВтч			кВтч
01.02	28.02	456,5	1665	281	398,7	2200	1342	294,6	2300	1151	207,0	2400	1009
01.03	31.03	456,3	2748	505	399,1	2200	1488	294,7	2200	1222	207,0	2289	1066

3.2.2. Алгоритмы модуля расчета электрического режима энергосистемы

Исходными данными для расчета являются данные в матричной форме по узлам расчетной модели: номер узла n, узловая мощность генерации S_g и нагрузки S_n , номинальное напряжение U_{nom} , номер балансирующего узла n_{bu} , - а также данные в матричной форме по ветвям расчетной модели: номер ветви n_b , номер узла начала ветви n_n , номер узла конца ветви n_k , комплексное сопротивление ветви Z.

Стоит отметить, что в практике расчетов режимов электрических систем существует достаточно большое многообразие различных методов и расчетных схем, которые можно разделить на методы, основанные на линейных уравнениях установившегося режима, и методы, основанные на нелинейных уравнениях установившегося режима. Нелинейность электрической цепи теоретически может быть вызвана нелинейностью пассивных элементов и нелинейностью источников тока. Нелинейность пассивных элементов в расчетах установившихся режимов, как правило, не учитывается. В тоже время при расчетах установившихся учитываются нелинейные характеристики режимов источников тока. Нелинейность источников тока соответствует заданию в узлах нагрузки потребителей или генераторов постоянной мощностью либо заданию нагрузки ее статическими характеристиками, определяющими зависимость мощности от Далее опишем основные алгоритмы решения линейных напряжения.

нелинейных уравнений установившегося режима и сравним результаты расчета по этим моделям.

K числу основных методов, основанных на линейных уравнениях установившегося режима, относятся: расчет с помощью матрицы собственных и взаимных сопротивлений узлов $Z_{\rm y}$ (или метод обратной матрицы), метод Гаусса, простая итерация и метод Зейделя. K числу основных методов, основанных на нелинейных уравнениях установившегося режима, относятся: метод Гаусса, метод Зейделя и метод Ньютона.

Наиболее эффективным методом решения нелинейных уравнений из представленных является метод Ньютона, обладающий лучшей сходимостью и быстродействием. Также метод Ньютона возможно применить для решения линейных уравнений, при этом метод Ньютона сходится за один шаг, т.е. он совпадает с решением по методу Гаусса.

Далее опишем алгоритмы расчета по методу Гаусса для решения линейных уравнений, методу Ньютона для решения нелинейных уравнений, проведем расчеты установившегося режима и сравним результаты [16, 17, 82].

3.2.2.1. Линейные уравнения узловых напряжений. Решение методом Гаусса

На основании данных об узловой мощности S, формируется вектор задающих токов J_z , приведенных к напряжению балансирующего узла.

$$J_z(i) = (S_g(i) - S_n(i))/(U_0 \cdot \sqrt{3})$$
 (3.30)

где U_0 – номинальное напряжение балансирующего узла

На основании данных об активных и реактивных сопротивлениях ветвей формируется диагональная матрица проводимостей ветвей Y_d , приведенных к напряжению балансирующего узла.

$$Y_d(j,j) = z(j)^{-1} (3.31)$$

Аналогично рассчитывается вектор проводимостей ветвей Y_0 , связанных с балансирующим узлом.

На основании номеров узлов и ветвей составляется матрица инцидентности M_{inc} , в которой номера строк соответствуют номерам узлов, а номера столбцов соответствуют номерам ветвей. Заполняются ячейки матрицы значением равным 1, если узел является началом ветви, на пересечении которых находится ячейка, -1 если концом и 0 если узел не является ни началом, ни концом к ветви, т.е. узел не инцидентен ветви.

Рассчитывается матрица узловых проводимостей У.

$$Y = M_{inc} \cdot Y_d \cdot M_{inc}^T \tag{3.32}$$

Рассчитывается вектор напряжений в узлах U путем решения системы уравнений 3.33 методом Гаусса.

$$Y \cdot U = J_z - Y_0 U_0 \tag{3.33}$$

Решение системы линейных уравнений 3.33 методом Гаусса в общем виде представляет два этапа:

- на первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме;
- на втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные. Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (а она там всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх.

Следует отметить, что для решения системы линейных уравнений возможно использовать модифицированный метод Гаусса-Жордана, суть которого в приведении матрицы Y к виду единичной матрицы. Основное преимущество

этого метода в том, что в процессе вычисления сокращается количество операций относительно классического метода Гаусса.

Рассчитывается вектор разницы напряжений ΔU между узловыми напряжениями и напряжением балансирующего узла.

$$\Delta U = U - U_0 \tag{3.34}$$

Рассчитывается падение напряжения ветвей U_{v} .

$$U_{v} = M_{inc}^{T} \cdot \Delta U \tag{3.35}$$

Рассчитываются векторы токов ветвей I и перетоков активной мощности ветвей S.

$$I = Y_d \cdot U_v \tag{3.36}$$

$$S = I \cdot U_0 \cdot \sqrt{3} \tag{3.37}$$

3.2.2.2. Нелинейные уравнения узловых напряжений. Решение методом Ньютона

Запишем уравнения узловых напряжений в форме баланса мощностей для k-го узла.

$$\omega_{Sk}(U) = S_k - Y_{kk} U_k^2 - \sum_{\substack{j=1 \ j \neq k}}^{n+1} Y_{kj} U_j U_k$$
 (3.38)

Выделим из 2.94 действительные и мнимые части.

$$\omega_{Pk}(U) = P_k - g_{kk} U^2_k + \sum_{\substack{j=1\\j\neq k}}^{n+1} \left(g_{kj} \left(U'_j U'_k + U''_j U''_k \right) + b_{kj} \left(U''_j U'_k - U'_j U''_k \right) \right)$$

$$\omega_{Qk}(U) = Q_k - b_{kk} U^2_k + \sum_{\substack{j=1\\j\neq k}}^{n+1} \left(g_{kj} \left(U'_j U''_k - U''_j U'_k \right) + b_{kj} \left(U''_j U'_k + U'_j U''_k \right) \right)$$
(3.39)

Уравнение баланса мощностей для k-го узла при переменных U, δ можно получить из 2.94 в следующем виде.

$$\omega_{Pk}(U) = P_k - g_{kk} U_k^2 - U_k \sum_{\substack{j=1 \ j \neq k}}^{n+1} U_j (g_{kj} \cos \delta_{kj} - b_{kj} \sin \delta_{kj})$$

$$\omega_{Qk}(U) = Q_k - b_{kk} U_k^2 - U_k \sum_{\substack{j=1 \ j \neq k}}^{n+1} U_j (b_{kj} \cos \delta_{kj} - g_{kj} \sin \delta_{kj})$$
(3.40)

Запишем матрицу Якоби.

$$\frac{\partial \omega_{S}}{\partial U} = \begin{bmatrix} \frac{\partial \omega_{P}}{\partial U'} & \frac{\partial \omega_{P}}{\partial U''} \\ \frac{\partial \omega_{Q}}{\partial U'} & \frac{\partial \omega_{Q}}{\partial U''} \end{bmatrix} = \begin{bmatrix} \frac{\partial \omega_{P}}{\partial U'} & \frac{\partial \omega_{P}}{\partial \delta} \\ \frac{\partial \omega_{Q}}{\partial U'} & \frac{\partial \omega_{Q}}{\partial \delta} \end{bmatrix}$$
(3.41)

Рассчитываются матрица Якоби $\frac{\partial \omega_s}{\partial X}$ и вектор небалансов ω_{Sk} в соответствии с выражениями 2.95 и 2.96.

В соответствии с выражением 1.6, при условии учета только первого приближения, решается система уравнений 2.97.

$$\frac{\partial \omega_s}{\partial U} \cdot \left(U^{i+1} - U^i \right) = \omega_s \tag{3.42}$$

Решая систему уравнений методом Гаусса, определяются приращения напряжений $(U^{i+1}-U^i)$ и соответственно U^{i+1} . Подставляя вектор U^{i+1} в 3.41 и 3.42 рассчитывается следующая итерация. Контроль сходимости итерационного процесса осуществляется по вектору небалансов $\omega_s(U) \leq \varepsilon$.

В связи с существованием достаточно большого количества программных комплексов с применением метода Ньютона, далее при проведении модельных расчетов будем использовать сертифицированный программный комплекс RastrWin, обширно используемый в РФ для расчетов установившихся режимов.

3.2.2.3. Имитационный расчет режима электрической сети. Выбор метода расчета электрического режима энергосистемы

В качестве модели электрической схемы, для которой будем рассчитывать установившийся режим, выберем схему, топология которой изображена на рисунке 3.3.

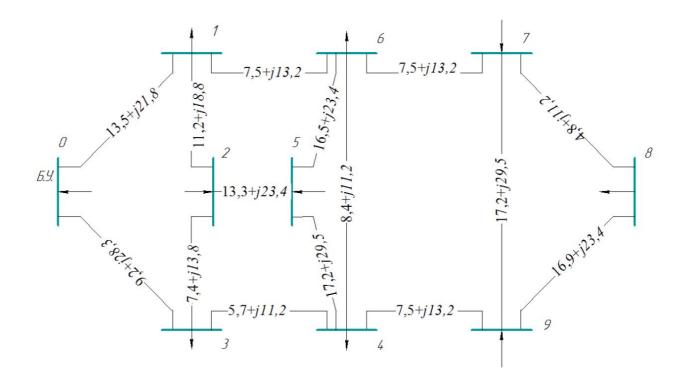


Рисунок 3.3 - Топология модели электрической сети

Исходные данные по узлам модели представим в таблице 3.5.

Таблица 3.5 - Исходные данные для расчета электрической сети

Номер узла	Рн (+), Рг (-),	Qн (+), Qг (-),	Uном, кB
	МВт	MBap	
1	110	50	220
2	-106	-92,5	220
3	60	28	220
4	104	51	220
5	-85	71,1	220
6	100	48	220
7	-60	-136,7	220
8	94	45	220
9	-80	5,8	220

Напряжение балансирующего узла примем $U'=220~{\rm kB}, U''=0.$

Результаты расчета представим в таблице 3.6 в виде действительной части напряжений по узлам и в таблице 3.7 в виде перетоков активной мощности по ветвям.

Таблица 3.6 - Результаты расчета режима. Напряжения в узлах

Номер узла	U гаусс, кВ	Uньютон , кВ	Отклонение,	Отклонение,
			кВ	%
1	211,5	210,1	-1,4	-0,67
2	218	216,7	-1,3	-0,6
3	213,2	211,8	-1,4	-0,66
4	209,1	207,3	-1,8	-0,87
5	208,1	206	-2,1	-1,02
6	208,9	207	-1,9	-0,92
7	213,3	211,4	-1,9	-0,9
8	209,4	207,3	-2,1	-1,01
9	211,5	209,6	-1,9	-0,91
БУ	220	220	0	0

Таблица 3.7 - Результаты расчета режима. Перетоки активной мощности по ветвям

Номер	Номер	Ргаусс, кВ	Рнютон, кВ	Отклонение,	Отклонение,
узла	узла			МВт	%
начала	конца				
ветви	ветви				
БУ	1	83,5	87,5	4,1	4,7
БУ	3	53,5	56,4	2,9	5,1
1	2	-54,1	-53,9	0,2	-0,4
2	3	51,9	51,2	-0,7	-1,3

Продолжение таблицы 3.7

Номер	Номер	Ргаусс, кВ	Рнютон, кВ	Отклонение,	Отклонение,
узла	узла			МВт	%
начала	конца				
ветви	ветви				
1	6	27,5	30	2,4	8,1
3	4	45,5	47	1,5	3,3
5	6	47	45,4	-1,6	-3,6
5	4	38	37	-1	-2,7
6	4	-10,2	-10	0,2	-1,5
6	7	-15,3	-14,8	0,5	-3,1
4	9	-30,7	-30	0,7	-2,5
7	9	-10,9	-11,2	-0,3	2,9
7	8	55,6	55,8	0,2	0,3
8	9	-38,4	-38,8	-0,4	1

Из результатов расчета следует, что для рассматриваемой модели отклонения напряжений не превышают 1,1 %, а отклонения перетоков активной мощности не превышают 5,1 % или 4,1 МВт между решениями линейных и нелинейных уравнений узловых напряжений. В связи с несущественными отличиями между результатами расчетов, с точки зрения применения методов для расчета режима на долгосрочный период, в качестве метода расчета электрического режима энергосистемы выберем метод Гаусса, основанный на решении линейных уравнениях установившегося режима.

3.2.3. Разработка алгоритмов модуля ввода в допустимую область

В процессе оптимизации выходы за границу допустимой области, описанной системой ограничений, неизбежны. Система ограничений может состоять из ограничений на независимые и зависимые параметры. Представим систему ограничений для задачи оптимизации режимов гидроэлектростанций.

$$Q_{min} \leq Q \leq Q_{max}$$
 $Z_{vb_min} \leq Z_{vb} \leq Z_{vb_max}$
 $P_{ges_min} \leq P_{ges} \leq P_{ges_max}$
 $E_{ES_min} \leq E_{ES} \leq E_{ES_max}$
 $P_{ks} \leq P_{ks\ min}$

Учет ограничений возможно реализовать в соответствии с рассмотренными в главе 1 методами: метод внутренней и внешней точки, метод проекции градиента. В качестве основного фактора для выбора метода ввода в допустимую область выберем простоту реализации с возможностью ухода от итеративных вычислений. Так как оптимизация длительных режимов гидроэлектростанций сопряжена с циклическими расчетами по интервалам и циклическими расчетами оптимальных параметров для каждого интервала, отягощать вычислительный процесс дополнительными циклическими расчетами ввода значений в допустимую область нецелесообразно. Поэтому в качестве приоритетных методов учета ограничений выберем алгоритмы без итерационного (далее точного) ввода в допустимую область.

3.2.3.1. Алгоритм ввода в допустимую область при нарушении ограничений по максимальному и минимальному расходу воды в нижний бьеф

В связи с тем, что в качестве вектора независимых параметров выбран вектор расходов воды в нижний бьеф, ввод в допустимую область производится методом «срезки». Например, при превышении расхода воды Q_{ges} над максимальным Q_{max} , приравниваем $Q_{ges} = Q_{max}$. Аналогично происходит при снижении Q_{ges} ниже Q_{min} .

3.2.3.2. Алгоритм ввода в допустимую область при нарушении ограничений по максимальному и минимальному уровню верхнего бьефа

Уровень верхнего бьефа является зависимым параметром, поэтому метод «срезки» для ввода в допустимую область применить невозможно.

Рассчитывается объем воды, превышающий над объемом $W(Z_{vb_max})$ или недостаточный до объема $W(Z_{vb_min})$.

$$\Delta W = W(Z_{vb}) - W(Z_{vb_max})$$

$$\Delta W = W(Z_{vb_min}) - W(Z_{vb})$$
(3.43)

Составляющие выражений 3.43 типа W(Z) рассчитываются, используя характеристику объемов водохранилищ ГЭС.

Для соблюдения ограничений на интервале k необходимо распределить излишний или недостающий объем воды по предшествующим интервалам. Распределять возможно различными способами. Самым простым способом является распределение объема по интервалам в обратном порядке от k к началу. Однако, эта траектория хоть и введет режим в допустимую область, но не будет соответствовать оптимальному из возможных предельных значений. Для решения этой задачи необходимо распределять объем воды в соответствии с векторградиентом.

Для этого необходимо определить какие интервалы более предпочтительны для распределения на них объема воды. В связи с тем, что значения векторградиента по интервалам определяют реальный или абсолютный прирост целевой функции, поэтому необходимо преобразовать значения градиента для интервалов от первого до k в относительные единицы.

$$\nabla \mathbf{F'}_i = \nabla \mathbf{F}_i / \sum_{j=1}^k \nabla \mathbf{F}_j \tag{3.44}$$

$$Q_i = Q_i \pm \nabla F'_i \cdot \frac{\Delta W \cdot 10^{-9}}{T}$$
 (3.45)

Дополнительно в процессе распределения излишний или недостающий объем воды по интервалам необходимо проверять допустимость по условиям максимального и минимального расхода воды и мощности ГЭС. Представим на

рисунке 3.4 схему алгоритма ввода в допустимую при нарушении ограничений по максимальному и минимальному уровню верхнего бьефа.

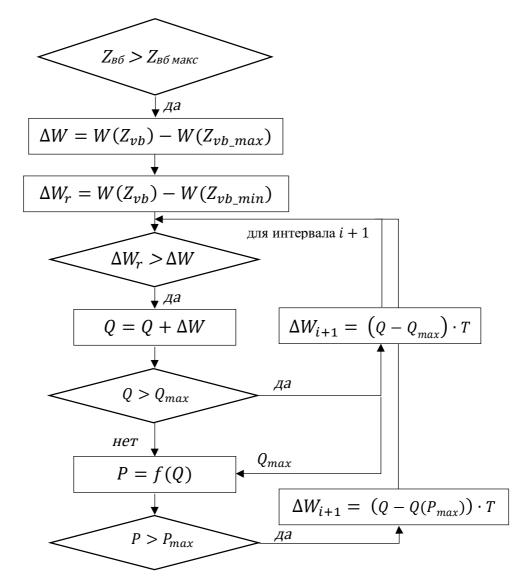


Рисунок 3.4 - Схема алгоритма ввода в допустимую при нарушении ограничений по максимальному и минимальному уровню верхнего бъефа

3.2.3.3. Алгоритм ввода в допустимую область при нарушении ограничений по максимальной или минимальной мощности ГЭС

Мощность ГЭС является зависимым параметром, поэтому аналогично с 2.6.3.2 необходимо рассчитать объем попусков воды превышающий над объемом $W(P_{max})$ или недостаточный до объема $W(P_{min})$.

$$\Delta W = W(P_{\Gamma \ni C}) - W(P_{\Gamma \ni C_max})$$

$$\Delta W = W(P_{\Gamma \ni C_min}) - W(P_{\Gamma \ni C})$$
(3.46)

Составляющие выражений 3.46 типа W(P) рассчитываются на основании итерационного алгоритма расчета водно-энергетического режима по заданной мощности, описанного в 3.2.1. После расчета объемов попусков воды превышающий над объемом $W(P_{max})$ или недостаточный до объема $W(P_{min})$ необходимо распределить его по интервалам в соответствии с относительным вектор-градиентом $\nabla F'_i$ (3.47) по выражению 3.45.

3.2.3.4. Алгоритм ввода в допустимую область при нарушении ограничений по максимальным перетокам мощности в контролируемых сечениях

При превышении перетока мощности в каком-либо сечении элементов электрической сети над максимальным значением необходимо определить на сколько изменить мощность ГЭС для того, чтобы расчетный переток мощности стал равным максимальному.

Рассмотрим возможность применения матриц чувствительности для определения связи между перетоками в ветвях модели и мощностями узлов [11, 31, 32, 36, 45, 76].

Для этого запишем уравнения установившегося режима в виде 3.47.

$$W(X,D) = 0 (3.47)$$

где X — вектор зависимых переменных (нерегулируемых параметров) режима;

D — вектор исходных данных;

W — вектор-функция небалансов мощностей в узлах.

Компонентами вектора D являются заданные активные P и реактивные Q мощности в узлах генерации, нагрузки узлов потребления. Уравнения установившегося режима 3.47 определяют неявную функцию X(D), т.е. неявную зависимость зависимых переменных от исходных данных. Матрицей

чувствительности называется матрица чатсных производных $\partial X/\partial D$. Производная неявной функции определяется по выражению 3.48.

$$\frac{\partial X}{\partial D} = -\left(\frac{\partial W}{\partial X}\right)^{-1} \frac{\partial W}{\partial D} \tag{3.48}$$

где $\frac{\partial W}{\partial x}$ — матрица Якоби уравнений установившегося режима, описанная выражением 3.41;

 $\frac{\partial W}{\partial D}$ -матрица частных производных вектор-функции по исходным данным.

Расчет установившегося режима с помощью матрицы чувствительности состоит в определении измененного вектора X по выражению 3.49.

$$X = X_0 + \frac{\partial X}{\partial D} \Delta D$$

$$\Delta X = \frac{\partial X}{\partial D} \Delta D$$
(3.49)

В связи с тем, что модель электрической сети представлена линейными уравнениями установившегося режима, запишем выражение матрицы чувствительности для линейных уравнений.

При записи уравнений установившегося режима в линейной форме, т.е. не зависящими от напряжений, элементы матрицы Якоби также становятся не зависящими от напряжений. Таким образом для линейных уравнений матрица Якоби равна матрице коэффициентов системы дейстивтельных уравнений баланса токов (3.50).

$$\frac{\partial W}{\partial X} = \begin{bmatrix} G & -B \\ B & G \end{bmatrix} \tag{3.50}$$

Подставляя выражение (3.50) в (3.48) получаем общее выражение матрицы чувствительности узловых напряжений для линейных уравнений установившегося режима.

$$\frac{\partial X}{\partial D} = -\begin{bmatrix} G & -B \\ B & G \end{bmatrix}^{-1} \cdot \frac{\partial W}{\partial D} \tag{3.51}$$

Однако это выражение только связывает напряжения в узлах модели

электрической сети с задающими мощностями в узлах. Для того, чтобы перейти к связи между перетоками мощности в ветвях модели электрической сети и задающими мощностями в узлах, выразим изменение перетоков мощности в ветвях через изменения задающих мощностей в узлах.

$$\frac{\partial X}{\partial D} = -U_0 \cdot Y_d \cdot M^T \cdot \begin{bmatrix} G & -B \\ B & G \end{bmatrix}^{-1} \cdot \frac{\partial W}{\partial D}$$
 (3.52)

где U_0 - базисное напряжение,

 Y_d - диагональная матрица проводимостей ветвей,

 M^T - транспонированная матрица инцидентности.

В результате выражение (3.52) описывает зависимость изменений перетоков мощности в ветвях модели электрической сети от изменений задающих мощностей в узлах для линейных уравнений установившегося режима.

В качестве подтверждения аналитического выражения связи изменения перетоков мощности в ветвях модели электрической сети от изменений задающих мощностей в узлах (3.52) рассчитаем два режима электрической схемы, топология которой изображена на рисунке 3.3, определим отклонения результатов расчета и сравним отклонения с приращениями, рассчитанными на основании матрицы чувствительности. В качестве исходных данных по узлам модели для первого режима, будем использовать данные таблицы 3.5. Для расчета второго режима увеличим активную мощность генерации узла №2 на 30 МВт.

Результаты расчета представим в таблице 3.8 в виде отклонений действительной части напряжений по узлам и в таблице 3.9 в виде отклонений перетоков активной мощности по ветвям.

Таблица 3.8 - Результаты расчета режима. Напряжения в узлах

Номер	U1 кВ	U2, кВ	dU = U2-U1,	dU рассчитанное с
узла	(Р _{узла№2} =106МВт)	(Р _{узла№2} =136МВт)	кВ	помощью матрицы
				чувствительности, кВ
1	211,5	212,3	0,784	0,784
2	218,0	219,4	1,412	1,412

Продолжение таблицы 3.8

Номер	U1 кВ	U2, кВ	dU = U2-U1,	dU рассчитанное с
узла	(Р _{узла№2} =106МВт)	(Р _{узла№2} =136МВт)	кВ	помощью матрицы
				чувствительности, кВ
3	213,2	214,0	0,812	0,812
4	209,1	209,9	0,807	0,807
5	208,1	208,9	0,801	0,801
6	208,9	209,7	0,795	0,795
7	213,3	214,1	0,798	0,798
8	209,4	210,2	0,799	0,799
9	211,5	212,3	0,803	0,803
БУ	220,0	220,0	0,000	0,000

Таблица 3.9 – Результаты расчета режима. Перетоки активной мощности по ветвям

Номер	Номер	Р1 кВ	Р2, кВ	dP =	dP рассчитанное с
узла	узла	(Р _{узла№2} =106МВт)	(Р _{узла№2} =136МВт)	P2-P1,	помощью
начала	конца			кВ	матрицы
ветви	ветви				чувствительности,
					кВ
БУ	1	83,5	68,3	-15,2	-15,2
БУ	3	53,5	38,7	-14,8	-14,8
1	2	-54,1	-67,9	-13,8	-13,8
2	3	51,9	68,1	16,2	16,2
1	6	27,5	26,2	-1,3	-1,3
3	4	45,5	46,8	1,3	1,3
5	6	47	47,2	0,2	0,2
5	4	38	37,8	-0,2	-0,2
6	4	-10,2	-11	-0,9	-0,9

Продолжение таблицы 3.9

Номер	Номер	Р1 кВ	Р2, кВ	dP =	dP рассчитанное с
узла	узла	(Р _{узла№2} =106МВт)	(Рузла№2=136МВт)	P2-P1,	помощью
начала	конца			кВ	матрицы
ветви	ветви				чувствительности,
					кВ
6	7	-15,3	-15,6	-0,3	-0,3
4	9	-30,7	-30,4	0,3	0,3
7	9	-10,9	-11,1	-0,1	-0,1
7	8	55,6	55,5	-0,1	-0,1
8	9	-38,4	-38,5	-0,1	-0,1

Из результатов расчета следует, что отклонения зависимых параметров, рассчитанных на основании матрицы чувствительности, точно соответствуют отклонениям, рассчитанным на основании двух результатов расчета решений линейных уравнений узловых напряжений. Это теоретически объясняется линейностью моделей и независимостью коэффициентов чувствительности от напряжений. Поэтому при превышении максимального перетока в какой-нибудь ветви необходимо на основании коэффициентов чувствительности определить требуемое изменение мощности в узлах.

Существует два пути решения поставленной задачи: с помощью точных алгоритмов и с помощью итерационных алгоритмов. Точные алгоритмы однозначно определяют место электроэнергетического режима энергосистемы относительно области допустимых режимов и вводят режим в допустимую область. В то время как итерационные алгоритмы постепенно приближаются к области допустимых режимов на основании выбранного направления и шага.

В случае учета станционных ограничений было использованы точные алгоритмы ввода режима в допустимую область. Для учета ограничений по электрической сети это возможно, решив систему уравнений (3.53).

$$\sum_{i=1}^{n} \Delta P_i \cdot S_{ij} = P_{\text{KC}j} - P_{\text{MД\Pi}j}$$
(3.53)

где ΔP_i – изменение мощности узла генерации i,

 S_{ij} – коэффициент чувствительности узла i к контролируемому сечению j,

 $P_{\kappa c j}$ и $P_{\mathrm{MД\Pi} j}$ — расчетный и максимально допустимый переток в сечении j.

Однако алгоритм расчета состояния системы построен таким образом (рисунок 3.4), что на первом этапе рассчитывается водно-энергетический режим гидроэлектростанций и далее рассчитывается электроэнергетический режим энергосистемы. В таком вычислительном процессе возникают случаи, когда регулировочной способности тепловых электростанций бывает недостаточно для ликвидации превышения максимально-допустимых перетоков мощности в контролируемых сечениях, а значит решение системы уравнений (3.53) отсутствует. В этом случае необходимо либо дополнять левую часть системы уравнений произведениями изменений мощности ΔP и коэффициентов чувствительности S для узлов генерации ГЭС. Еще одним способом преодолеть эти случаи является переход к итерационным расчетам.

Алгоритм ввода в допустимую область при нарушении ограничений по условию баланса электроэнергии в энергосистеме реализуется аналогичным образом, дополнив состав контролируемых сечений балансовыми сечениями смежных энергосистем.

Выводы по главе 3

В связи с особенностями математической модели и наличием большого количества ограничений выбран градиентный метод оптимизации. Определена целевая функция, выраженная как сумма показателей эффективности. В качестве метода учитывающего ограничения исследованы метод штрафных функций и метод проекции градиента. В связи с особенностью построения алгоритмов оптимизации, в которой предусматривается два этапа расчета состояния системы: на первом этапе рассчитывается водно-энергетический режим работы каскада ГЭС, на втором рассчитывается электроэнергетический режим энергосистемы – в

качестве основного метода учета ограничений был выбран метод проекции градиента.

В главе разработаны и представлены основные этапы оптимизационного расчета, алгоритмы расчета состояния системы, а также алгоритмы ввода в допустимую область при нарушении различных ограничений.

В результате разработанные алгоритмы стохастической оптимизации режимов работы ГЭС обеспечивают максимальный эффект от использования электроэнергии в электроэнергетической системе и минимальные риски нарушения требований остальных водопользователей.

4. ИМИТАЦИОННЫЕ РАСЧЕТЫ РЕЖИМОВ РАБОТЫ ГЭС АНГАРО-ЕНИСЕЙСКОГО КАСКАДА, ФУНКЦИОНИРУЮЩЕГО В ОБЪЕДИНЕННОЙ ЭНЕРГОСИСТЕМЕ СИБИРИ

4.1. Описание условий функционирования Ангаро-Енисейского каскада ГЭС и исходных данных для имитационного расчета

Ангаро-Енисейский каскад ГЭС расположен на р. Ангара и р. Енисей, схема расположения изображена на рисунке 4.1 [20, 21].



Рисунок 4.1 - Схема расположения Ангаро-Енисейского каскада ГЭС

В связи с тем, что р. Ангара впадает в р. Енисей, режимы работы всех ГЭС, расположенных на этих реках, связаны общим гидрологическим режимом. Помимо общности гидрологического режима ГЭС Ангаро-Енисейского каскада связаны электроэнергетическим режимом, функционируя в составе объединенной

энергетической системы Сибири, упрощенная структурная схема которой изображена на рисунке 4.2.

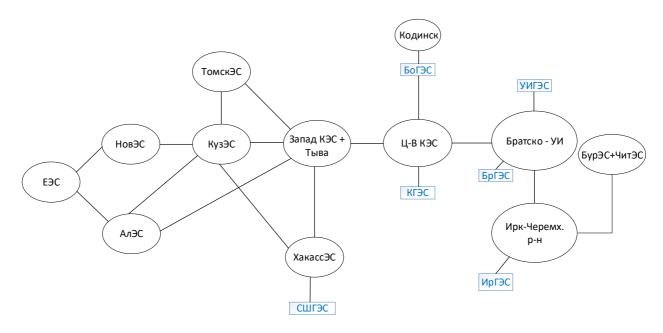


Рисунок 4.2 - Упрощенная структурная схема электроэнергетической системы Сибири с выделением расположения ГЭС Ангаро-Енисейского каскада

В качестве исходных данных по энергосистеме используем объемы потребления и регулировочного диапазона электростанций объединенной энергетической системы Сибири, представленные в таблице 4.1.

Таблица 4.1 – Исходные параметры по энергосистеме

Период	Максимальная	Минимальная	Потребление,
	мощность	мощность	МВт
	электростанций,	электростанций,	
	МВт	МВт	
Май	15727	4754	22026
Июнь	12764	3566	20377
Июль	12245	3521	20094
Август	12929	3826	20655
Сентябрь	15862	4652	22653

Продолжение таблицы 4.1

Период	Максимальная	Минимальная	Потребление,
	мощность	мощность	МВт
	электростанций,	электростанций,	
	МВт	МВт	
Октябрь	17821	6824	24419
Ноябрь	20052	8489	26734
Декабрь	20671	9024	28161
Январь	20797	10388	27614
Февраль	20323	10076	26700
Март	19684	7823	25486
Апрель	17311	6638	23807

В любой энергосистеме присутствуют некоторые контролируемые сечения элементов электрической сети [3], обусловленные недостаточной пропускной способностью входящих в эти сечения ЛЭП, трансформаторов, выключателей и т.д. В объединенной энергетической системе Сибири достаточно большое количество контролируемых сечений, но в расчете будут использованы некоторые основные контролируемые сечения в системообразующей сети 500 кВ. Расположение контролируемых сечений на схеме изображено на рисунке 4.3.

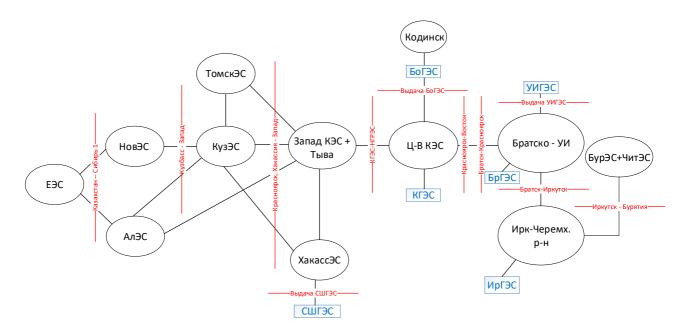


Рисунок 4.3 - Упрощенная структурная схема ОЭС Сибири с нанесенными контролируемыми сечениями

В качестве значений максимально допустимых перетоков мощности используем значения, определенные на основании анализа регламентных отчетов АТС о результатах расчетов рынка на сутки вперед [53]. Для упрощения расчетов для всех периодов выберем одно значение максимально-допустимого перетока мощности.

Таблица 4.2 — Значения максимально-допустимых перетоков мощности в контролируемых сечениях

		МДП в	МДП в
		прямом	обратном
№	Наименование	направлении	направлении
1	Казахстан – Сибирь 1	1700	1900
2	Кузбасс – Запад	1750	-
3	Красноярск, Кузбасс – Запад	2400	-
4	Красноярск – Запад	2250	-
5	Красноярск, Хакасия – Запад	3750	-
6	Назаровское	1700	1500

Продолжение таблицы 4.2

		МДП в	МДП в
		Прямом	Обратном
№	Наименование	направлении	направлении
7	Выдача мощности СШГЭС	5250	-
8	Красноярская ГЭС – Назаровская ГРЭС	1700	1550
9	Выдача мощности БоГЭС	2400	-
10	Енисей – Красноярская ГЭС	1350	-
11	Тайшет, Ангара – Запад	1750	-
12	Красноярск – Восток	1900	-
13	Братск – Красноярск	1900	1650
14	Братск – Иркутск	2000	-
15	Иркутск – Бурятия	565	-
16	Бурятия – Чита	280	-

Графики изменения притоков воды в водохранилища Енисейского каскада ГЭС и Ангарского каскада ГЭС, изображены на рисунках 4.4-4.8. Значения притоков воды для каждого водохранилища размещены в Приложении Б.

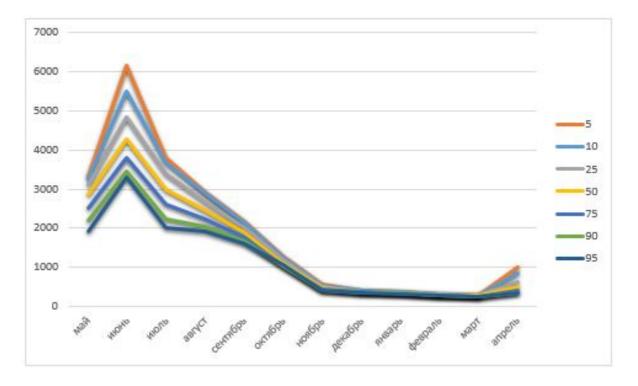


Рисунок 4.4 - Гидрограф притоков воды в водохранилище Саяно-Шушенской ГЭС

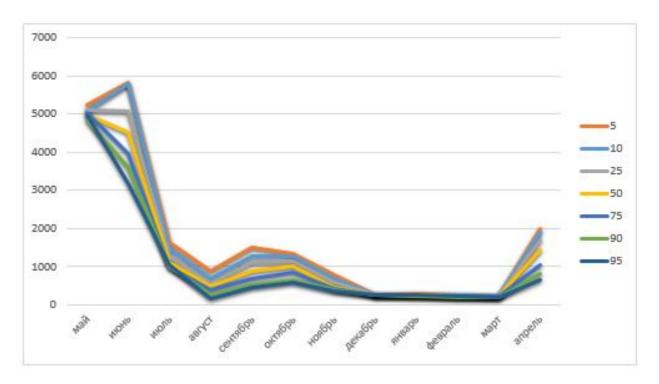


Рисунок 4.5 - Гидрограф притоков воды в водохранилище Красноярской ГЭС

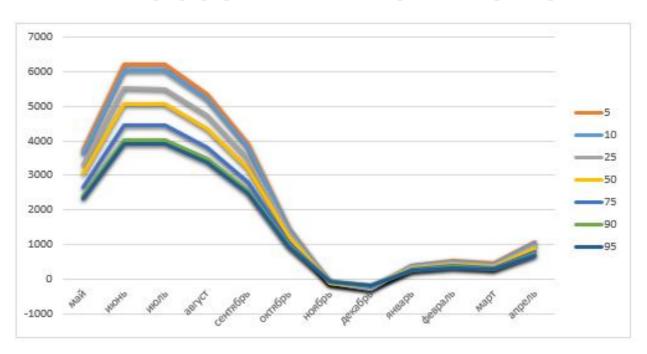


Рисунок 4.6 - Гидрограф притоков воды в водохранилище Иркутской ГЭС

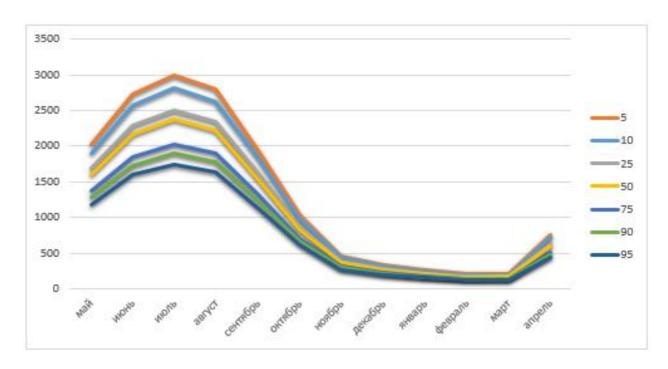


Рисунок 4.7 - Гидрограф притоков воды в водохранилище Братской ГЭС

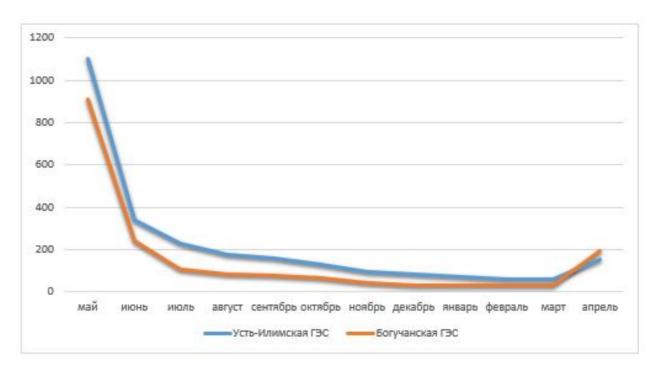


Рисунок 4.8 - Гидрограф притоков воды в водохранилище Усть-Илимской ГЭС и Богучанской ГЭС

В связи с относительно небольшими объемами притока воды в водохранилища Усть-Илимской ГЭС и Богучанской ГЭС изображены гидрографы притоков воды равные норме.

При управлении режимами работы ГЭС Ангаро-Енисейского каскада в течение года выделяют следующие характерные периоды:

- Период весеннего половодья с 01.05 по 01.07 (для Иркутской ГЭС и 1) Братской ГЭС до 01.08). Характеризуется высокими значениями притока воды в водохранилища, в зависимости от которых принимаются различные решения. В общем случае в нормальной ситуации происходит наполнение водохранилищ при навигационных В нижний бьеф. При расходов водохранилищ ГЭС в некоторых случаях существуют ограничения интенсивности наполнения, так, например, при наполнении или сработке водохранилища Саяно-Шушенской ГЭС уровень водохранилища не должен превышать предельных значений, однако в связи с неопределенностью расчетов предельных значений в расчетах их учитывать не будем.
- 2) Период летней межени с 01.07 по 01.08. Характеризуется спадом приточности. В общем случае уровень водохранилищ стабилизируется при условиях навигационных расходов в нижний бьеф. Важной задачей на этом этапе является определение такого режима работы ГЭС, при котором на конец периода должен быть запас по водохранилищам для аккумуляции дождевого паводка.
- 3) Период дождевых паводков с 01.08 по 01.10. Характеризуется повышенными притоками воды в водохранилища ГЭС. Зачастую объем дождевого паводка является непредсказуемым, поэтому превышение уровня водохранилищ, которые обеспечивают запас по водохранилищам для аккумуляции дождевого паводка, возможно только к концу периода.
- 4) Период зимней межени с 01.10 по 01.05. Характеризуется небольшими притоками воды в водохранилища ГЭС. Поэтому в этом периоде срабатывается накопленный полезный объем водохранилищ обязательными навигационными расходами в период с 01.10 по 25.10 и балансовыми расходами, рассчитанными для достижения к концу периода минимального уровня водохранилищ. Внутри периода выделяют период ледостава, характеризующийся

повышенными рисками затопления населенных пунктов, расположенных в нижнем бъефе ГЭС, и как следствие ограничениями максимального расхода воды.

В качестве основных значений требований таких групп водопользователей как водоснабжение населённых пунктов и водный транспорт примем значения, указанные в таблицах 4.3. и 4.4. Стоит отметить, что в качестве требований водоснабжения населённых пунктов выберем показатели минимального расхода воды в нижний бьеф для каждой ГЭС, так как в нижнем бьефе каждой ГЭС Ангаро-Енисейского каскада расположен населенный пункт, а в качестве требований водного транспорта выберем показатели минимального расхода воды в нижний бьеф для Красноярской ГЭС и Богучанской ГЭС, режим которых в большей степени характеризует надежность функционирования водного транспорта на р. Ангара и р. Енисей.

Таблица 4.3 – Значения требований водного транспорта

Период	в/п Красноярск	в/п Енисейск	в/п Богучаны	в/п Татарка
	M^3/c	M^3/c	м ³ /с	м ³ /с
май	2700	4500	2800	2000
июнь	2900	4500	2800	2800
июль	3000	5500	2800	2800
август	3000	5500	2800	2900
сентябрь	3000	5500	2800	2900
октябрь	2800	5500	2800	2900
ноябрь	1800	3800	2000	2000
декабрь	1800	3800	2000	2000
январь	1800	3800	2000	2000
февраль	1800	3800	2000	2000
март	1800	3800	2000	2000
апрель	1800	3800	2000	2000

Таблица 4.4 – Значения требований водного транспорта

Период	СШГЭС	МГЭС	КГЭС	ИрГЭС	БрГЭС	УИГЭС	БоГЭС
	M^3/c						
май	700	700	1800	1300	1000	2000	2000
июнь	700	700	1800	1300	1000	2000	2000
июль	700	700	1800	1300	1000	2000	2000
август	700	700	1800	1300	1000	2000	2000
сентябрь	700	700	1800	1300	1000	2000	2000
октябрь	700	700	1800	1300	1000	2000	2000
ноябрь	700	700	1800	1300	1000	2000	2000
декабрь	700	700	1800	1300	1000	2000	2000
январь	700	700	1800	1300	1000	2000	2000
февраль	700	700	1800	1300	1000	2000	2000
март	700	700	1800	1300	1000	2000	2000
апрель	700	700	1800	1300	1000	2000	2000

Произведем оптимизационные расчеты режимов работы ГЭС с использованием программного комплекса «Программа расчета оптимальных режимов гидроэлектростанций Ангаро-Енисейского каскада» для указанных выше наборов исходных данных. В качестве расчетного периода выберем гидрологический год с мая по апрель следующего года.

В связи с тем, что результаты оптимизационных расчетов выражаются в достаточно большом объеме данных, в следующих пунктах будут отображены только значения целевой функции в табличном виде и значения рисков нарушения требований основных групп водопользователей в графическом виде. Остальные данные, водно-энергетические показатели режимов работы ГЭС и перетоки мощности в контролируемых сечениях, приведены в Приложении В.

4.2. Оптимизационный расчет долгосрочных режимов работы Ангаро-Енисейского каскада ГЭС для объема годового притока равного 95 % обеспеченности

Таблица 4.5 — Составляющие целевой функции оптимизационных расчетов для объема годового притока равного 95 % обеспеченности

Экономика	Максимальные	Максимальные	Максимальные	Итог
	риски по	риски по	риски по ЭС	
	водоснабжению	водному		
		транспорт		
3,233	97,747	97,747	1,786	200,512

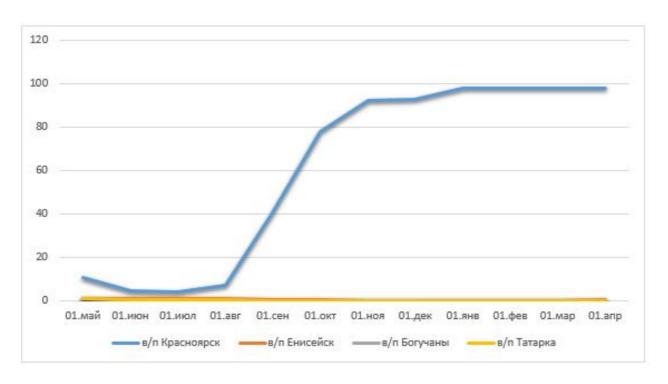


Рисунок 4.9 - Результаты оптимизационного расчета рисков нарушения требований обеспечения водного транспорта для объема годового притока равного 95 % обеспеченности

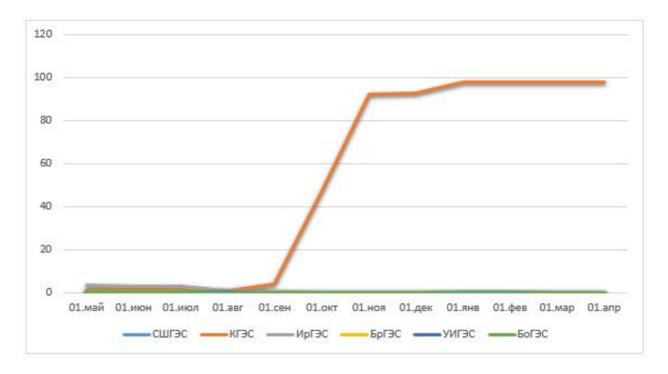


Рисунок 4.10 - Результаты оптимизационного расчета рисков нарушения требований водоснабжения для объема годового притока равного 95 % обеспеченности

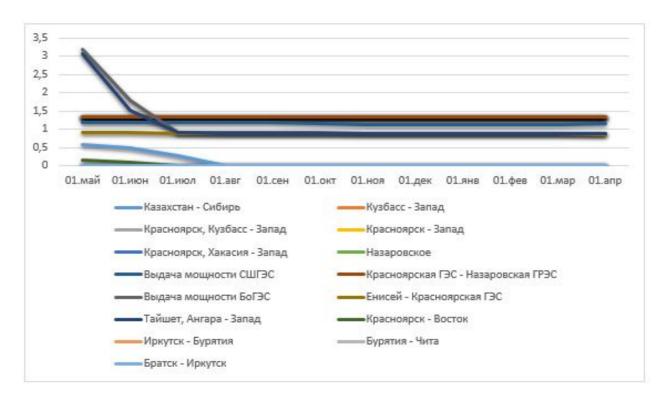


Рисунок 4.11 - Результаты оптимизационного расчета рисков нарушения требований энергосистемы для объема годового притока равного 95 % обеспеченности

Результаты расчетов показывают высокие риски нарушения требований водоснабжения по Красноярской ГЭС и требований водного транспорта по в/п Красноярск. Это обусловлено особенностью исходных данных, в которых учтен минимальный уровень водохранилища Красноярской ГЭС равный 230 м. Результат показывает, что при притоке воды с мая по октябрь, соответствующим обеспеченности, отсутствует возможность обеспечения водохранилища до минимальной отметки 230 м с учетом поддержания Такой требуемого расхода воды. результат подтверждается правилами Красноярского использования водных ресурсов гидроузла, котором указывается:

- необходимость приостановления навигации при условиях малой водности;
- возможность использования объема водохранилища в пределах отметок от 225 м до 230 м при условиях малой водности.

Исходя из описанных условий, скорректируем минимальный уровень водохранилища Красноярской ГЭС на 225 м и снова проведем оптимизационные расчеты.

Таблица 4.6 — Составляющие целевой функции оптимизационных расчетов для объема годового притока равного 95 % обеспеченности и минимального уровня водохранилища Красноярской ГЭС 225 м

Экономика	Максимальные	Максимальные	Максимальные	Итог
	риски по	риски по	риски по ЭС	
	водоснабжению	водному		
		транспорт		
1,869	3,193	2,298	1,787	9,147

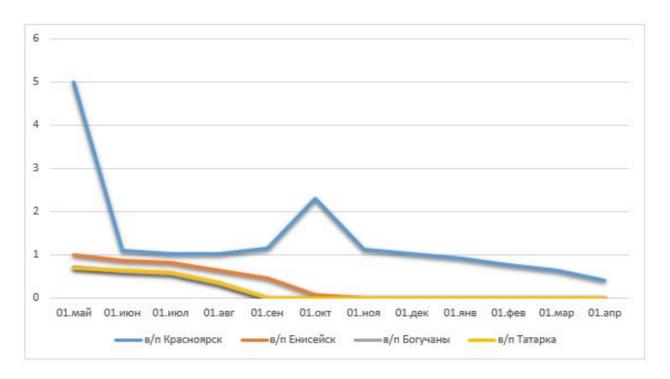


Рисунок 4.12 - Результаты оптимизационного расчета рисков нарушения требований обеспечения водного транспорта для объема годового притока равного 95 % обеспеченности и минимального уровня водохранилища Красноярской ГЭС 225 м

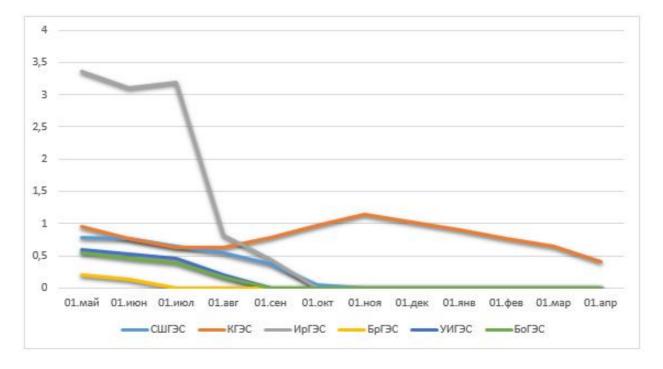


Рисунок 4.13 - Результаты оптимизационного расчета рисков нарушения требований водоснабжения для объема годового притока равного 95 % обеспеченности и минимального уровня водохранилища Красноярской ГЭС 225 м

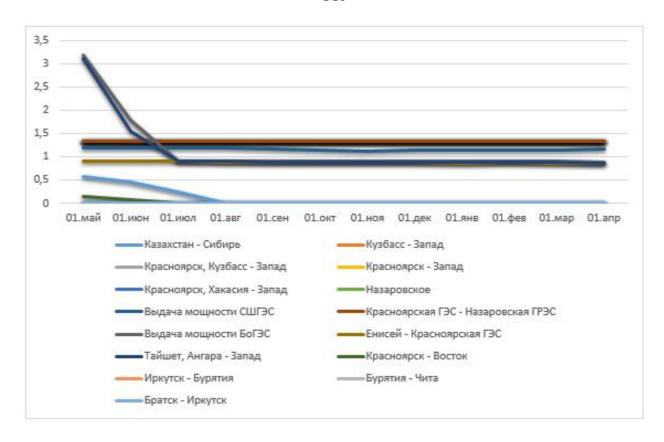


Рисунок 4.14 - Результаты оптимизационного расчета рисков нарушения требований энергосистемы для объема годового притока равного 95 % обеспеченности и минимального уровня водохранилища Красноярской ГЭС 225 м

Результаты показывают, что обеспечить навигацию в заявленном объеме возможно только при сработке водохранилища до отметки ниже 230 м. В связи с тем, что такая глубокая сработка водохранилища еще больше увеличивает риски на следующий год, возможно изменение условий функционирования навигации в текущем году.

При условии сохранении требуемых объемов минимальных расходов воды и сработки водохранилища до отметки ниже 230 м максимальные риски обеспечения требований водного транспорта составляют 2,298 % на 01 октября. Это означает, что при прогнозируемом притоке воды в период после июня менее 97,702 % обеспеченности необходимо изменять условия функционирования водного транспорта. Максимальные риски нарушения требований водоснабжения в этих же условиях составляют 3,193 %. Стоит отметить, что такие риски противоречит нормам обеспечения надежности водоснабжения 99%, однако

риски рассчитывались по Иркутской ГЭС в связи с учетом минимального уровня сработки водохранилища 456 м, который может быть снижен в особо маловодный период. Максимальные риски нарушения требований энергосистемы составляют 1,787 %. Отклонение расчетной выработки электроэнергии от максимальной составило 1,869 %.

Можно наблюдать, что максимальные риски на графиках и максимальные риски в таблице 4.6 не совпадают. Это обусловлено тем, что риски рассчитываются для всех начальных уровней водохранилищ, а в целевой функции начальный уровень водохранилища в первом интервале является константой, поэтому риски на первом интервале приведены для информации и повлиять на них, изменением расходов воды, невозможно.

4.3. Оптимизационный расчет долгосрочных режимов работы Ангаро-Енисейского каскада ГЭС для объема годового притока равного 90 % обеспеченности

Таблица 4.7 — Составляющие целевой функции оптимизационных расчетов для объема годового притока равного 90 % обеспеченности

Экономика	Максимальные	Максимальные	Максимальные	Итог
	риски по	риски по	риски по ЭС	
	водоснабжению	водному		
		транспорт		
3,642	92,077	92,077	2,700	190,497

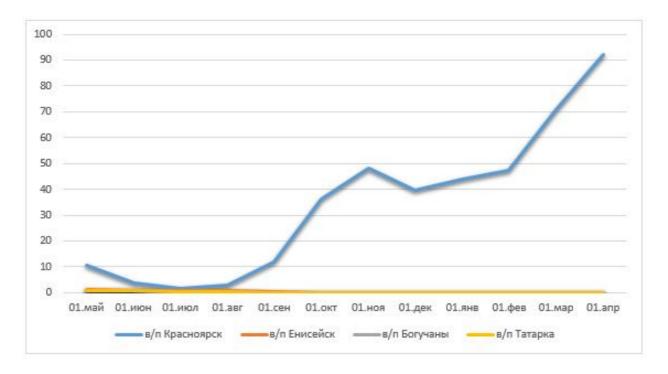


Рисунок 4.15 - Результаты оптимизационного расчета рисков нарушения требований обеспечения водного транспорта для объема годового притока равного 90 % обеспеченности

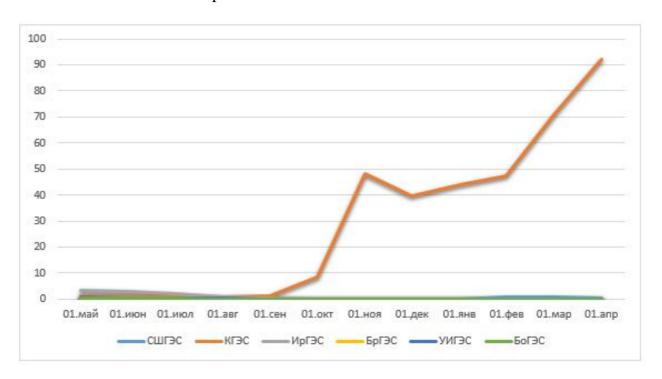


Рисунок 4.16 - Результаты оптимизационного расчета рисков нарушения требований водоснабжения для объема годового притока равного 90 % обеспеченности

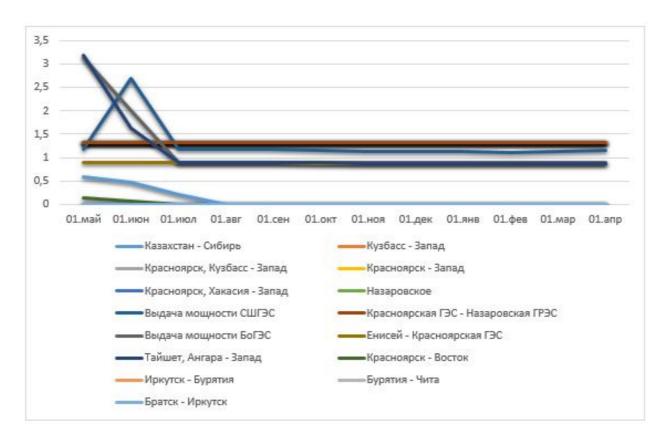


Рисунок 4.17 - Результаты оптимизационного расчета рисков нарушения требований энергосистемы для объема годового притока равного 90 % обеспеченности

Результаты расчетов показывают высокие риски нарушения требований водоснабжения по Красноярской ГЭС и требований водного транспорта по в/п Красноярск, аналогично результатам в п. 4.2.1. Исходя из описанных условий, скорректируем минимальный уровень водохранилища Красноярской ГЭС на 225 м и снова проведем оптимизационные расчеты.

Таблица 4.8 — Составляющие целевой функции оптимизационных расчетов для объема годового притока равного 90 % обеспеченности и минимального уровня водохранилища Красноярской ГЭС 225 м

Экономика	Максимальные		Максимальные	Максимальные	Итог
	риски по	o	риски по	риски по ЭС	
	водоснабжению		водному		
			транспорту		
3,379	2,763		1,090	2,700	9,932

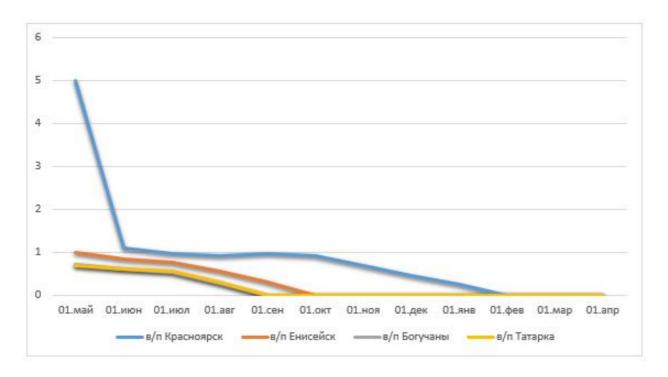


Рисунок 4.18 - Результаты оптимизационного расчета рисков нарушения требований обеспечения водного транспорта для объема годового притока равного 90 % обеспеченности и минимального уровня водохранилища Красноярской ГЭС 225 м

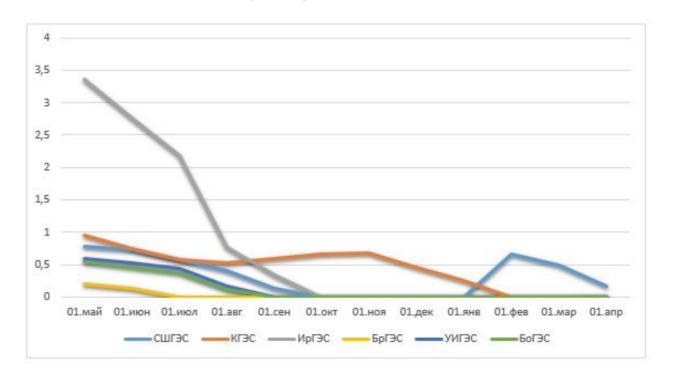


Рисунок 4.19 - Результаты оптимизационного расчета рисков нарушения требований водоснабжения для объема годового притока равного 90 % обеспеченности и минимального уровня водохранилища Красноярской ГЭС 225 м

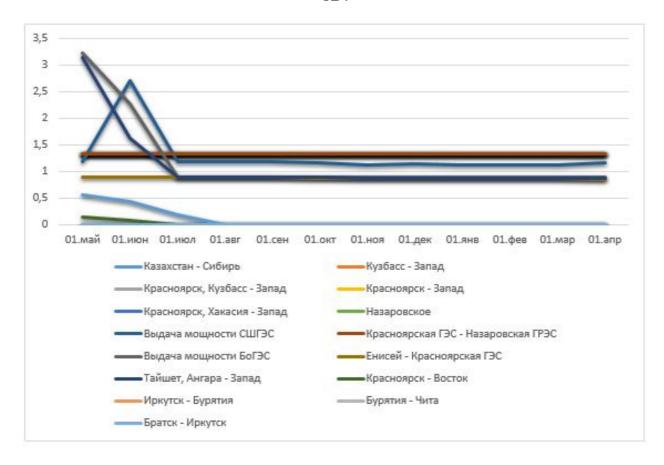


Рисунок 4.20 - Результаты оптимизационного расчета рисков нарушения требований энергосистемы для объема годового притока равного 90 % обеспеченности и минимального уровня водохранилища Красноярской ГЭС 225 м

Результаты показывают, что обеспечить навигацию в заявленном объеме возможно только при сработке водохранилища до отметки ниже 230 м, аналогично результатам при обеспеченности 95 %.

При условии сохранении требуемых объемов минимальных расходов воды и сработки водохранилища до отметки ниже 230 м максимальные риски обеспечения требований водного транспорта составляют 1,09 %. При расчетном притоке 90% обеспеченности сработка водохранилища ограничивается отметкой 228 м при условии выполнения требований водного транспорта. Максимальные риски нарушения требований водоснабжения в этих же условиях составляют 2,763 %. Максимальные риски нарушения требований энергосистемы составляют 2,7 %. Отклонение расчетной выработки электроэнергии от максимальной составило 3,379 %.

4.4. Оптимизационный расчет долгосрочных режимов работы Ангаро-Енисейского каскада ГЭС для объема годового притока равного 75 % обеспеченности

Таблица 4.9 — Составляющие целевой функции оптимизационных расчетов для объема годового притока равного 75 % обеспеченности

Экономика	Максимальные	Максимальные	Максимальные	Итог
	риски по	риски по	риски по ЭС	
	водоснабжению	водному		
		транспорту		
4,433	2,242	2,734	2,498	11,907

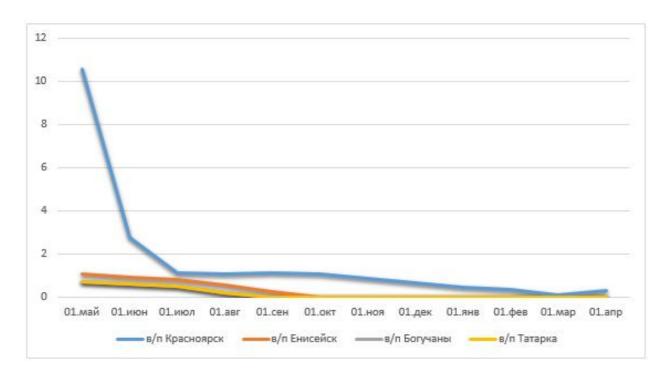


Рисунок 4.21 - Результаты оптимизационного расчета рисков нарушения требований обеспечения водного транспорта для объема годового притока равного 75 % обеспеченности

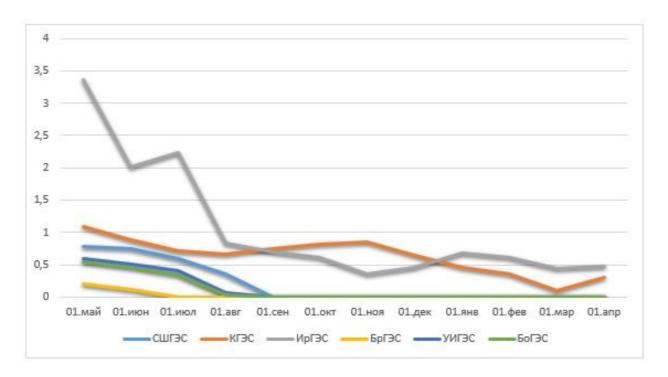


Рисунок 4.22 - Результаты оптимизационного расчета рисков нарушения требований водоснабжения для объема годового притока равного 75 % обеспеченности

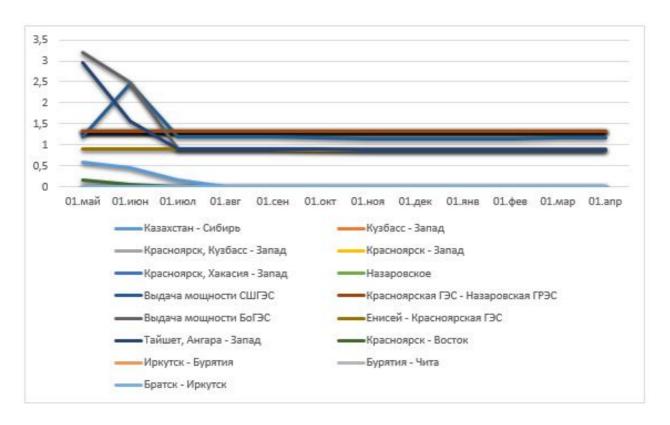


Рисунок 4.23 - Результаты оптимизационного расчета рисков нарушения требований энергосистемы для объема годового притока равного 75 % обеспеченности

Максимальные риски нарушения требований водного транспорта составляют 2,736 %. Максимальные риски нарушения требований водоснабжения составляют 2,242 %. Максимальные риски нарушения требований энергосистемы составляют 2,498 %. Отклонение расчетной выработки электроэнергии от максимальной составило 4,433 %.

4.5. Оптимизационный расчет долгосрочных режимов работы Ангаро-Енисейского каскада ГЭС для объема годового притока равного 50 % обеспеченности

Таблица 4.10 — Составляющие целевой функции оптимизационных расчетов для объема годового притока равного 50 % обеспеченности

Экономика	Максимальные	Максимальные	Максимальные	Итог
	риски по	риски по	риски по ЭС	
	водоснабжению	водному		
		транспорт		
4,171	1,619	2,012	5,452	13,255

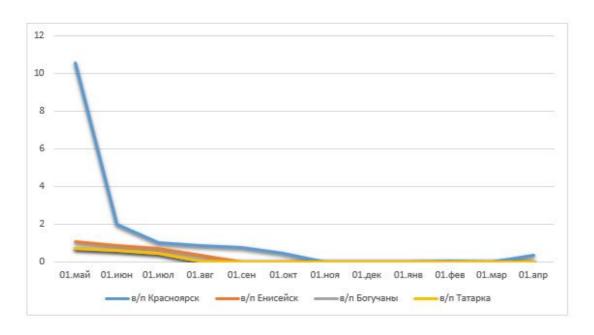


Рисунок 4.24 - Результаты оптимизационного расчета рисков нарушения требований обеспечения водного транспорта для объема годового притока равного 50 % обеспеченности

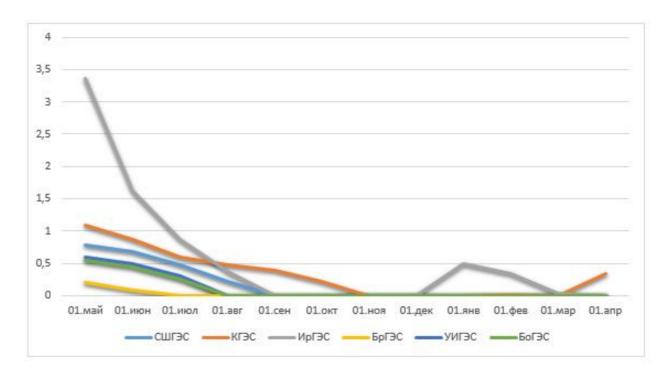


Рисунок 4.25 - Результаты оптимизационного расчета рисков нарушения требований водоснабжения для объема годового притока равного 50 % обеспеченности

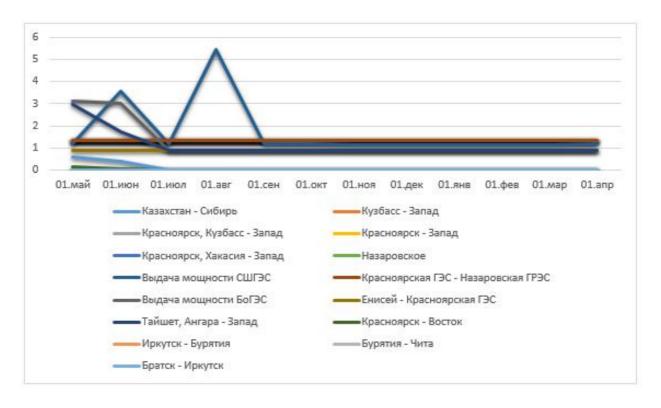


Рисунок 4.26 - Результаты оптимизационного расчета рисков нарушения требований энергосистемы для объема годового притока равного 50 % обеспеченности

Максимальные риски нарушения требований водного транспорта составляют 2,012 %. Максимальные риски нарушения требований водоснабжения составляют 1,619 %. Максимальные риски нарушения требований энергосистемы составляют 5,452 %. Отклонение расчетной выработки электроэнергии от максимальной составило 4,171 %.

4.6. Оптимизационный расчет долгосрочных режимов работы Ангаро-Енисейского каскада ГЭС для объема годового притока равного 25 % обеспеченности

Таблица 4.11 — Составляющие целевой функции оптимизационных расчетов для объема годового притока равного 25 % обеспеченности

Экономика	Максимальные	Максимальные	Максимальные	Итог
	риски по	риски по	риски по ЭС	
	водоснабжению	водному		
		транспорт		
2,208	1,456	1,922	4,686	10,270

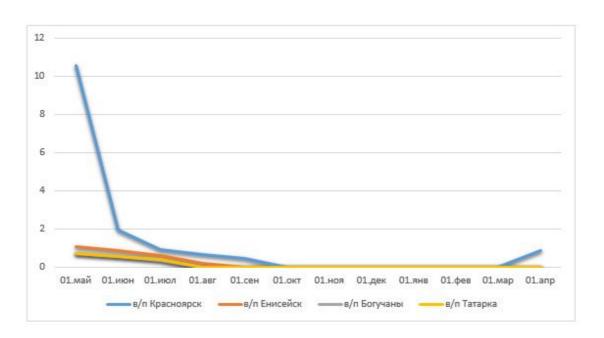


Рисунок 4.27 - Результаты оптимизационного расчета рисков нарушения требований обеспечения водного транспорта для объема годового притока равного 25 % обеспеченности

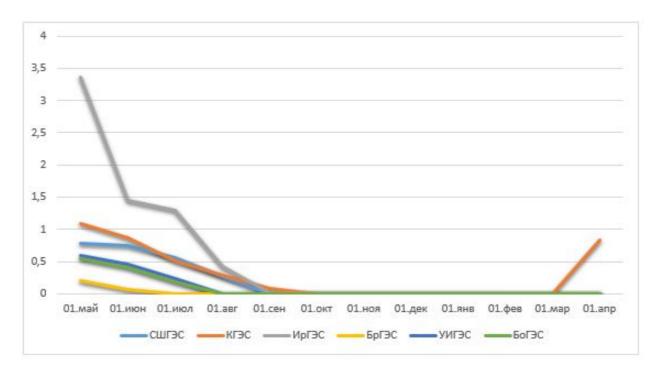


Рисунок 4.28 - Результаты оптимизационного расчета рисков нарушения требований водоснабжения для объема годового притока равного 25 % обеспеченности

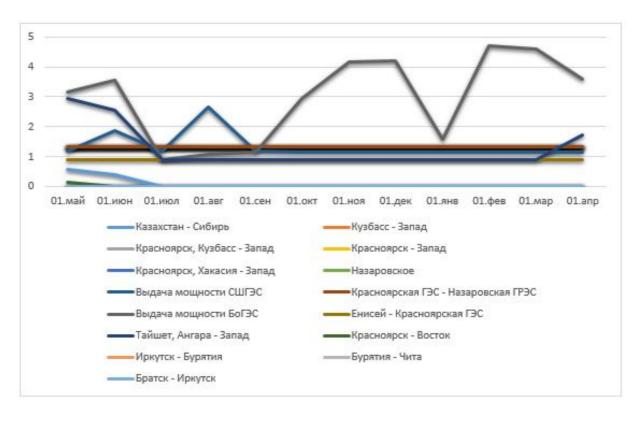


Рисунок 4.29 - Результаты оптимизационного расчета рисков нарушения требований энергосистемы для объема годового притока равного 25 % обеспеченности

Максимальные риски нарушения требований водного транспорта составляют 1,922 %. Максимальные риски нарушения требований водоснабжения составляют 1,456 %. Максимальные риски нарушения требований энергосистемы составляют 4,686 %. Отклонение расчетной выработки электроэнергии от максимальной составило 2,208 %.

4.7. Оптимизационный расчет долгосрочных режимов работы Ангаро-Енисейского каскада ГЭС для объема годового притока равного 10 % обеспеченности

Таблица 4.12 — Составляющие целевой функции оптимизационных расчетов для объема годового притока равного 10 % обеспеченности

Экономика	Максимальные	Максимальные	Максимальные	Итог
	риски по	риски по	риски по ЭС	
	водоснабжению	водному		
		транспорт		
0,542	1,272	3,187	96,770	101,771

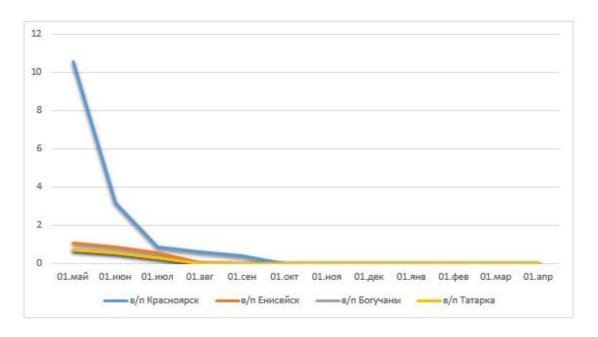


Рисунок 4.30 - Результаты оптимизационного расчета рисков нарушения требований обеспечения водного транспорта для объема годового притока равного 10 % обеспеченности

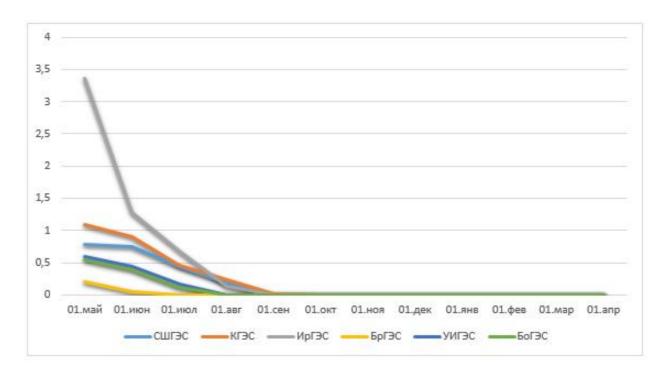


Рисунок 4.31 - Результаты оптимизационного расчета рисков нарушения требований водоснабжения для объема годового притока равного 10 % обеспеченности

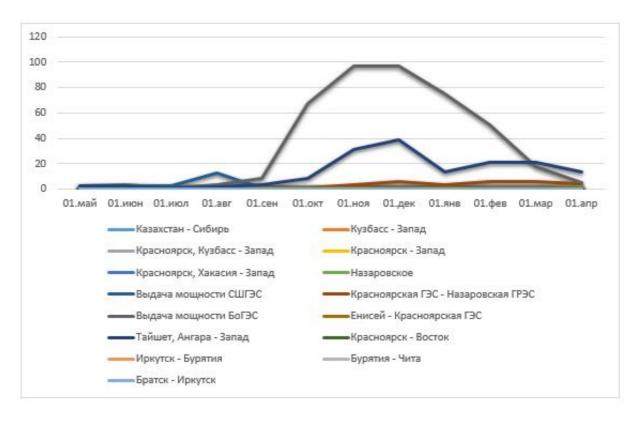


Рисунок 4.32 - Результаты оптимизационного расчета рисков нарушения требований энергосистемы для объема годового притока равного 10 % обеспеченности

Результаты расчетов показывают высокие риски нарушения требований энергосистемы по контролируемым сечениям «Выдача мощности Саяно-Шушенской ГЭС», «Выдача мощности БоГЭС» и «Тайшет, Ангара — Запад». Максимальные риски по сечению «Выдача мощности БоГЭС» равные 96,77% показывают невозможность оптимизировать режим в условиях заданных ограничений по перетокам в этом сечении и притоку равному 10% обеспеченности. Максимальные риски по сечениям «Выдача СШГЭС» равные 13,1% и «Тайшет, Ангара — Запад» равные 38,5% показывают, что при расчетных уровнях водохранилищ возможны превышения перетоков мощности, если обеспеченность притока воды в водохранилища составит более указанных величин. Так как в данном расчете принята обеспеченность притока равная 10% - перетоки в этих сечениях превышают максимально допустимые.

Для ввода режима в допустимую область по условию не превышения перетоков мощности в сечениях введем в исходные данные объемы холостых сбросов и снова проведем оптимизационные расчеты.

Таблица 4.13 — Составляющие целевой функции оптимизационных расчетов для объема годового притока равного 10 % обеспеченности

Экономика	Максимальные	Максимальные	Максимальные	Итог
	риски по	риски по	риски по ЭС	
	водоснабжению	водному		
		транспорт		
7,053	1,272	3,187	13,108	24,620

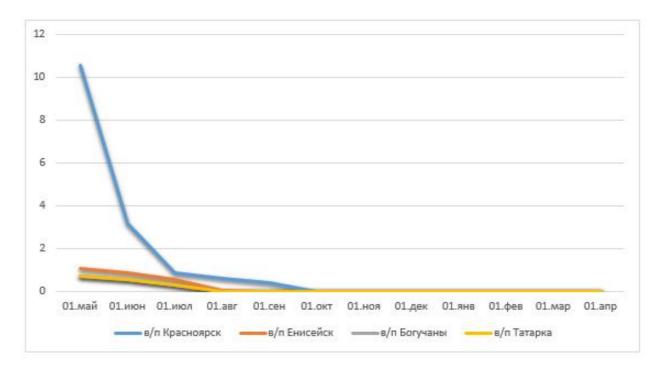


Рисунок 4.33 - Результаты оптимизационного расчета рисков нарушения требований обеспечения водного транспорта для объема годового притока равного 10 % обеспеченности

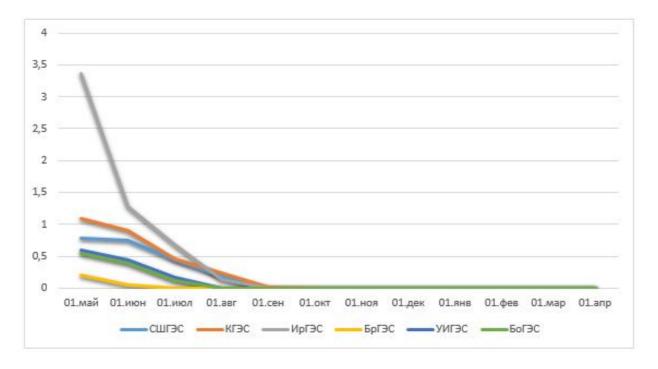


Рисунок 4.34 - Результаты оптимизационного расчета рисков нарушения требований водоснабжения для объема годового притока равного 10 % обеспеченности

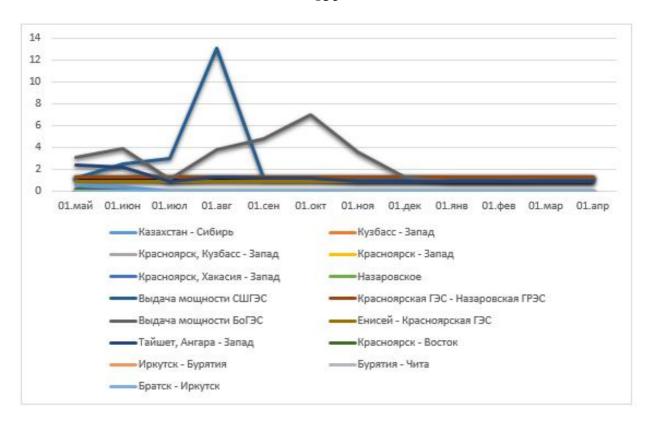


Рисунок 4.35 - Результаты оптимизационного расчета рисков нарушения требований энергосистемы для объема годового притока равного 10 % обеспеченности

Максимальные риски нарушения требований водного транспорта составляют 3,187 %. Максимальные риски нарушения требований водоснабжения составляют 1,272 %. Максимальные риски нарушения требований энергосистемы составляют 13,108 %. Отклонение расчетной выработки электроэнергии от максимальной составило 7,053 %. Высокие отклонения выработки связаны с холостыми сбросами на Саяно-Шушенской ГЭС, Братской ГЭС, Усть-Илимской ГЭС и Богучанской ГЭС.

Можно заметить, что появление в расчете холостых сбросов значительно уменьшило риски, относящиеся к ГЭС Ангарского каскада, в то время как риски, относящиеся к Саяно-Шушенской ГЭС, остались практически неизменными. В случае с ГЭС Ангарского каскада высокие риски нарушения требований энергосистемы наблюдались в период с октября по март, связанные с необходимостью сработки накопленной в водохранилищах воды к началу следующего гидрологического года. Холостые сбросы были запланированы в

период с августа по октябрь, в связи с чем объемы накопленной в водохранилищах воды к моменту наступления максимальных рисков были уменьшены. В случае с Саяно-Шушенской ГЭС высокие риски нарушения требований энергосистемы наблюдались в августе, связанные с необходимостью сработки воды для не превышения максимального уровня водохранилища. Холостые сбросы были запланированы в период с июля по август и не значительно повлияли на значение рисков нарушения требований энергосистемы.

4.8. Оптимизационный расчет долгосрочных режимов работы Ангаро-Енисейского каскада ГЭС для объема годового притока равного 5 % обеспеченности

Таблица 4.14 — Составляющие целевой функции оптимизационных расчетов для объема годового притока равного 5 % обеспеченности

Экономика	Максимальные	Максимальные	Максимальные	Итог
	риски по	риски по	риски по ЭС	
	водоснабжению	водному		
		транспорт		
2,160	1,327	1,572	98,986	104,045

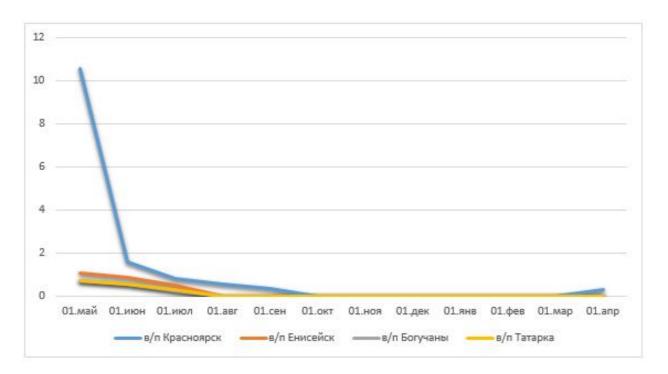


Рисунок 4.36 - Результаты оптимизационного расчета рисков нарушения требований обеспечения водного транспорта для объема годового притока равного 5 % обеспеченности

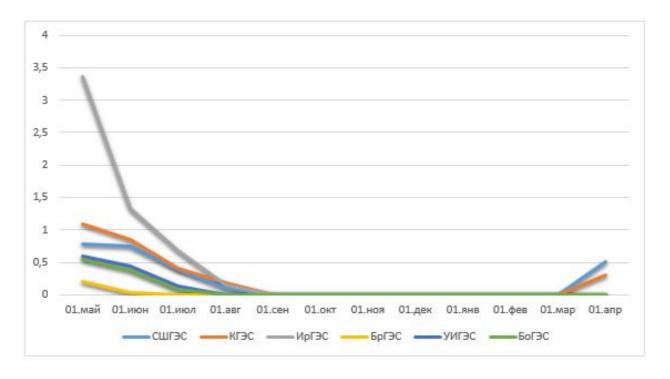


Рисунок 4.37 - Результаты оптимизационного расчета рисков нарушения требований водоснабжения для объема годового притока равного 5 % обеспеченности

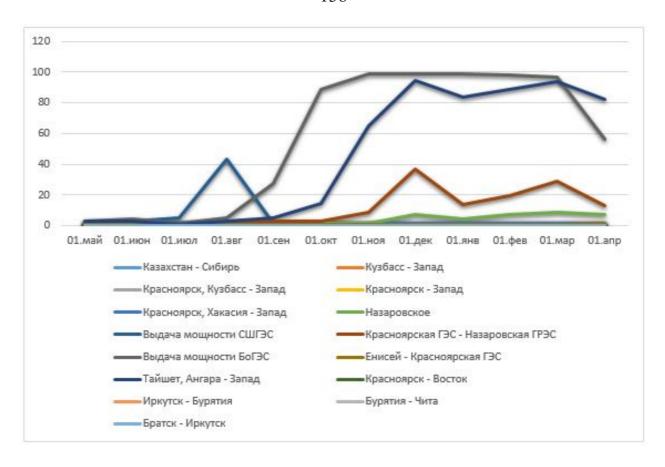


Рисунок 4.38 - Результаты оптимизационного расчета рисков нарушения требований энергосистемы для объема годового притока равного 5 % обеспеченности

Результаты расчетов показывают высокие риски нарушения требований энергосистемы по контролируемым сечениям «Выдача мощности Саяно-Шушенской ГЭС», «Выдача мощности БоГЭС», «Тайшет, Ангара — Запад», «Красноярская ГЭС — Назаровская ГРЭС» и «Назаровское», аналогично результатам расчета для притока равного 10% обеспеченности. Для ввода режима в допустимую область по условию не превышения перетоков мощности в сечениях введем в исходные данные объемы холостых сбросов и снова проведем оптимизационные расчеты.

Таблица 4.15 — Составляющие целевой функции оптимизационных расчетов для объема годового притока равного 5 % обеспеченности

Экономика	Максимальные	Максимальные	Максимальные	Итог
	риски по	риски по	риски по ЭС	
	водоснабжению	водному		
		транспорт		
13,752	1,327	1,572	43,424	60,075

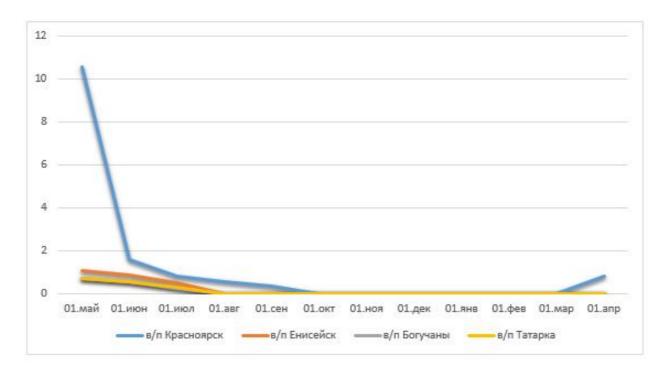


Рисунок 4.39 - Результаты оптимизационного расчета рисков нарушения требований обеспечения водного транспорта для объема годового притока равного 5 % обеспеченности

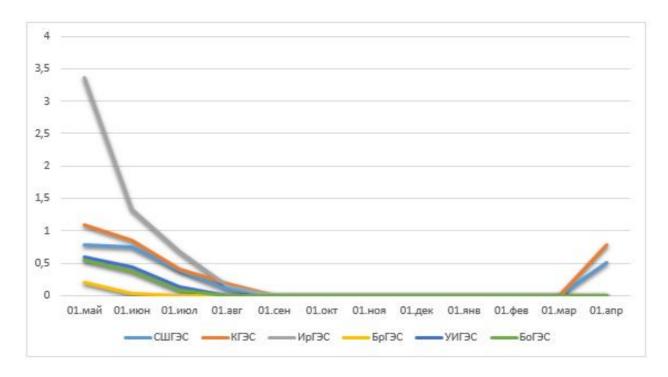


Рисунок 4.40 - Результаты оптимизационного расчета рисков нарушения требований водоснабжения для объема годового притока равного 5 % обеспеченности

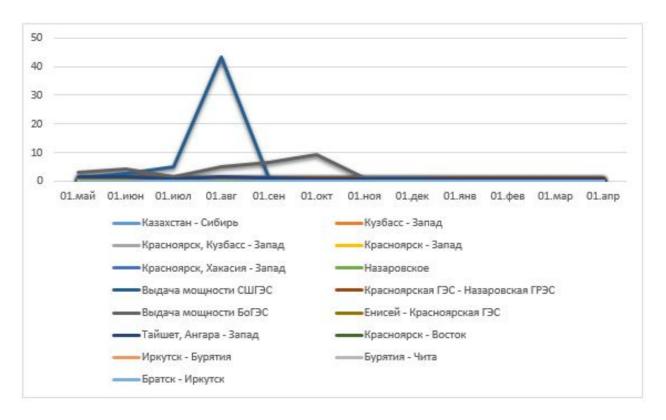


Рисунок 4.41 - Результаты оптимизационного расчета рисков нарушения требований энергосистемы для объема годового притока равного 5 % обеспеченности

Выводы по главе 4

При притоке 95% и 90% обеспеченности в связи с высокими рисками нарушения требований водного транспорта и водоснабжения г. Красноярска необходимо срабатывать водохранилище Красноярской ГЭС ниже 230 м.

При притоке 10% и 5% обеспеченности в связи с высокими рисками нарушения требований энергосистемы необходимо осуществлять холостые сбросы:

- на Саяно-Шушенской ГЭС для не превышения максимальных перетоков в сечении «Выдача мощности СШГЭС»;
- на Братской ГЭС, Усть-Илимской ГЭС и Богучанской ГЭС для не превышения максимальных перетоков в сечениях «Выдача мощности БоГЭС», «Тайшет, Ангара Запад»;
- на Красноярской ГЭС для не превышения максимальных перетоков в сечениях «Красноярская ГЭС Назаровская ГРЭС», «Назаровское».

В ходе оптимизационных вычислений математическая модель реализует такой режим работы ГЭС, при котором сумма рисков и отклонение суммарной выработки от оптимального значения, является минимальной. Из результатов показателей целевой функции, представленной в таблицах 4.5-4.15, видно, что при минимальном значении целевой функции, составляющие могут отличаться друг от друга. Это может свидетельствовать о не равноправном распределении общей эффективности между участниками процесса, однако стоит отметить о наличии в оптимизационной функции системы ограничений. В условиях наличия системы ограничений оптимизационная модель сводит к минимуму отличия между составляющими целевой функции до момента выхода за допустимую область, и так как период возникновения максимальных рисков по одним требованиям не совпадает с периодом возникновения максимальных рисков по другим требованиям возникают вышеупомянутые отклонения.

Анализ эффективности действия оптимизационной модели возможно провести на основании оценки оптимальных режимов работы Саяно-Шушенской ГЭС, представленных в виде графиков на рисунке 4.42.

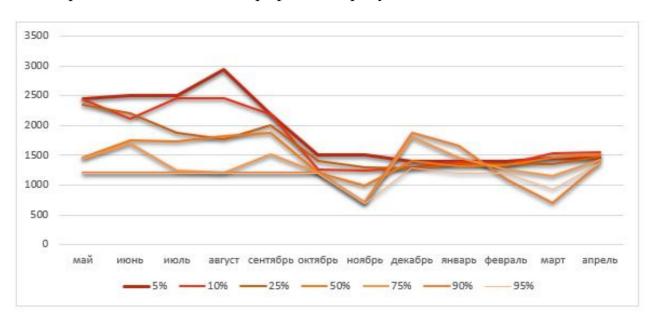


Рисунок 4.42 - Оптимальные режимы Саяно-Шушенской ГЭС

В 75-95% условиях низкой приточности обеспеченностью оптимизационная модель реализует притоки близкие к минимальным в навигационный период (с мая по октябрь) для минимизации рисков по требованиям водного транспорта и водоснабжения, а накопленный запас воды в основном расходуется в период с декабря по январь, характеризующийся максимальным потреблением энергосистеме, ДЛЯ снижения рисков возникновения дефицита в энергосистеме.

В условиях средней и повышенной приточности 25-50% оптимизационная модель реализует компромиссные режимы, обеспечивающие минимальные риски нарушения требований в условиях заданной системы ограничений.

В условиях высокой приточности 5%-10% оптимизационная модель увеличивает расходы воды в период с мая по август, для снижения рисков превышения перетоков в сечении «Выдача мощности СШГЭС», в дополнение к этому в процессе расчета были добавлены холостые сбросы в период с июля по август. В период с сентября по апрель оптимизационная модель реализует

равномерный расход для снижения рисков возникновения избытка в энергосистеме.

Полученные результаты имитационных расчетов режимов работы Ангаро-Енисейского каскада ГЭС доказывают адекватность предлагаемых методик и алгоритмов.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

Основной результат работы заключается в разработке методики и алгоритмов стохастической оптимизации для планирования долгосрочных водноэнергетических режимов гидроэнергетических систем, обеспечивающей эффект от использования электроэнергии в энергетической максимальный требований системе И минимальные риски нарушения остальных водопользователей.

В работе решены следующие задачи:

- 1. Разработана методика расчета показателей эффективности, учитывающая исходные параметры вероятностной природы. Показатели эффективности выражают риски нарушения требований основных категорий водопользователей и других зависящих от режимов работы гидроэнергетических систем технологических процессов.
- 2. Разработана методика и алгоритмы стохастической оптимизации долгосрочных режимов работы гидроэнергетических систем, функционирующих в составе энергетических систем. Основное отличие методики от существующих в том, что в дополнение к детерминированным показателям эффективности режимов работы гидроэнергетических систем и энергосистем применяются стохастические показатели, отражающие сущность непредсказуемости притока воды в водохранилища ГЭС.
- 3. Разработан программный комплекс «Программа расчета оптимальных режимов гидроэлектростанций Ангаро-Енисейского каскада» (Свидетельство о государственной регистрации программы для ЭВМ №2019661972 от 12.09.2019 г.)
- 4. Совместно со специалистами Филиала АО «СО ЕЭС» ОДУ Сибири разработан программный комплекс «Водно-энергетический расчет ГЭС Ангаро-Енисейского каскада» (Свидетельство о государственной регистрации программы для ЭВМ №2017618953 от 11.08.2017 г.) В настоящее время этот программный продукт используется в Филиалах АО «СО ЕЭС» в качестве основного средства расчета водно-энергетических режимов гидроэлектростанций.

В качестве направления развития предлагаемых решений является разработка алгоритмов стохастической оптимизации на основе эвристических методов. Целевой функцией в которых будет являться минимизация максимальных значений отклонений показателей эффективности от идеальных значений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аббасов, М.Э. Методы оптимизации / М.Э. Аббасов. СПб: Издательство «ВВМ», 2014. 664 с.
- Агасандян, Г.А. Алгоритмы построения диспетчерских правил управления каскадами водохранилищ / Г.А. Агасандян // Водные ресурсы. 1985.
 №5. С. 34-36.
- 3. Акт министерств и ведомств «Об утверждении требований к обеспечению надежности электроэнергетических систем, надежности и безопасности объектов электроэнергетики и энергопринимающих установок «Методические указания по устойчивости энергосистем»» от 03.08.2018 № 630 // Собрание актов Президента и Правительства Российской Федерации.
- 4. Акт министерств и ведомств «Об утверждении Методических указаний по разработке правил использования водохранилищ» от 26.01.2011 № 17 // интернет-ресурс:http://docs.cntd.ru/document/902260669.
- 5. Александровский, А.Ю. Теория и методы водохозяйственных и водно-энергетических расчетов каскадов ГЭС / А.Ю. Александровский : дис. ... др. Техн. Наук: 05.14.10. M, 1991. 257 с.
- 6. Александровский, А.Ю. Методика планирования выработки электрической энергии на ГЭС во втором квартале с учетом стокообразующих и климатических факторов / А.Ю. Александровский, П.С. Борщ, М.С. Подольский // Гидротехническое строительство. 2007. №4. С. 41-46.
- 7. Александровский, А.Ю. Программный комплекс «Каскад» для выполнения водохозяйственных и водноэнергетических расчетов каскадов ГЭС / А.Ю. Александровский, Б.И. Силаев, Р.В. Пугачев, А.Н. Якушов // Гидротехническое строительство. 2013. №6. С. 9-11.
- 8. Александровский, А.Ю. Алгоритм для расчета параметров работы гидроэлектростанций в графиках нагрузки энергосистемы с применением компенсированного электрического регулирования стока / А.Ю.

- Александровский, В.В. Клименко, Д.М. Волков // Вестник МЭИ. 2018. №2. С. 14-20.
- 9. Александровский, А.Ю. Годовое прогнозирование выработки Вожско-Камского каскада ГЭС в условиях изменений речного стока и водохозяйственной деятельности / А.Ю. Александровский, В.В. Клименко, О.В. Микушина, М.С. Подольский, А.Г. Терешин // Вопросы географии. – 2018. - №145. – С. 64-76.
- 10. Асарин, А.Е. Водноэнергетические расчеты / А.Е. Асарин, К.Н. Бестужева . М: Энергоатомиздат, 1986. 224 с.
- 11. Баранов, И.Л. Применение показателей чувствительности узлов в задачах управления режимами ЭЭС / И.Л. Баранов: дис. ... канд. Техн. Наук: $05.14.02.-M,\,2015.-138$ с.
- 12. Беллман, Р. Динамическое программирование / Р. Беллман. М: Издательство иностранной литературы, 1960. 400 с.
- 13. Болгов, В.М. Поиск компромиссных решений при планировании и управлении попусками в нижний бьеф Волгоградского гидроузла. 1. Стратегическое планирование / В.М. Болгов, А.Л. Бубер, А.А. Камаровский, А.В. Лотов // Водные ресурсы. 2018. №5. С. 573-580.
- 14. Боровков, А.А. Теория вероятностей / А.А. Боровков. М: Наука, $1986.-467~\mathrm{c}.$
- 15. Борщ, П.С. Методика планирования выработки электроэнергии каскада ГЭС с учетом стокообразующих и атмосферных факторов / П.С. Борщ: дис. ... канд. Техн. Наук: 05.14.08. M, 2013. 147 с.
- 16. Веников, В.А. Электрические системы. Электрические расчеты, программирование и оптимизация режимов / В.А. Веников. М: Высш. Школа, 1973. 320 с.
- 17. Горнштейн, В.М. Методы оптимизации режимов энергосистем / В.М. Горнштейн, Б.П. Мирошниченко, А.В. Пономарев. М: Энергия, 1981. 336 с.
- 18. Горнштейн, В.М. Наивыгоднейшие режимы работы гидростанций в энергетических системах / В.М. Горнштейн. М: Энергоатомиздат, 1959. 248 с.

- 19. Данилов-Данильян, В.И. Управление водными ресурсами. Согласование стратегий водопользования / В.И. Данилов-Данильян, И.Л. Хранович. М: Научный мир, 2010. 232 с.
- 20. Данилов-Данильян, В.И. Реки и озера мира / В.И. Данилов-Данильян. М: Энциклопедия, 2012. 928 с.
- 21. Дворецкая, М.И. Возобновляемая энергия. Гидроэлектростанции России / М.И. Дворецкая, А.П. Жданова, О.Г. Лушников, И.В. Слива, Под ред. В.В.Берлина. СПб: изд-во Политехн. Ун-та., 2018. 224 с.
- 22. Елаховский, С.Б. Гидроэлектростанции в водохозяйственных системах / С.Б. Елаховский. М: Энергия, 1979. 191 с.
- 23. Елсуков, П. Ю. Оптимизация длительных режимов работы электроэнергетической системы, включающей ТЭЦ и ГЭС с водохранилищами многолетнего регулирования / П.Ю. Елсуков: дис. ... канд. Техн. Наук: 05.14.01. Иркутск, 2013. 156 с.
- 24. Елуков, П.Ю. Оптимизация работы длительных режимов энергосистемы / П.Ю. Елсуков, З.Р. Корнеева // Труды V Всероссийской научнотехнической конференции с международным участием «ЭНЕРГЕТИКА: УПРАВЛЕНИЕ, КАЧЕСТВО И ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ ЭНЕРГОРЕСУРСОВ». – Благовещенск: Изд-во Амурского гос. Ун-та, 2008. – С. 72-77.
- 25. Елуков, П.Ю. Оптимизация долгосрочных режимов работы иркутской энергосистемы, включающей ГЭС многолетнего регулирования / П.Ю. Елсуков // Труды молодых ученых ИСЭМ СО РАН «Системные исследования в энергетике». Иркутск: Институт систем энергетики им. Л.А. Мелентьева СО РАН, 2008. С. 140-150.
- 26. Закон Российской Федерации «Водный кодекс Российской Федерации» от 03.06.2006 № 74-ФЗ // Собрание законодательства Российской Федерации.

- 27. Ильинич В.В. Оценка асимметрии в рамках трехпараметрического гамма-распределения / В.В. Ильинич // Природообустройство. 2010. №5. С. 71-74.
- 28. Картвелишвилли, Н.А. Теория вероятностных процессов в гидрогеологии и регулирования речного стока / Н.А. Картвелишвилли. 2 изд. СПб: Гидрометиоиздат, 1985. 192 с.
- 29. Клер, А. М. Оптимизация режимов энергосистем, включающих ТЭЦ и ГЭС, с использованием дерева сочетаний условий функционирования / А.М. Клер, З.Р. Корнеева // Вестник иркутского государственного университета. − 2010. №7. − С. 170-175.
- 30. Клер, А. М. Оптимизация режимов работы энергосистем, включающих ТЭЦ и ГЭС с водохранилищами многолетнего регулирования / А.М. Клер, З.Р. Корнеева, П.Ю. Елсуков // Известия Российской академиии наук. Энергетика. 2011. №2. С. 92-106.
- 31. Короткевич, А.М. . Совершенствование методов оптимизации режимов энергосистемы по напряжению и реактивной мощности / А.М. Короткевич: автореф. Дис. ... канд. Техн. Наук: 05.14.02. Минск, 2000. 22 с.
- 32. Кожихова, О.А. Оценка чувствительности перетоков мощности к параметрам модели установившегося режима / О.А. Кожихова // Материалы VIII Международной научно-технической конференции.. Самара: СамГТУ, 2017. С. 137-140.
- 33. Кремер, Н.Ш. Теория вероятностей и математическая статистика / Н.Ш. Кремер. М: Юнити, 2000. 542 с.
- 34. Крицкий, С.Н. Гидрологические основы управления водохозяйственными системами / С.Н. Крицкий, М.Ф. Менкель . М: Наука, 1982. 282 с.
- 35. Крицкий, С.Н. Водохозяйственные расчеты / С.Н. Крицкий, М.Ф. Менкель . СПб: Гидрометиоиздат, 1952. 392 с.
- 36. Крупенёв, Д.С. Расчет установившихся режимов электроэнергетических систем с использованием матриц чувствительности

- первого порядка применительно к задаче оценки режимной надежности / Д.С. Крупенёв // Вестник Иркутского государственного технического университета Том 21. 2017. №9. С. 146-156.
- 37. Кугаенко, А.А. Методы динамического моделирования в управлении экономикой: учебное пособие / А.А. Кугаенко. М: Универсальная книга, 2005. 456 с.
- 38. Кюнци, Г.П. Нелинейное программирование / Г.П. Кюнци, В. Крелле. М: Советсвое радио, 1965. 299 с.
- 39. Ларичев, О.И. Объективные модели и субъективные решения / О.И. Ларичев. М: Наука, 1987. 144 с.
- 40. Левит-Гуревич, Л.К. Рациональное управление водными ресурсами водохранилищ на примере Волжско-Камского каскада / Л.К. Левит-Гуревич // Известия Самарского научного центра Российской академии наук. 2012. №1(9). С. 2343-2354.
- 41. Легалов, Д.И. Методика планирования долгосрочных оптимальных режимов электроэнергетических систем с ГЭС, основанная на методе динамического программирования / Д.И. Легалов: дис. ... канд. Техн. Наук: 05.14.02. Иркутск, 2005. 139 с.
- 42. Легалов, Д.И. Долгосрочное планирование режимов электроэнергетических систем с ГЭС / Д.И. Легалов, С.И. Паламарчук // Электричество. 2005. N010. С. 9-16.
- 43. Легалов, Д.И. Оптимизация долгосрочных режимов ЭЭС методом динамического программирования с учетом сетевых ограничений / Д.И. Легалов // Труды молодых ученых ИСЭМ СО РАН. Иркутск: Институт систем энергетики им. Л.А. Мелентьева СО РАН, 2003. С. 58-64.
- 44. Легалов, Д.И. Модель для планирования режимов в энергосистемах с ГЭС в новых экономических условиях / Д.И. Легалов // Труды молодых ученых ИСЭМ СО РАН. Иркутск: Институт систем энергетики им. Л.А. Мелентьева СО РАН, 2002. С. 43-48.

- 45. Лежнюк, П.Д. Чувствительность потерь мощности электроэнергетических систем к изменениям транзитных перетоков / П.Д. Лежнюк, А.Б. Бурыкин, В.А. Лесько // Научные труды Винницкого Национального Технического Университета. 2008. №1. С. 13.
- 46. Лобанов, Н.Ю. Планирование выработки электроэнергии гидроэлектростанций с учетом стокообразующих и атмосферных факторов / Н.Ю. Лобанов: дис. ... канд. Техн. Наук: 05.14.08. М, 2007. 136 с.
- 47. Лотов, А.В. Визуализация границы парето при разработке правил управления ГЭС / А.В. Лотов, А.И. Рябов, А.Л. Бубер // Искусственный интеллект и принятие решений. 2013. №1. С. 70-83.
- 48. Лотов, А.В. Многокритериальные задачи принятия решений / А.В. Лотов, И.И. Поспелова. М: Макс Пресс, 2008. 197 с.
- 49. Ляпичев, П.А. Методика регулирования стока и водохозяйственных расчетов / П.А. Ляпичев. М: изд. Литературы по строительству Москва, 1972. 141 с.
- 50. Мардиханов, А.Х. Моделирование среднесрочных и краткосрочных режимов функционирования гидроэнергетических систем / А.Х. Мардиханов: дис. ... канд. Техн. Наук: 05.14.01. Казань, 2019. 148 с.
- 51. Мардиханов, А.Х. Программный комплекс оптимального планирования суточной нагрузки ГЭС / А.Х. Мардиханов, В.Н. Шарифуллин // Известия ВУЗов. Проблемы энергетики. 2012. №5-6. С. 114-118.
- 52. Мардиханов, А.Х. Оптимальное планирование ограничений мощности Нижнекамской ГЭС с учетом действующих и планируемых к изменению регламентов ОРЭМ / А.Х. Мардиханов // Вестник КГЭУ. 2015. №3.
- 53. Отчёт о перетоках мощности по контролируемым сечениям [интернет ресурс] // Сайт Администратора торговой системы URL: https://www.atsenergo.ru/nreports?access=public®ion=eur
- 54. Патера, А. Управление водохранилищами ГЭС на основе теории информации / А. Патера: дис. . . . д-р. Техн. Наук: 05.14.10. СПб, 1997. 244 с.

- 55. Резниковский, А.Ш. Диспетчерские правила управления режимами водохранилищ / А.Ш. Резниковский. М: Энергоатомиздат, 1984. 105 с.
- 56. Русина, А.Г. Основы методики оценки использования ресурсов ГЭС при функционировании электроэнергетической системы / А.Г. Русина, Т.А. Филиппова, Е.А. Совбан, Д.Х. Худжасаидов // Журнал Сибирского федерального университета. Техника и технологии. 2017. №5. С. 426-434.
- 57. Русина, А.Г. Оптимальное использование ресурсов Новосибирской ГЭС в энергосистеме / А.Г. Русина, Е.А. Совбан, Т.А. Филиппова // Электроэнергетика глазами молодежи Сборник докладов V Международной молодежной научно-технической конференции. Томск: ТПУ, 2014. С. 571-572.
- 58. Русина, А.Г. Особенности управления режимами гидроэнергетической системы Памира / А.Г. Русина, Д.Х. Худжасаидов, Г.Л. Русин // Оперативное управление в электроэнергетике. Подготовка персонала и поддержание его квалификации. 2015. №6. С. 41.
- 59. Русина, А.Г. Совершенствование имитационной модели каскада ГЭС с использованием matlab simulink / А.Г. Русина, Р.Ю. Степанович, И.А. Тищенко // Сборник научных трудов «НАУКА. ТЕХНОЛОГИИ. ИННОВАЦИИ». Новосибирск: Издательство НГТУ, 2018. С. 202-206.
- 60. Русина, А.Г. Повышение эффективности использования ГЭС в балансах электроэнергетических систем / А.Г. Русина, Д.Х. Худжасаидов, Т.А. Филиппова // Новое в Российской электроэнергетике. 2018. №2. С. 40-45.
- 61. Совбан, Е.А. Тестирование программного обеспечения «Водноэнергетический расчет ГЭС Ангаро-Енисейского каскада» / Е.А. Совбан, М.В. Тайникова, А.Г. Русина // НАУКА. ТЕХНОЛОГИИ. ИННОВАЦИИ Сборник научных трудов в 9 частях.. – Новосибирск: НГТУ, 2016. – С. 72-74.
- 62. Стандарт организации РусГидро 06.01.84-2013. Гидроэлектростанции. Планирование водно-энергетических режимов. Методические указания. // ПАО РусГидро URL: http://www.rushydro.ru/upload/iblock/9c3/078_STO-RusGidro-06.01.84-2013 Planirovanie-vodnoenergeticheskih-rezhimov.pdf

- 63. Султонов, Ш.М. Особенности управления гидроэлектростанциями в энергосистеме республики Таджикистан / Ш.М. Султонов, С.Е. Кокин, М.Х. СафаралиевТАН // Известия НТЦ ЕЭС. 2017. №2(77). С. 109-118.
- 64. Султонов, Ш.М. Повышение выработки электроэнергии в Таджикистане на основе оптимизации режимов ГЭС / М.Ш. Султонов, Ю.А. Секретарев, В.Г. Шальнев // ЭЛЕКТРО. ЭЛЕКТРОТЕХНИКА, ЭЛЕКТРОЭНЕРГЕТИКА, ЭЛЕКТРОТЕХНИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ. $2015. N \cdot 0.05. C. 14-17.$
- 65. Султонов, Ш.М. Оптимизация режимов работы энергосистемы с высокой долей гидроэлектростанций (на примере энергосистемы Таджикистана): автореф. Дис. ... канд. Техн. Наук: 05.14.02. Новосибирск, 2016. 22 с.
- 66. Sultonov, S. Optimazation of long-term modes of hydropower plants of the energy system of Tajikistan // 2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING, APPLICATIONS AND MANUFACTURING, ICIEAM 2016 PROCEEDINGS. Chelyabinsk: IEEE, 2016.
- 67. Султонов, Ш.М. Назначение оптимальных режимов водохранилищ ГЭС Вахшского каскада для снижения дефицита электроэнергии в Таджикистане / Ш.М. Султонов, Ю.А. Секретарев // Сборник материалов Второй Всероссийской научно-практической конференции молодых ученых, специалистов, аспирантов и студентов «ГИДРОЭЛЕКТРОСТАНЦИИ В ХХІ ВЕКЕ». Саяногорск: СФУ, 2015. С. 81-88.
- 68. Султонов, Ш.М. Оптимальное управление режимами водохранилищ Вахшских ГЭС для повышения выработки электроэнрегии в Таджикистане / М.Ш. Султонов, Ю.А. Секретарев, В.Г. Шальнев // Сборник научных трудов VII международной научной конференции молодых ученых «ЭЛЕКТРОТЕХНИКА. ЭЛЕКТРОТЕХНОЛОГИЯ. ЭНЕРГЕТИКА". Новосибирск: НГТУ, 2015. С. 173-177.
- 69. Султонов, Ш.М. Метод оптимизации распределения нагрузки между ГЭС / Ш.М. Султонов, Ю.А. Секретарев // Главный энергетик. 2015. №2. С. 51-52.

- 70. Сытдыков, Р.А. Оптимизация режимов электроэнергетических систем при несовместных ограничениях / Р.А. Сытдыков, М.Д. Мандалака // Электротехнические системы и комплексы. 2012. №20. С. 213-218.
- 71. Труфакин, С.С. Разработка методики по планированию оптимальных краткосрочных режимов гидроэлектростанций в ОЭС Сибири / С.С. Труфакин // 3-ая междунар. Науч.-техн. Конф. «Электроэнергетика глазами молодежи 2012». Екатеринбург: УРФУ, 2012. С. 525-528.
- 72. Труфакин, С.С. Задачи оптимального использования гидроэлектростанций в ЭЭС / С.С. Труфакин, А.Г. Русина, Е.А. Совбан // 3-ая междунар. Науч.-техн. Конф. «Электроэнергетика глазами молодежи 2012». Екатеринбург: УРФУ, 2012. С. 519-524.
- 73. Труфакин, С.С. Разработка принципа управления электроэнергетическим режимом объединенной энергосистемы Сибири со значительной долей гидроэлектростанций / Е.А. Совбан, Т.А. Филиппова, С.С. Труфакин // Электроэнергетика глазами молодежи Сборник докладов IX Международной молодежной научно-технической конференции. Казань: КГУ, 2018. С. 186-189.
- 74. Труфакин, С.С. Разработка программного обеспечения «Водноэнергетический расчет ГЭС Ангаро-Енисейского каскада» / С.С. Труфакин, Е.А. Совбан, А.Г. Русина // Известия высших учебных заведений. Проблемы энергетики. 2016. №9-10. С. 105-111.
- 75. Труфакин, С.С. Оптимизация долгосрочных режимов ГЭС Ангаро-Енисейского каскада / С.С. Труфакин, В.И. Пантелеев, Е.А. Совбан, А.Г. Русина // Вестник Самарского государственного технического университета. Серия: Технические науки. – 2018. - №2(58). – С. 144-151.
- 76. Труфакин, С.С. Учет ограничений по электрической сети при планировании долгосрочных режимов гидроэлектростанций / С.С. Труфакин, В.И. Пантелеев // Борисовские чтения: Материалы II Всероссийская научнотехнической конференции памяти профессора Борисова В.Н.. Красноярск: СФУ, 2019. С. 87-90.

- 77. Труфакин, С.С. Разработка методики рационального использования водных ресурсов Ангаро-Енисейского каскада гидроэлектростанций / С.С. Труфакин, В.И. Пантелеев // Вестник ИрГТУ. 2019. №6. С. 1165-1174.
- 78. Труфакин, С.С. Регулирование напряжения в распределительных сетях Таджикистана с малыми ГЭС / С.С. Труфакин, С.Т. Исмоилов // Материалы IV Международной научно-практической конференции «Актуальные проблемы энергетики АПК». Под редакцией А.В. Павлова. Саратов: ООО ПКФ «Буква», 2013. С. 113-117.
- 79. Труфакин, С.С. Оптимизация долгосрочных режимов ГЭС Ангаро-Енисейского каскада / С.С. Труфакин, В.И. Пантелеев, Е.А. Совбан, Т.С. Филиппова // Материалы VIII Международной научно-технической конференции «Электроэнергетика глазами молодежи». — Самара: СамГТУ, 2017. — С. 173-176.
- 80. Труфакин, С.С. Разработка программного обеспечения «Водноэнергетический расчет ГЭС Ангаро-Енисейского каскада» / С.С. Труфакин, Е.А. Совбан, А.Г. Русина // Материалы VII Международной научнотехнической конференции «Электроэнергетика глазами молодежи». Казань: КГЭУ, 2016. С. 405-408.
- 81. Филиппова, Т.А. Гидроэнергетика / Т.А. Филиппова, М.Ш. Мисриханов, Ю.М. Сидоркин, А.Г. Русина. Новосибирск: Новосибирский государственный технический университет, 2011. 640 с.
- 82. Филиппова, Т.А. Энергетические режимы электрических станций и электроэнергетических систем / Т. А. Филиппова. Новосибирск : НГТУ, 2018. 293 с.
- 83. Филиппова, Т.А. Оптимизация энергетических режимов гидроэлектростанций системы в условиях эксплуатации / Т.А. Филиппова: дис. ... д-р техн. Наук: 05.00.00. Новосибирск, 1969. 411 с.
- 84. Филиппова, Т.А. Оптимизация режимов электростанций и энергосистем / Т.А. Филиппова, Ю.А. Сидоркин, А.Г. Русина. 3 изд. Новосибирск: Изд-во Новосибирского гос. Технического ун-та, 2018. 355 с.

- 85. Худжасаидов, Д.Х. Анализ и планирование режимов электроэнергетической системы с каскадом гидроэлектростанций (на примере электроэнергетической системы Памира) / Д.Х. Худжасаидов: дис. ... канд. Техн. Наук: 05.14.02. Новосибирск, 2018. 183 с.
- 86. Худжасаидов, Д.Х. Учёт каскада ГЭС при расчете режимов электроэнергетической системы / Д.Х. Худжасаидов, А.Ю. Арестова, Е.А. Надобная // Наука. Технологии. Инновации. Новосибирск: Новосибирский государственный технический университет, 2016. С. 34-36.
- 87. Худжасаидов, Д.Х. Разработка методики повышения эффективности работы ГЭС / Д.Х. Худжасаидов, А.В. Сидорова, А.Г. Русина // Наука. Технологии. Инновации. Новосибирск: Новосибирский государственный технический университет, 2016. С. 64-66.
- 88. Худжасаидов, Д.Х. Оценка использования ресурсов ГЭС при их работе в электроэнергетических системах / Д.Х. Худжасаидов, Е.А. Совбан, А.Г. Русина, Т.А. Филиппова // Энергия: Экономика, Техника, Экология. 2016. №9. С. 27-32.
- 89. Худжасаидов, Д.Х. Разработка имитационной модели каскада ГЭС энергосистемы Памира / Д.Х. Худжасаидов, А.Г. Русина, С.В. Митрофанов, А.Ю. Арестова // Материалы VIII Международной научно-технической конференции «ЭЛЕКТРОЭНЕРГЕТИКА ГЛАЗАМИ МОЛОДЕЖИ-2017». Самара: СамГТУ, 2017. С. 80-83.
- 90. Худжасаидов, Д.Х. Расчет режима электроэнергетической системы с учетом математической модели каскада ГЭС / Д.Х. Худжасаидов, Е.А. Надобная // Наука. Технологии. Инновации. Новосибирск: Новосибирский государственный технический университет, 2017. С. 59-62.
- 91. Худжасаидов, Д.Х. Повышение эффективности управления режимами электроэнергетической системы, состоящей из гидроэлектростанций / Д.Х. Худжасаидов, А.Г. Русина // Научный вестник НГТУ. 2017. №1(66). С. 179-192.

- 92. Цветков, Е.В. Оптимальные режимы гидроэлектростанций в энергетических системах / Е.В. Цветков. М: Энергоатомиздат, 1984. 304 с.
- 93. Чабан, А.Н. Построение эффективных диспетчерских правил управления водохранилищем / А.Н. Чабан. М: ВЦ АН СССР, 1986. 21 с.
- 94. Щавелев, Д.С. Использование водной энергии / Д.С. Щавелев. М: Энергия, 1972.-656 с.
- 95. Шарифуллин, В.Н. Организация суточных режимов смешанной энергосистемы тэс-гэс в условиях свободного планирования нагрузки / В.Н. Шарифуллин, А.В. Шарифуллин, А.Х. Мардиханов // Известия высших учебных заведений. Проблемы энергетики. 2014. №7-8. С. 47-52.
- 96. Castillo, E. Perturbation approach to sensitivity analysis in mathematical programming / E. Castillo, A. Conejo, C. Castillo, R. Mínguez, D. Ortigosa // Journal of Optimization Theory and Applications. − 2006. №2128-1. − P. 49-74.
- 97. Cerejo da Silva, A. J. Optimal Hydro-Wind Power Generation for Day-Ahead Pool Market / A. J. Cerejo da Silva, S. J. Pinto Simoes Mariano, M. R. Alves Calado // IEEE Latin America Transactions. − 2015. №13. − P. 2630-2636.
- 98. Legalov, D.I. Hydro generation scheduling with electricity price calculation / D.I. Legalov, S.I. Palamarchuk // 2005 IEEE Russia Power Tech, POWERTECH. СПб: IEEE, 2005. P. 452-459.
- 99. Legalov, D.I. Hydro generation scheduling for a one year perspective / D.I. Legalov, S.I. Palamarchuk // 5th IASTED International Conference on Power and Energy Systems, PES 2005. IEEE, 2005. P. 78-83.
- 100. Minguez, R. State estimation sensitivity analysis / R. Minguez, A.J. Conejo // Power Systems IEEE Trans. 2007. №22. P. 1080-1091.
- 101. Molin, A. A study on the sensitivity matrix in power system state estimation by using sparse principal component analysis / A. Molin, H. Sandberg, M. Johansson // 55th Conference on Decision and Control (CDC). Las Vegas, US: IEEE, 2016. P. 1529-1535.

- 102. Pereira, M. Long-term hydro scheduling based on stochastic models / M. Pereira, R. Kelman // Proc. Int. Conf. Electrical Power Systems Operation and Management (EPSOM'98). Zurich. Switzerland: M. PEREIRA, 1998. P. 1-22.
- 103. Rusina, A.G. Tasks of optimal performance of hydroelectric in power system / A.G. Rusina, E.A. Sovban, J.K. Khujasaidov, T.A. Filippova // 11th International Forum on Strategic Technology. Новосибирск: Новосибирский государственный технический университет, 2016. Р. 251-254.
- 104. Si, Yuan. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework / Y. Si, X. Li, D. Yin, R. Liu, J. Wei, Y. Huang, T. Li, J. Liu, S. Gu, G. Wang // PLOS ONE. 2018. №13(1).
- 105. Trufakin, S.S. Stochastic optimization of Modes of Hydroelectric Power Plants / S.S. Trufakin, V.I. Panteleev, G.A. Pilugin // 2019 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). Sochi: IEEE, 2019. P. 1-5.
- 106. Trufakin S.S. The Features of Mathematical Optimization Models of Modes Hydro-Power Stations / E.A. Sovban, T.A. Filippova, V.I. Panteleev, S.S. Trufakin // 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). Novosibirsk: IEEE, 2018. P. 428-432.
- 107. Sultonov, Sh.M. Implementation of the Method of Lagrange for Optimal Modes of Energy System of Tajikistan / Sh.M. Sultonov // Applied Mechanics and Materials. 2015. №698. P. 726-731.
- 108. Finardi, E.C. Solving the Hydro Unit Commitment Problem via Dual Decomposition and Sequential Quadratic Programming / E.C. Finardi, E.L. da Silva // IEEE Transactions on Power Systems. − 2006. №21(2). − P. 835-844.
- 109. Ferrero, R. Effect of deregulation on hydrothermal systems with transmission constraints / R. Ferrero, J. Rivera, S. Shahidehpour // Electric Power Systems Research. 1997. №38 (3). P. 191-197.

ПРИЛОЖЕНИЕ А. Свидетельство о государственной регистрации программы для ЭВМ «Программа расчета оптимальных режимов гидроэлектростанций Ангаро-Енисейского каскада»

ПРИЛОЖЕНИЕ Б. Исходные данные по объемам притоков воды в водохранилища для имитационного расчета режимов работы Ангаро-Енисейского каскада ГЭС

Таблица Б.1 - Исходные данные по водохранилищу Саяно-Шушенской ГЭС

	Саяно-Шушенская ГЭС											
	Обеспеченность / Средний за период расход притока											
Период	5%	5% 10% 25% 50% 75% 90% 9										
май	3331	3265	3109	2856	2506	2194	1909					
июнь	6162	5498	4851	4263	3808	3445	3309					
ИЮЛЬ	3797	3662	3391	2999	2616	2242	2020					
август	2931 2877 2657 2458 2222 2041											
сентябрь	2182	2136	2007	1877	1751	1652	1611					
октябрь	1299	1262	1178	1101	1051	1050	1054					
ноябрь	550	543	509	479	449	419	403					
декабрь	408	406	391	377	361	354	351					
январь	371	371	358	347	337	330	327					
февраль	316	312	301	294	287	288	289					
март	293	284	273	265	263	260	260					
апрель	999	838	641	490	416	354	347					

Таблица Б.2 - Исходные данные по водохранилищу Красноярской ГЭС

		Крас	сноярская	ГЭС						
	Обеспеченность / Средний за период расход притока									
Период	5% 10% 25% 50% 75% 90%									
май	5251	5064	5094	4989	5034	4848	4965			
июнь	5816	5784	5085	4519	3975	3598	3189			
июль	1650	1486	1285	1098	984	1009	1041			
август	876	673	558	506	405	248	158			
сентябрь	1494	1291	1111	869	681	515	445			
октябрь	1343	1286	1160	1012	835	656	593			
ноябрь	783	675	578	469	415	394	348			
декабрь	271	265	266	259	257	256	256			
январь	296	274	258	248	239	241	245			
февраль	269	250	228	221	212	208	217			
март	216	218	224	223	212	201	184			
апрель	1987	1885	1697	1450	1044	824	664			

Таблица Б.3 - Исходные данные по водохранилищу Иркутской ГЭС

		Ир	кутская Г	ЭС					
	Обе	спеченно	ость / Сре	дний за п	ериод рас	ход притс	ка		
Период	5%	10%	25%	50%	75%	90%	95%		
май	3730	3622	3313	3040	2666	2420	2343		
июнь	6220	6040	5526	5070	4447	4035	3907		
июль	6208 6028 5515 5060 4438 4027								
август	5349	5194	4752	4360	3824	3470	3360		
сентябрь	3914	3800	3477	3190	2798	2539	2458		
октябрь	1472	1430	1308	1200	1052	955	925		
ноябрь	-134	-130	-119	-109	-96	-87	-84		
декабрь	-297	-288	-264	-242	-212	-193	-186		
январь	391	380	348	319	280	254	246		
февраль	520	505	462	424	372	337	327		
март	447	434	397	364	319	290	280		
апрель	1082	1051	961	882	774	702	680		

Таблица Б.4 - Исходные данные по водохранилищу Братской ГЭС

Братская ГЭС												
	Обе	Обеспеченность / Средний за период расход притока										
Период	5%	5% 10% 25% 50% 75% 90%										
май	2029	1909	1696	1610	1375	1284	1185					
июнь	2734	2573	2285	2170	1853	1731	1597					
июль	2999	2822	2506	2380	2032	1899	1751					
август	2797	2632	2338	2220	1896	1771	1633					
сентябрь	1940	1826	1622	1540	1315	1228	1133					
октябрь	1046	984	874	830	709	662	611					
ноябрь	464	436	388	368	314	294	271					
декабрь	334	314	279	265	226	211	195					
январь	256	241	214	203	173	162	149					
февраль	207	194	173	164	140	131	121					
март	212	199	177	168	143	134	124					
апрель	760	715	635	603	515	481	444					

Таблица Б.5 - Исходные данные по водохранилищу Усть-Илимской ГЭС

	Усть-Илимская ГЭС										
	Обеспеченность / Средний за период расход притока										
Период	5%	5% 10% 25% 50% 75% 90%									
май	1100	1100	1100	1100	1100	1100	1100				
июнь	337	337	337	337	337	337	337				
июль	226	226	226	226	226	226	226				
август	177	177	177	177	177	177	177				
сентябрь	159	159	159	159	159	159	159				
октябрь	132	132	132	132	132	132	132				
ноябрь	94,1	94,1	94,1	94,1	94,1	94,1	94,1				
декабрь	82,1	82,1	82,1	82,1	82,1	82,1	82,1				
январь	69,4	69,4	69,4	69,4	69,4	69,4	69,4				
февраль	61,4	61,4	61,4	61,4	61,4	61,4	61,4				
март	58,8	58,8	58,8	58,8	58,8	58,8	58,8				
апрель	155	155	155	155	155	155	155				

Таблица Б.6 - Исходные данные по водохранилищу Богучанской ГЭС

Богучанская ГЭС												
Обеспеченность / Средний за период расход притока												
Период	5%	5% 10% 25% 50% 75% 90% 95%										
май	913	913	913	913	913	913	913					
июнь	240	240	240	240	240	240	240					
ИЮЛЬ	108	108	108	108	108	108	108					
август	85	85	85	85	85	85	85					
сентябрь	75	75	75	75	75	75	75					
октябрь	65	65	65	65	65	65	65					
ноябрь	40	40	40	40	40	40	40					
декабрь	31	31	31	31	31	31	31					
январь	31	31	31	31	31	31	31					
февраль	28	28	28	28	28	28	28					
март	31	31	31	31	31	31	31					
апрель	196	196	196	196	196	196	196					

ПРИЛОЖЕНИЕ В. Результаты имитационных расчетов режимов работы

ГЭС Ангаро-Енисейского каскада

Водно-энергетические показатели

95 %

Таблица В.1 - Саяно-Шушенская ГЭС (начальный уровень ВБ 500 м)

Интер дни		Боковой приток, м^3/с	УВБ, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	1909	507,3	1200		1200	1965	1462
июнь	30	3309	524,5	1200		1200	2105	1516
июль	31	2020	529,5	1200		1200	2240	1667
август	31	1921	533,3	1200		1200	2284	1699
сентябрь	30	1611	535,3	1200		1200	2328	1676
октябрь	31	1054	534,6	1200		1200	2338	1740
ноябрь	30	403	533,1	700		700	1358	978
декабрь	31	351	530,3	881		881	1684	1253
январь	31	327	525,8	1104		1104	2074	1543
февраль	28	289	519,2	1293		1293	2349	1579
март	31	260	513,6	919		919	1628	1211
апрель	30	347	500,1	1766		1766	2909	2095

Таблица В.2 - Маинская ГЭС (начальный уровень ВБ 323 м)

Интерв дни	ал	Приток общий, м^3/с	УВБ, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/c	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	1200	323,0	1200	0	1200	155	115
июнь	30	1200	323,0	1200	0	1200	155	111
июль	31	1200	323,0	1200	0	1200	155	115
август	31	1200	323,0	1200	0	1200	155	115
сентябрь	30	1200	323,0	1200	0	1200	155	111
октябрь	31	1200	323,0	1200	0	1200	155	115
ноябрь	30	700	323,0	700	0	700	96	69
декабрь	31	880,775	323,0	881	0	881	118	88
январь	31	1104,196	323,0	1104	0	1104	144	107
февраль	28	1293,016	323,0	1293	0	1293	165	111
март	31	919,3671	323,0	919	0	919	122	91
апрель	30	1765,601	323,0	1766	0	1766	218	157

Таблица В.3 - Красноярская ГЭС (начальный уровень ВБ 230 м)

Интер:		Приток общий, м^3/с	УВБ, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	6165,08	235,5	2800		2800	2123	1579
июнь	30	4389,063	237,6	3000		3000	2383	1716
июль	31	2241,169	236,4	3000		3000	2396	1783
август	31	1358,352	233,8	3000		3000	2344	1744
сентябрь	30	1645,104	231,7	3000		3000	2269	1634
октябрь	31	1792,731	230,0	2800		2800	2063	1535
ноябрь	30	1048,105	228,7	1800		1800	1315	947
декабрь	31	1136,528	227,6	1800		1800	1296	964
январь	31	1348,84	226,7	1800		1800	1274	948
февраль	28	1509,655	226,3	1800		1800	1262	848
март	31	1103,862	225,0	1800		1800	1245	927
апрель	30	2429,414	226,1	1800		1800	1244	895

Таблица В.4 - Иркутская ГЭС (начальный уровень ВБ 456 м)

Интер дни		Боковой приток, м^3/с	УВБ, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2343	456,1	1300		1300	326	243
июнь	30	3907	456,3	1300		1300	327	235
ИЮЛЬ	31	3899	456,5	1300		1300	327	243
август	31	3360	456,7	1300		1300	327	243
сентябрь	30	2458	456,8	1300		1300	327	236
октябрь	31	925	456,8	1300		1300	327	244
ноябрь	30	-84	456,6	1300		1300	327	236
декабрь	31	-186	456,5	2118		2118	530	394
январь	31	246	456,4	1300		1300	327	243
февраль	28	327	456,3	1653		1653	414	278
март	31	280	456,1	1866		1866	466	347
апрель	30	680	456,0	2217		2217	550	396

Таблица В.5 - Братская ГЭС (начальный уровень ВБ 396 м)

Интер дни		Приток общий, м^3/с	УВБ, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2484,574	396,0	2500		2500	2183	1624
июнь	30	2896,6	396,2	2500		2500	2186	1574
июль	31	3051,109	396,4	2700		2700	2365	1760
август	31	2933,388	396,5	2700		2700	2372	1765
сентябрь	30	2433,071	396,4	2700		2700	2372	1708
октябрь	31	1910,681	395,9	2700		2700	2359	1755
ноябрь	30	1570,76	395,7	2000		2000	1749	1259
декабрь	31	2313,442	395,8	2184		2184	1907	1419
январь	31	1449,359	395,5	2000		2000	1746	1299
февраль	28	1773,949	395,4	2000		2000	1744	1172
март	31	1989,368	395,2	2292		2292	1996	1485
апрель	30	2660,231	395,1	2713		2713	2359	1698

Таблица В.6 - Усть-Илимская ГЭС (начальный уровень ВБ 294,5 м)

Интер дни		Приток общий, м^3/с	УВБ, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3600	296,1	2500		2500	1933	1438
июнь	30	2837	296,3	2700		2700	2098	1510
июль	31	2926	296,5	2781		2781	2161	1608
август	31	2877	296,5	2877		2877	2235	1663
сентябрь	30	2859	296,5	2859		2859	2221	1599
октябрь	31	2832	296,4	2916		2916	2266	1686
ноябрь	30	2094,1	296,3	2184		2184	1697	1222
декабрь	31	2266,575	296,1	2391		2391	1858	1382
январь	31	2069,4	296,0	2106		2106	1636	1217
февраль	28	2061,4	296,1	2045		2045	1588	1067
март	31	2351,192	295,8	2507		2507	1946	1448
апрель	30	2867,551	294,6	3732		3732	2875	2070

Таблица В.7 - Богучанская ГЭС (начальный уровень ВБ 207 м)

Интер дни		Приток общий, м^3/с	УВБ, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3413	207,7	2800		2800	1753	1304
июнь	30	2940	207,6	3000		3000	1882	1355
июль	31	2888,892	207,5	3000		3000	1880	1399
август	31	2962	207,5	3000		3000	1879	1398
сентябрь	30	2934	207,4	3000		3000	1878	1352
октябрь	31	2981,076	207,4	3000		3000	1878	1397
ноябрь	30	2223,884	207,6	2000		2000	1257	905
декабрь	31	2422,363	207,8	2316		2316	1456	1083
январь	31	2137,494	207,9	2000		2000	1260	937
февраль	28	2072,653	207,7	2257		2257	1421	955
март	31	2538,083	207,1	3084		3084	1930	1436
апрель	30	3928,32	207,1	3913		3913	2429	1749

Интер дни		Боковой приток, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2194	510,1	1200		1200	1972	1467
июнь	30	3445	527,1	1200		1200	2141	1541
июль	31	2242	532,9	1200		1200	2271	1690
август	31	2041	537,0	1200		1200	2338	1740
сентябрь	30	1652	539,0	1200		1200	2353	1694
октябрь	31	1050	538,3	1200		1200	2353	1751
ноябрь	30	419	537,1	700		700	1373	988
декабрь	31	354	525,8	2469		2469	4683	3484
январь	31	330	513,9	1863		1863	3344	2488
февраль	28	288	510,6	700		700	1212	814
март	31	260	506,2	700		700	1159	862
апрель	30	354	500,1	968		968	1583	1140

Таблица В.9 - Маинская ГЭС (начальный уровень ВБ 323 м)

Интер:		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	1200	323,0	1200	0	1200	155	115
июнь	30	1200	323,0	1200	0	1200	155	111
июль	31	1200	323,0	1200	0	1200	155	115
август	31	1200	323,0	1200	0	1200	155	115
сентябрь	30	1200	323,0	1200	0	1200	155	111
октябрь	31	1200	323,0	1200	0	1200	155	115
ноябрь	30	700	323,0	700	0	700	96	69
декабрь	31	2469,479	323,0	2469	0	2469	295	220
январь	31	1863,456	323,0	1863	0	1863	229	170
февраль	28	700	323,0	700	0	700	96	65
март	31	700	323,0	700	0	700	96	71
апрель	30	968,2971	323,0	968	0	968	128	92

Таблица В.10 - Красноярская ГЭС (начальный уровень ВБ 230 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/c	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	6048,379	235,3	2800		2800	2120	1577
июнь	30	4797,753	238,0	3000		3000	2387	1718
ИЮЛЬ	31	2208,868	236,8	3000		3000	2408	1791
август	31	1447,817	234,4	3000		3000	2356	1753
сентябрь	30	1715,267	232,4	3000		3000	2290	1649
октябрь	31	1856,488	230,8	2800		2800	2085	1551
ноябрь	30	1093,797	229,6	1800		1800	1331	958
декабрь	31	2725,008	231,2	1800		1800	1335	993
январь	31	2104,658	231,7	1800		1800	1356	1009
февраль	28	907,83	230,3	1800		1800	1348	906
март	31	900,9317	228,8	1800		1800	1319	981
апрель	30	1792,673	228,0	2242		2242	1612	1161

Таблица В.11 - Иркутская ГЭС (начальный уровень ВБ 456 м)

Интері дни		Боковой приток, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2420	456,1	1300		1300	326	243
июнь	30	4035	456,3	1300		1300	327	235
июль	31	4027	456,6	1300		1300	327	243
август	31	3470	456,7	1300		1300	327	243
сентябрь	30	2539	456,8	1300		1300	327	236
октябрь	31	955	456,8	1300		1300	327	244
ноябрь	30	-87	456,7	1300		1300	327	236
декабрь	31	-193	456,6	1300		1300	327	243
январь	31	254	456,5	1542		1542	387	288
февраль	28	337	456,3	2511		2511	624	419
март	31	290	456,1	2472		2472	612	455
апрель	30	702	456,0	1994		1994	497	358

Таблица В.12 - Братская ГЭС (начальный уровень ВБ 396 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2584,312	396,0	2500		2500	2183	1624
июнь	30	3031,029	396,3	2500		2500	2190	1577
июль	31	3198,547	396,6	2700		2700	2372	1765
август	31	3070,914	396,8	2700		2700	2382	1772
сентябрь	30	2528,472	396,7	2700		2700	2385	1717
октябрь	31	1962,098	396,3	2700		2700	2374	1766
ноябрь	30	1593,557	395,9	2406		2406	2106	1516
декабрь	31	1511,393	395,3	2465		2465	2149	1599
январь	31	1703,867	395,1	2174		2174	1893	1408
февраль	28	2641,814	395,1	2617		2617	2270	1526
март	31	2605,838	395,1	2608		2608	2264	1685
апрель	30	2474,88	395,1	2384		2384	2074	1494

Таблица В.13 - Усть-Илимская ГЭС (начальный уровень ВБ 294,5 м)

Интер:		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3600	296,1	2542		2542	1965	1462
июнь	30	2837	296,1	2789		2789	2166	1560
июль	31	2926	296,2	2861		2861	2223	1654
август	31	2877	296,1	2942		2942	2285	1700
сентябрь	30	2859	296,1	2902		2902	2254	1623
октябрь	31	2832	296,0	2865		2865	2224	1655
ноябрь	30	2500,433	295,7	2749		2749	2133	1536
декабрь	31	2547,016	295,9	2411		2411	1870	1392
январь	31	2243,114	295,3	2605		2605	2018	1502
февраль	28	2678,643	295,5	2556		2556	1977	1329
март	31	2667,093	296,0	2343		2343	1817	1352
апрель	30	2539,242	294,5	3570		3570	2753	1982

Таблица В.14 - Богучанская ГЭС (начальный уровень ВБ 207 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/c	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3454,857	207,8	2800		2800	1754	1305
июнь	30	3029,43	207,8	3000		3000	1883	1356
ИЮЛЬ	31	2969,43	207,8	3000		3000	1883	1401
август	31	3026,501	207,8	3000		3000	1883	1401
сентябрь	30	2977,452	207,8	3000		3000	1883	1356
октябрь	31	2929,617	207,7	3000		3000	1882	1400
ноябрь	30	2789,39	207,9	2620		2620	1647	1186
декабрь	31	2442,454	208,0	2336		2336	1471	1094
январь	31	2635,954	207,8	2832		2832	1780	1324
февраль	28	2583,584	207,6	2725		2725	1711	1150
март	31	2374,111	207,2	2693		2693	1688	1256
апрель	30	3766	207,1	3900		3900	2424	1745

75% Таблица В.15 - Саяно-Шушенская ГЭС (начальный уровень ВБ 500 м)

Интер дни		Боковой приток, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2506	508,8	1649		1649	2704	2011
июнь	30	3808	526,7	1488		1488	2644	1904
июль	31	2616	534,2	1248		1248	2367	1761
август	31	2222	539,0	1200		1200	2353	1751
сентябрь	30	1751	540,0	1512		1512	2965	2135
октябрь	31	1051	539,4	1200		1200	2353	1751
ноябрь	30	449	538,3	700		700	1373	988
декабрь	31	361	530,1	2003		2003	3868	2878
январь	31	337	525,9	1059		1059	1989	1480
февраль	28	287	521,8	953		953	1758	1182
март	31	263	514,4	1157		1157	2061	1533
апрель	30	416	500,1	1927		1927	3176	2287

Таблица В.16 - Маинская ГЭС (начальный уровень ВБ 323 м)

Интервал дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	1648,697	323,0	1649	0	1649	205	153
июнь	30	1487,561	323,0	1488	0	1488	187	134
июль	31	1248,196	323,0	1248	0	1248	160	119
август	31	1200	323,0	1200	0	1200	155	115
сентябрь	30	1512	323,0	1512	0	1512	189	136
октябрь	31	1200	323,0	1200	0	1200	155	115
ноябрь	30	700	323,0	700	0	700	96	69
декабрь	31	2003,063	323,0	2003	0	2003	244	181
январь	31	1058,754	323,0	1059	0	1059	138	103
февраль	28	952,8112	323,0	953	0	953	126	85
март	31	1157,009	323,0	1157	0	1157	150	111
апрель	30	1926,618	323,0	1927	0	1927	236	170

Таблица В.17 - Красноярская ГЭС (начальный уровень ВБ 230 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	6683,003	236,3	2800		2800	2136	1589
июнь	30	5462,807	239,8	3000		3000	2428	1748
июль	31	2232,593	238,7	3000		3000	2464	1833
август	31	1605,414	236,6	3000		3000	2417	1798
сентябрь	30	2193,401	235,4	3000		3000	2369	1706
октябрь	31	2034,509	234,2	2800		2800	2184	1625
ноябрь	30	1114,807	233,1	1828		1828	1421	1023
декабрь	31	2259,749	233,9	1800		1800	1397	1039
январь	31	1298,165	232,7	2021		2021	1561	1161
февраль	28	1164,727	231,7	1800		1800	1372	922
март	31	1368,677	230,0	2400		2400	1779	1323
апрель	30	2970,192	230,1	2909		2909	2116	1524

Таблица В.18 - Иркутская ГЭС (начальный уровень ВБ 456 м)

Интер.		Боковой приток, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/c	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2666	456,1	1300		1300	326	243
июнь	30	4447	456,3	1981		1981	495	356
июль	31	4438	456,5	2201		2201	550	409
август	31	3824	456,6	2718		2718	675	502
сентябрь	30	2798	456,6	2778		2778	690	497
октябрь	31	1052	456,6	1300		1300	327	243
ноябрь	30	-96	456,5	1300		1300	327	236
декабрь	31	-212	456,3	1300		1300	327	243
январь	31	280	456,3	1300		1300	327	243
февраль	28	372	456,2	1300		1300	327	219
март	31	319	456,1	1500		1500	376	280
апрель	30	774	456,0	1405		1405	352	254

Таблица В.19 - Братская ГЭС (начальный уровень ВБ 396 м)

Интер:		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2674,842	396,1	2500		2500	2184	1625
июнь	30	3834,388	396,8	2500		2500	2200	1584
июль	31	4233,607	397,7	2700		2700	2402	1787
август	31	4613,339	398,7	2700		2700	2423	1802
сентябрь	30	4092,865	399,4	2700		2700	2451	1765
октябрь	31	2008,77	399,0	2700		2700	2454	1826
ноябрь	30	1614,25	398,6	2438		2438	2211	1592
декабрь	31	1526,294	398,4	2000		2000	1812	1348
январь	31	1473,35	398,1	2000		2000	1805	1343
февраль	28	1440,046	397,8	2108		2108	1894	1273
март	31	1643,462	397,5	2095		2095	1876	1396
апрель	30	1919,905	397,4	2096		2096	1874	1349

Таблица В.20 - Усть-Илимская ГЭС (начальный уровень ВБ 294,5 м)

Интер.		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/c	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3600	295,6	2851		2851	2194	1632
июнь	30	2837	295,7	2802		2802	2171	1563
ИЮЛЬ	31	2926	296,0	2702		2702	2096	1559
август	31	2877	296,2	2702		2702	2099	1561
сентябрь	30	2859	296,3	2801		2801	2176	1567
октябрь	31	2832,047	296,2	2901		2901	2254	1677
ноябрь	30	2531,938	296,0	2700		2700	2097	1510
декабрь	31	2082,109	296,0	2100		2100	1630	1213
январь	31	2069,402	295,9	2116		2116	1643	1222
февраль	28	2169,851	296,0	2112		2112	1639	1102
март	31	2153,825	294,7	3049		3049	2356	1753
апрель	30	2251,128	294,5	2354		2354	1747	1258

Таблица В.21 - Богучанская ГЭС (начальный уровень ВБ 207 м)

Интервал дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3764,282	207,9	2998		2998	1877	1397
июнь	30	3041,776	207,9	3000		3000	1885	1357
июль	31	2809,986	207,7	3000		3000	1884	1401
август	31	2786,756	207,5	3000		3000	1881	1399
сентябрь	30	2876,068	207,3	3000		3000	1878	1352
октябрь	31	2965,598	207,3	3000		3000	1877	1396
ноябрь	30	2739,87	207,6	2499		2499	1567	1128
декабрь	31	2130,667	207,1	2499		2499	1566	1165
январь	31	2147,379	207,2	2099		2099	1316	979
февраль	28	2139,717	207,1	2202		2202	1380	927
март	31	3080,305	207,1	3100		3100	1934	1439
апрель	30	2550	207,1	2550		2550	1595	1148

50% Таблица В.22 - Саяно-Шушенская ГЭС (начальный уровень ВБ $500~{\rm M}$)

Интервал дни		Боковой приток, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2856	513,7	1465		1465	2414	1796
июнь	30	4263	530,9	1749		1749	3173	2285
июль	31	2999	537,2	1726		1726	3334	2481
август	31	2458	540,0	1831		1831	3590	2671
сентябрь	30	1877	540,0	1877		1877	3680	2649
октябрь	31	1101	539,6	1200		1200	2353	1751
ноябрь	30	479	537,3	999		999	1958	1410
декабрь	31	377	534,4	999		999	1955	1455
январь	31	347	529,2	1322		1322	2522	1877
февраль	28	294	523,4	1327		1327	2457	1651
март	31	265	512,0	1659		1659	2946	2192
апрель	30	490	500,1	1719		1719	2827	2036

Таблица В.23 - Маинская ГЭС (начальный уровень ВБ 323 м)

Интер:		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	1464,677	323,0	1465	0	1465	184	137
июнь	30	1748,938	323,0	1749	0	1749	216	156
ИЮЛЬ	31	1726,162	323,0	1726	0	1726	214	159
август	31	1831	323,0	1831	0	1831	225	168
сентябрь	30	1876,628	323,0	1877	0	1877	230	166
октябрь	31	1200	323,0	1200	0	1200	155	115
ноябрь	30	998,7211	323,0	999	0	999	131	95
декабрь	31	998,9132	323,0	999	0	999	131	98
январь	31	1321,589	323,0	1322	0	1322	168	125
февраль	28	1327,477	323,0	1327	0	1327	169	113
март	31	1658,71	323,0	1659	0	1659	206	153
апрель	30	1718,719	323,0	1719	0	1719	213	153

Таблица В.24 - Красноярская ГЭС (начальный уровень ВБ 230 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	6454,121	236,0	2800		2800	2130	1585
июнь	30	6267,975	240,6	3000		3000	2434	1753
ИЮЛЬ	31	2824,565	240,4	3000		3000	2501	1860
август	31	2336,761	239,4	3000		3000	2483	1847
сентябрь	30	2745,814	239,1	3000		3000	2463	1773
октябрь	31	2212,342	238,2	2800		2800	2286	1701
ноябрь	30	1467,325	236,5	2650		2650	2133	1536
декабрь	31	1257,879	234,2	2700		2700	2121	1578
январь	31	1569,747	232,7	2533		2533	1948	1449
февраль	28	1548,039	231,6	2249		2249	1702	1144
март	31	1881,679	230,4	2600		2600	1926	1433
апрель	30	3168,667	231,0	2811		2811	2067	1488

Таблица В.25 - Иркутская ГЭС (начальный уровень ВБ 456 м)

Интер:		Боковой приток, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3040	456,1	1300		1300	326	243
июнь	30	5070	456,5	1426		1426	358	258
июль	31	5060	456,8	1300		1300	327	243
август	31	4360	456,9	3031		3031	754	561
сентябрь	30	3190	457,0	2206		2206	553	398
октябрь	31	1200	456,9	2194		2194	550	409
ноябрь	30	-109	456,6	2900		2900	721	519
декабрь	31	-242	456,4	2864		2864	709	527
январь	31	319	456,3	1300		1300	327	243
февраль	28	424	456,2	1300		1300	327	220
март	31	364	456,1	1300		1300	327	243
апрель	30	882	456,1	1436		1436	360	259

Таблица В.26 - Братская ГЭС (начальный уровень ВБ 396 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2910	396,2	2500		2500	2187	1627
июнь	30	3596,239	396,8	2500		2500	2203	1586
ИЮЛЬ	31	3680	397,4	2700		2700	2398	1784
август	31	5250,942	398,7	2700		2700	2420	1800
сентябрь	30	3746,278	399,3	2700		2700	2450	1764
октябрь	31	3023,921	399,4	2700		2700	2452	1824
ноябрь	30	3267,807	399,7	2700		2700	2450	1764
декабрь	31	3129,482	399,9	2700		2700	2447	1820
январь	31	1503	399,4	2492		2492	2258	1680
февраль	28	1464	398,9	2508		2508	2278	1531
март	31	1468	398,4	2542		2542	2298	1710
апрель	30	2039,238	398,0	2749		2749	2466	1776

Таблица В.27 - Усть-Илимская ГЭС (начальный уровень ВБ 294,5 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3600	295,7	2800		2800	2157	1605
июнь	30	2837	295,9	2700		2700	2094	1508
июль	31	2926	296,2	2700		2700	2097	1560
август	31	2877	296,4	2700		2700	2098	1561
сентябрь	30	2859	296,3	2950		2950	2292	1650
октябрь	31	2832,023	296,2	2949		2949	2292	1705
ноябрь	30	2794,03	296,0	2899		2899	2251	1621
декабрь	31	2782,083	295,8	2899		2899	2250	1674
январь	31	2561,161	295,5	2833		2833	2196	1634
февраль	28	2569,083	295,1	2850		2850	2202	1480
март	31	2600,753	294,8	2818		2818	2147	1597
апрель	30	2904,084	294,6	3008		3008	2240	1613

Таблица В.28 - Богучанская ГЭС (начальный уровень ВБ 207 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3713,011	207,7	3099		3099	1939	1442
июнь	30	2940,139	207,6	3000		3000	1882	1355
июль	31	2808,097	207,4	3000		3000	1880	1399
август	31	2785	207,2	3000		3000	1877	1396
сентябрь	30	3024,629	207,2	3000		3000	1875	1350
октябрь	31	3014,463	207,2	3000		3000	1875	1395
ноябрь	30	2939,24	207,2	2949		2949	1844	1328
декабрь	31	2930,195	207,2	2949		2949	1844	1372
январь	31	2864,441	207,2	2850		2850	1782	1326
февраль	28	2877,653	207,2	2850		2850	1782	1198
март	31	2849,181	207,2	2900		2900	1813	1349
апрель	30	3204,381	207,1	3268		3268	2038	1467

25% Таблица В.29 - Саяно-Шушенская ГЭС (начальный уровень ВБ 500 м)

Интер дни		Боковой приток, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3109	507,8	2350		2350	3837	2855
июнь	30	4851	528,1	2200		2200	3906	2812
июль	31	3391	536,0	1879		1879	3578	2662
август	31	2657	540,0	1770		1770	3471	2582
сентябрь	30	2007	540,0	2007		2007	3934	2833
октябрь	31	1178	539,0	1400		1400	2744	2042
ноябрь	30	509	535,5	1300		1300	2548	1835
декабрь	31	391	531,0	1276		1276	2459	1829
январь	31	358	526,4	1150		1150	2166	1611
февраль	28	301	521,2	1150		1150	2122	1426
март	31	273	510,3	1550		1550	2715	2020
апрель	30	641	500,0	1686		1686	2768	1993

Таблица В.30 - Маинская ГЭС (начальный уровень ВБ 323 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2350	323,0	2350	0	2350	283	210
июнь	30	2200	323,0	2200	0	2200	266	192
ИЮЛЬ	31	1879	323,0	1879	0	1879	230	171
август	31	1770	323,0	1770	0	1770	219	163
сентябрь	30	2006,507	323,0	2007	0	2007	244	176
октябрь	31	1399,691	323,0	1400	0	1400	177	131
ноябрь	30	1299,643	323,0	1300	0	1300	166	119
декабрь	31	1276,264	323,0	1276	0	1276	163	121
январь	31	1150	323,0	1150	0	1150	149	111
февраль	28	1150	323,0	1150	0	1150	149	100
март	31	1549,805	323,0	1550	0	1550	194	144
апрель	30	1685,608	323,0	1686	0	1686	209	151

Таблица В.31 - Красноярская ГЭС (начальный уровень ВБ 230 м)

Интер:		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	7443,797	237,0	3118		3118	2382	1772
июнь	30	7285,071	242,8	3100		3100	2562	1845
июль	31	3163,713	243,0	3000		3000	2578	1918
август	31	2328,243	242,1	3000		3000	2567	1910
сентябрь	30	3117,328	242,2	3000		3000	2554	1839
октябрь	31	2560,159	241,6	3000		3000	2546	1895
ноябрь	30	1878,119	239,7	3300		3300	2748	1979
декабрь	31	1541,912	236,8	3500		3500	2825	2102
январь	31	1407,704	234,2	3100		3100	2430	1808
февраль	28	1378,499	232,1	2800		2800	2134	1434
март	31	1773,442	230,0	3000		3000	2211	1645
апрель	30	3383,03	230,3	3180		3180	2311	1664

Таблица В.32 - Иркутская ГЭС (начальный уровень ВБ 456 м)

Интер дни		Боковой приток, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3313	456,2	1300		1300	326	243
июнь	30	5526	456,4	3000		3000	737	531
июль	31	5515	456,7	1300		1300	327	243
август	31	4752	456,9	3310		3310	819	609
сентябрь	30	3477	456,9	3477		3477	859	619
октябрь	31	1308	456,9	1308		1308	329	245
ноябрь	30	-119	456,7	1300		1300	327	236
декабрь	31	-264	456,6	1300		1300	327	243
январь	31	348	456,4	3395		3395	833	620
февраль	28	462	456,3	1699		1699	425	286
март	31	397	456,1	1800		1800	450	335
апрель	30	961	456,1	1417		1417	355	256

Таблица В.33 - Братская ГЭС (начальный уровень ВБ 396 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2995,537	396,3	2500		2500	2188	1628
июнь	30	5285,274	397,8	2500		2500	2222	1600
июль	31	3806,446	398,4	2700		2700	2420	1800
август	31	5647,488	399,9	2700		2700	2454	1826
сентябрь	30	5098,672	401,1	2700		2700	2444	1759
октябрь	31	2182,006	400,8	2700		2700	2444	1818
ноябрь	30	1687,551	400,1	3100		3100	2805	2020
декабрь	31	1579,079	399,3	3100		3100	2813	2093
январь	31	3608,626	399,7	3003		3003	2728	2029
февраль	28	1872,044	399,1	3000		3000	2726	1832
март	31	1976,919	398,5	3100		3100	2798	2082
апрель	30	2052,036	398,0	3084		3084	2764	1990

Таблица В.34 - Усть-Илимская ГЭС (начальный уровень ВБ 294,5 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3600,011	296,1	2500		2500	1933	1438
июнь	30	2837,061	296,3	2700		2700	2098	1511
июль	31	2926,151	296,5	2781		2781	2161	1608
август	31	2877,181	296,5	2877		2877	2235	1663
сентябрь	30	2859,141	296,5	2859		2859	2221	1599
октябрь	31	2832,154	296,2	3032		3032	2356	1753
ноябрь	30	3194,167	296,1	3300		3300	2562	1845
декабрь	31	3182,168	295,8	3408		3408	2644	1967
январь	31	3072,431	295,7	3144		3144	2437	1813
февраль	28	3061,139	295,2	3399		3399	2628	1766
март	31	3158,816	294,9	3400		3400	2598	1933
апрель	30	3239,128	294,6	3409		3409	2537	1826

Таблица В.35 - Богучанская ГЭС (начальный уровень ВБ 207 м)

Интер дни		Приток общий, м^3/с	Z вб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3413,398	207,7	2800		2800	1753	1304
июнь	30	2940,368	207,6	3000		3000	1882	1355
ИЮЛЬ	31	2889,157	207,5	3000		3000	1880	1399
август	31	2962,081	207,5	3000		3000	1879	1398
сентябрь	30	2933,854	207,4	3000		3000	1878	1353
октябрь	31	3096,71	207,5	3000		3000	1879	1398
ноябрь	30	3339,536	207,6	3300		3300	2066	1487
декабрь	31	3439,499	207,6	3400		3400	2128	1583
январь	31	3175,334	207,6	3200		3200	2005	1491
февраль	28	3427,251	207,4	3600		3600	2251	1512
март	31	3430,714	207,1	3650		3650	2275	1693
апрель	30	3604,61	207,0	3700		3700	2300	1656

10% Таблица В.36 - Саяно-Шушенская ГЭС (начальный уровень ВБ 500 м)

Интервал дни		Боковой приток, м^3/с	Z вб,	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3265	508,5	2438		2438	3986	2966
июнь	30	5498	532,3	2117		2117	3814	2746
июль	31	3662	538,2	1650	800	2450	3201	2382
август	31	2877	540,0	1564	900	2464	3067	2282
сентябрь	30	2136	539,8	1936	250	2186	3796	2733
октябрь	31	1262	539,8	1262		1262	2474	1841
ноябрь	30	543	536,7	1250		1250	2451	1765
декабрь	31	406	532,3	1300		1300	2524	1878
январь	31	371	527,8	1180		1180	2234	1662
февраль	28	312	523,0	1150		1150	2126	1429
март	31	284	510,0	1833		1833	3219	2395
апрель	30	838	500,0	1850		1850	3036	2186

Таблица В.37 - Маинская ГЭС (начальный уровень ВБ 323 м)

Интері дни		Приток общий, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2438	323,0	2438	0	2438	292	217
июнь	30	2117	323,0	2117	0	2117	257	185
июль	31	2450	323,0	1650	800	2450	197	147
август	31	2464	323,0	1564	900	2464	187	139
сентябрь	30	2186	323,0	1936	250	2186	234	169
октябрь	31	1261,891	323,0	1262	0	1262	162	120
ноябрь	30	1250	323,0	1250	0	1250	160	115
декабрь	31	1300	323,0	1300	0	1300	166	123
январь	31	1180	323,0	1180	0	1180	152	113
февраль	28	1150	323,0	1150	0	1150	149	100
март	31	1833	323,0	1833	0	1833	225	168
апрель	30	1850	323,0	1850	0	1850	227	164

Таблица В.38 - Красноярская ГЭС (начальный уровень ВБ 230 м)

Интер дни		Приток общий, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/c	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	7502,064	236,1	3780		3780	2844	2116
июнь	30	7900,572	242,5	3320		3320	2718	1957
июль	31	3936,445	242,9	3600		3600	3068	2282
август	31	3136,772	242,6	3360		3360	2873	2138
сентябрь	30	3477,019	242,7	3427		3427	2924	2105
октябрь	31	2547,93	242,3	2800		2800	2400	1786
ноябрь	30	1925,034	241,0	2900		2900	2457	1769
декабрь	31	1565,325	239,1	2955		2955	2452	1824
январь	31	1454,265	236,8	3000		3000	2423	1803
февраль	28	1399,918	234,1	3310	_	3310	2588	1739
март	31	2051,411	231,7	3510		3510	2644	1967
апрель	30	3735,33	230,9	4200		4200	3065	2207

Таблица В.39 - Иркутская ГЭС (начальный уровень ВБ 456 м)

Интер дни		Боковой приток, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3622	456,2	1300		1300	326	243
июнь	30	6040	456,6	1300		1300	327	235
июль	31	6028	456,9	2370		2370	592	441
август	31	5194	457,0	4000		4000	982	731
сентябрь	30	3800	457,0	3800		3800	937	675
октябрь	31	1430	457,0	1430		1430	360	268
ноябрь	30	-130	456,9	1300		1300	328	236
декабрь	31	-288	456,7	1300		1300	327	244
январь	31	380	456,7	1300		1300	327	244
февраль	28	505	456,6	1300		1300	327	220
март	31	434	456,3	3554		3554	870	647
апрель	30	1051	456,1	4000		4000	966	696

Таблица В.40 - Братская ГЭС (начальный уровень ВБ 396 м)

Интер дни		Приток общий, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3208,821	396,4	2500		2500	2190	1629
июнь	30	3872,759	397,1	2500		2500	2212	1593
июль	31	5192,111	398,5	2700		2700	2414	1796
август	31	6632,039	400,0	2700	1000	3700	2443	1818
сентябрь	30	5626,175	400,8	2700	1250	3950	2446	1761
октябрь	31	2413,648	400,0	3050	1000	4050	2764	2056
ноябрь	30	1736,302	399,4	3000		3000	2723	1960
декабрь	31	1614,185	398,4	3426		3426	3090	2299
январь	31	1540,677	397,4	3400		3400	3034	2258
февраль	28	1494,439	396,5	3300		3300	2910	1955
март	31	3753,444	396,8	3200		3200	2809	2090
апрель	30	4714,919	397,8	2900		2900	2579	1857

Таблица В.41 - Усть-Илимская ГЭС (начальный уровень ВБ 294,5 м)

Интер дни		Приток общий, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3600	296,1	2500		2500	1933	1438
июнь	30	2837	296,3	2700		2700	2098	1510
июль	31	2926	296,5	2781		2781	2161	1608
август	31	3877	296,5	2877	1000	3877	2235	1663
сентябрь	30	4109	296,5	2859	1250	4109	2221	1599
октябрь	31	4182	296,5	3182	1000	4182	2472	1839
ноябрь	30	3094,1	295,5	3847		3847	2984	2149
декабрь	31	3508,1	295,2	3700		3700	2858	2126
январь	31	3469,4	294,8	3700		3700	2813	2093
февраль	28	3361,4	294,7	3450		3450	2579	1733
март	31	3258,8	294,5	3400		3400	2506	1864
апрель	30	3055	294,6	2991		2991	2203	1586

Таблица В.42 - Богучанская ГЭС (начальный уровень ВБ 207 м)

Интер: дни		Приток общий, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3413	207,7	2800		2800	1753	1304
июнь	30	2940	207,6	3000		3000	1882	1355
июль	31	2888,892	207,5	3000		3000	1880	1399
август	31	3962	207,5	3000	1000	4000	1872	1393
сентябрь	30	4184	207,4	3000	1250	4250	1868	1345
октябрь	31	4247	207,2	3450	1000	4450	2141	1593
ноябрь	30	3886,797	207,3	3780		3780	2353	1694
декабрь	31	3731	207,3	3700		3700	2307	1716
январь	31	3731	207,4	3700		3700	2308	1717
февраль	28	3478	207,3	3550		3550	2216	1489
март	31	3431	207,0	3650		3650	2271	1690
апрель	30	3187,286	207,1	3120		3120	1945	1401

5% Таблица В.43 - Саяно-Шушенская ГЭС (начальный уровень ВБ 500 м)

Интервал дни		Боковой приток, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3331	509,0	2450		2450	4011	2984
июнь	30	6162	534,0	1830	670	2500	3309	2383
июль	31	3797	540,0	1750	750	2500	3426	2549
август	31	2931	540,0	1700	1231	2931	3333	2480
сентябрь	30	2182	540,0	1700	482	2182	3333	2400
октябрь	31	1299	539,1	1499		1499	2939	2187
ноябрь	30	550	534,9	1500		1500	2941	2118
декабрь	31	408	529,7	1400		1400	2679	1993
январь	31	371	523,3	1400		1400	2592	1928
февраль	28	316	515,6	1400		1400	2511	1688
март	31	293	504,7	1450		1450	2420	1801
апрель	30	999	500,0	1459		1459	2371	1707

Таблица В.44 - Маинская ГЭС (начальный уровень ВБ 323 м)

Интервал дни		Приток общий, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	2450	323,0	2450	0	2450	293	218
июнь	30	2500	323,0	1830	670	2500	218	157
ИЮЛЬ	31	2500	323,0	1750	750	2500	209	155
август	31	2931	323,0	1700	1231	2931	197	147
сентябрь	30	2182	323,0	1700	482	2182	206	148
октябрь	31	1499	323,0	1499	0	1499	188	140
ноябрь	30	1500	323,0	1500	0	1500	188	135
декабрь	31	1400	323,0	1400	0	1400	177	131
январь	31	1400	323,0	1400	0	1400	177	131
февраль	28	1400	323,0	1400	0	1400	177	119
март	31	1450	323,0	1450	0	1450	182	136
апрель	30	1459	323,0	1459	0	1459	183	132

Таблица В.45 - Красноярская ГЭС (начальный уровень ВБ 230 м)

Интервал дни		Приток общий, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	7700,585	237,0	3350		3350	2552	1899
июнь	30	8315,881	243,0	4000		4000	3282	2363
июль	31	4150,366	243,0	3350	800	4150	2848	2119
август	31	3806,571	243,0	3200	600	3800	2731	2032
сентябрь	30	3675,728	242,9	3200	500	3700	2734	1968
октябрь	31	2841,68	242,5	3200		3200	2738	2037
ноябрь	30	2282,748	240,8	3500		3500	2944	2120
декабрь	31	1671,27	238,5	3300		3300	2716	2020
январь	31	1696,423	236,2	3250		3250	2601	1935
февраль	28	1669,341	234,1	3150		3150	2458	1651
март	31	1665,539	231,1	3500		3500	2624	1952
апрель	30	3446,014	231,0	3501		3501	2565	1847

Таблица В.46 - Иркутская ГЭС (начальный уровень ВБ 456 м)

Интер дни		Боковой приток, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/c	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3730	456,2	1500		1500	376	280
июнь	30	6220	456,6	1500		1500	376	271
июль	31	6208	456,9	2593		2593	648	482
август	31	5349	457,0	4000		4000	982	731
сентябрь	30	3914	457,0	3914		3914	964	694
октябрь	31	1472	457,0	1472		1472	371	276
ноябрь	30	-134	456,9	1300		1300	328	236
декабрь	31	-297	456,7	1300		1300	327	244
январь	31	391	456,7	1300		1300	327	244
февраль	28	520	456,6	1300		1300	327	220
март	31	447	456,3	3610		3610	882	657
апрель	30	1082	456,1	4000		4000	966	696

Таблица В.47 - Братская ГЭС (начальный уровень ВБ 396 м)

Интер:		Приток общий, м^3/с	Z вб,	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3528,506	396,6	2500		2500	2194	1632
июнь	30	4234,074	397,5	2500		2500	2222	1600
июль	31	5591,762	399,0	2700		2700	2426	1805
август	31	6797,071	400,3	2700	1700	4400	2448	1822
сентябрь	30	5853,858	400,7	3000	2000	5000	2722	1960
октябрь	31	2517,933	399,4	2700	2300	5000	2454	1826
ноябрь	30	1763,659	399,1	2417		2417	2194	1580
декабрь	31	1633,885	398,3	3100		3100	2794	2079
январь	31	1555,768	397,5	3100		3100	2769	2060
февраль	28	1506,63	396,7	3100		3100	2744	1844
март	31	3821,718	397,1	3150		3150	2776	2066
апрель	30	4759,745	398,0	3050		3050	2716	1955

Таблица В.48 - Усть-Илимская ГЭС (начальный уровень ВБ 294,5 м)

Интер дни		Приток общий, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Qнб, м^3/c	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3600	295,8	2744		2744	2116	1574
июнь	30	2837	295,9	2700		2700	2095	1508
июль	31	2926	296,3	2700		2700	2097	1560
август	31	4577	296,5	2714	1700	4414	2108	1569
сентябрь	30	5159	296,4	3218	2000	5218	2500	1800
октябрь	31	5132	296,4	2832	2300	5132	2199	1636
ноябрь	30	2511,102	295,4	3288		3288	2551	1836
декабрь	31	3182,1	295,2	3300		3300	2549	1896
январь	31	3169,4	295,0	3300		3300	2536	1887
февраль	28	3161,4	294,8	3300		3300	2495	1677
март	31	3208,8	294,6	3350		3350	2487	1850
апрель	30	3205	294,5	3250		3250	2385	1717

Таблица В.49 - Богучанская ГЭС (начальный уровень ВБ 207 м)

Интер:		Приток общий, м^3/с	Zвб, м	Отурб, м^3/с	Qх.сбр, м^3/с	Онб, м^3/с	Рсред, МВт	Выработка эл.эн, млн. кВтч
май	31	3657,228	208,0	2800		2800	1755	1306
июнь	30	2940	207,9	3000		3000	1885	1358
июль	31	2808	207,7	3000		3000	1884	1401
август	31	4498,664	207,5	3000	1700	4700	1867	1389
сентябрь	30	5293,245	208,0	3000	1827	4827	1870	1346
октябрь	31	5197	207,9	3000	2300	5300	1871	1392
ноябрь	30	3328,219	207,8	3400		3400	2132	1535
декабрь	31	3331	207,7	3433		3433	2151	1601
январь	31	3331	207,5	3500		3500	2190	1630
февраль	28	3328	207,3	3500		3500	2187	1470
март	31	3381	207,1	3550		3550	2212	1646
апрель	30	3446	207,1	3450		3450	2148	1547

Перетоки мощности в контролируемых сечениях

Таблица В.50 – результаты расчета для притока 95% обеспеченности

No	1	2	3	4	5	6	7	8
май	1489	-42	966	815	1347	964	1965	1045
июнь	1489	168	1560	1303	2044	1479	2105	1598
июль	1416	239	1697	1435	2255	1563	2240	1692
август	1687	106	1677	1329	2192	1395	2284	1544
сентябрь	1658	110	1442	1159	1894	1287	2328	1398
октябрь	1456	-16	1279	916	1603	212	2338	467
ноябрь	1383	-469	425	430	617	-32	1358	147
декабрь	1595	-520	549	502	814	-34	1684	25
январь	1680	-871	168	-9	382	-793	2074	-701
февраль	1557	-692	328	40	551	-889	2349	-812
март	1655	-790	22	116	329	440	1628	398
апрель	1539	-140	1085	720	1569	465	2909	451
№	9	10	11	12	13	14	15	16
май	1705	-270	1225	-35	309	1320	-126	-24
июнь	1837	22	1373	-50	303	1673	-35	-60
июль	1836	102	1510	-192	442	1787	53	7
август	1834	7	1507	-197	454	1742	66	-31
сентябрь	1829	-63	1582	-310	592	1459	-98	-22

N₂	9	10	11	12	13	14	15	16
октябрь	1824	-787	811	484	-180	1976	44	-81
ноябрь	1198	-359	467	208	124	480	-517	-306
декабрь	1394	-461	501	338	12	750	-351	-213
январь	1199	-1166	-112	821	-478	900	-334	-234
февраль	1362	-1265	-155	1040	-708	1126	-256	-201
март	1874	-38	1324	-23	340	835	-402	-258
апрель	2377	16	1750	40	255	1999	167	-35

Значения указаны в мегаваттах. Номер контролируемого сечения соответствует номеру и наименованию в таблице 4.2.

Таблица В.51 – результаты расчета для притока 90% обеспеченности

		•		•				
No	1	2	3	4	5	6	7	8
май	1452	-10	1001	843	1383	991	1972	1072
июнь	1645	65	1503	1261	2007	1431	2141	1567
июль	1601	111	1613	1371	2191	1493	2271	1639
август	1556	223	1805	1421	2323	1469	2338	1615
сентябрь	1630	135	1470	1174	1922	1291	2353	1401
октябрь	1408	27	1325	951	1652	244	2353	499
ноябрь	1442	-445	554	575	798	197	1373	418
декабрь	1041	279	1910	758	2300	-1161	4683	-1143
январь	1280	-337	983	311	1272	-1025	3344	-944
февраль	1529	-704	208	320	439	29	1212	163
март	1655	-859	-176	73	89	620	1159	589
апрель	1660	-452	481	586	888	974	1583	972
№	9	10	11	12	13	14	15	16
май	1705	-240	1256	-68	341	1320	-126	-24
июнь	1838	-13	1377	-53	306	1730	5	-40
июль	1839	38	1485	-162	412	1844	93	27
август	1838	66	1566	-257	514	1742	66	-31
сентябрь	1833	-81	1565	-287	569	1495	-80	-22
октябрь	1829	-778	821	477	-174	1909	12	-100
ноябрь	1588	-104	953	65	268	1094	-283	-188
декабрь	1409	-1669	-186	1104	-754	1672	-71	-73
январь	1719	-1491	-27	1236	-893	1690	-26	-87
февраль	1652	-375	803	290	42	1247	-141	-144
март	1632	79	1384	-323	640	680	-407	-260
апрель	2372	169	1673	104	191	1763	32	-78
январь февраль март	1719 1652 1632	-1491 -375 79	-27 803 1384	1236 290 -323	-893 42 640	1690 1247 680	-141 -407	-87 -144 -260

Таблица В.52 – результаты расчета для притока 75% обеспеченности

№	1	2	3	4	5	6	7	8
май	1654	-34	1165	780	1601	562	2704	654
июнь	1455	270	1843	1413	2391	1354	2644	1500
ИЮЛЬ	1613	80	1580	1308	2153	1370	2367	1512
август	1490	149	1747	1381	2283	1436	2353	1602
сентябрь	1550	86	1559	1086	2062	907	2965	1041
октябрь	920	229	1499	1096	1828	407	2353	666
ноябрь	1522	-784	205	308	476	-27	1373	249
декабрь	1302	-306	1150	387	1529	-1120	3868	-1053
январь	1369	-873	102	-3	344	-694	1989	-550
февраль	1338	-852	-9	-38	211	-653	1758	-534
март	1676	-786	154	160	542	309	2061	347
апрель	1423	-313	783	315	1194	-190	3176	-217
№	9	10	11	12	13	14	15	16
май	1829	-674	975	356	-82	1857	103	36
шош								
ИЮНЬ	1840	-121	1349	-19	272	1738	123	19
ИЮЛЬ	1840 1839	-121 -145	1349 1358	-19 -24	272 274	1738 1846	123 217	19 83
ИЮЛЬ	1839	-145	1358	-24	274	1846	217	83
июль август	1839 1835	-145 -8	1358 1552	-24 -244	274 501	1846 1599	217 144	83
июль август сентябрь	1839 1835 1828	-145 -8 -521	1358 1552 1282	-24 -244 13	274 501 268	1846 1599 1652	217 144 138	83 8 57
июль август сентябрь октябрь	1839 1835 1828 1823	-145 -8 -521 -709	1358 1552 1282 891	-24 -244 13 395	274 501 268 -91	1846 1599 1652 1856	217 144 138 -171	83 8 57 -81
июль август сентябрь октябрь ноябрь	1839 1835 1828 1823 1508	-145 -8 -521 -709 -363	1358 1552 1282 891 788	-24 -244 13 395 166	274 501 268 -91 167	1846 1599 1652 1856 1236	217 144 138 -171 -437	83 8 57 -81 -147
июль август сентябрь октябрь ноябрь декабрь	1839 1835 1828 1823 1508 1505	-145 -8 -521 -709 -363 -1641	1358 1552 1282 891 788 -296	-24 -244 13 395 166 1308	274 501 268 -91 167 -958	1846 1599 1652 1856 1236 1317	217 144 138 -171 -437 -445	83 8 57 -81 -147 -173
июль август сентябрь октябрь ноябрь декабрь январь	1839 1835 1828 1823 1508 1505 1255	-145 -8 -521 -709 -363 -1641 -1301	1358 1552 1282 891 788 -296 -328	-24 -244 13 395 166 1308 1100	274 501 268 -91 167 -958 -756	1846 1599 1652 1856 1236 1317 1175	217 144 138 -171 -437 -445 -468	83 8 57 -81 -147 -173 -202

Таблица В.53 – результаты расчета для притока 50% обеспеченности

No	1	2	3	4	5	6	7	8
май	1523	32	1170	869	1592	807	2414	896
июнь	1690	128	1818	1243	2397	905	3173	1058
июль	1366	401	2124	1494	2760	1092	3334	1236
август	1335	384	2211	1411	2798	853	3590	1009
сентябрь	1413	274	1898	1169	2440	646	3680	781
октябрь	616	502	1791	1348	2131	689	2353	953
ноябрь	1406	-408	891	805	1292	415	1958	772
декабрь	1596	-538	808	768	1235	382	1955	589
январь	735	-143	1063	703	1398	-80	2522	107
февраль	501	57	1152	781	1468	-8	2457	145
март	1654	-612	537	244	984	-17	2946	37

					1	7 1	,	
№	1	2	3	4	5	6	7	8
апрель	1296	-80	1117	773	1601	573	2827	598
№	9	10	11	12	13	14	15	16
май	1890	-426	1164	211	63	1724	43	16
июнь	1837	-569	1016	337	-84	1949	165	40
июль	1836	-458	1165	181	69	1961	174	68
август	1831	-666	1069	274	-18	1972	302	87
сентябрь	1825	-874	1047	264	17	1923	200	78
октябрь	1822	-525	1077	192	112	1661	-152	-81
ноябрь	1785	-551	998	201	131	1516	-142	-47
декабрь	1782	-722	781	406	-56	1558	-185	-76
январь	1721	-1032	320	852	-509	1793	-202	-104
февраль	1724	-748	485	696	-364	1772	-204	-90
март	1757	-1080	673	561	-244	1783	-171	-109
апрель	1986	-661	1098	351	-55	1904	29	-73

Таблица В.54 – результаты расчета для притока 25% обеспеченности

No	1	2	3	4	5	6	7	8
май	1174	491	1885	1045	2361	271	3837	348
июнь	1354	494	2349	1478	2972	793	3906	945
июль	1204	581	2381	1647	3042	1144	3578	1295
август	1137	564	2398	1614	2996	1147	3471	1313
сентябрь	1085	565	2221	1358	2768	716	3934	840
октябрь	104	955	2296	1646	2644	804	2744	1054
ноябрь	-61	899	2321	1831	2759	1232	2548	1574
декабрь	161	798	2315	1915	2811	1430	2459	1649
январь	-537	1005	2276	1875	2670	1429	2166	1651
февраль	-794	1225	2387	1965	2763	1504	2122	1685
март	815	202	1448	1136	1963	1137	2715	1228
апрель	727	488	1773	1384	2310	1319	2768	1372
№	9	10	11	12	13	14	15	16
май	1705	-1226	545	698	-424	1972	164	76
июнь	1837	-810	894	470	-216	1981	338	118
июль	1836	-476	1207	137	113	1964	176	68
август	1834	-446	1291	37	220	1910	302	87
сентябрь	1829	-907	1016	300	-18	1881	315	117
октябрь	1825	-684	922	356	-53	1871	-152	-81
ноябрь	2007	-365	1191	196	137	1998	-65	-47
декабрь	2066	-366	1223	194	156	1971	-146	-76
январь	1944	31	1390	-92	435	1385	-147	-104

N₂	9	10	11	12	13	14	15	16
февраль	2192	360	1594	-55	386	1741	-145	-90
март	2219	-175	1636	-35	352	1944	-33	-89
апрель	2247	-130	1687	-34	330	1993	78	-63

Значения указаны в мегаваттах. Номер контролируемого сечения соответствует номеру и наименованию в таблице 4.2.

Таблица В.55 – результаты расчета для притока 10% обеспеченности

№	1	2	3	4	5	6	7	8
май	672	939	2373	1413	2863	599	3986	684
июнь	1359	526	2385	1544	3013	920	3814	1082
июль	1231	583	2367	1774	3041	1504	3201	1694
август	1421	486	2326	1701	2938	1475	3067	1674
сентябрь	1198	692	2392	1561	2954	1021	3796	1165
октябрь	305	1015	2389	1828	2754	1157	2474	1413
ноябрь	393	858	2360	1904	2810	1370	2451	1700
декабрь	589	777	2389	1961	2893	1449	2524	1647
январь	-98	975	2385	1943	2790	1478	2234	1686
февраль	-216	1072	2361	1939	2744	1484	2126	1675
март	175	931	2353	1731	2892	1532	3219	1609
апрель	372	962	2323	1768	2876	1597	3036	1667
№	9	10	11	12	13	14	15	16
май	1705	-1352	427	816	-543	1996	169	71
июнь	1837	-828	879	483	-229	1988	169	41
июль	1836	-567	1125	215	34	1992	308	131
август	1827	-392	1352	-41	298	1789	314	87
сентябрь	1818	-950	979	322	-41	1868	373	117
октябрь	2087	-179	1421	75	229	1983	71	-100
ноябрь	2294	52	1736	-106	438	1999	111	-57
декабрь	2245	5	1722	-162	512	1987	94	-33
январь	2247	72	1701	-129	472	1999	121	-58
февраль	2157	-104	1399	117	215	1999	102	-84
	2215	226	1670	-90	407	1811	174	-60
март	2215	-226	1679	85	407	1011	1/4	-00

Таблица В.56 – результаты расчета для притока 5% обеспеченности

No	1	2	3	4	5	6	7	8
май	722	894	2325	1363	2813	529	4011	603
июнь	1331	560	2396	1735	3042	1422	3309	1633
июль	1220	589	2385	1709	3052	1305	3426	1474

No	1	2	3	4	5	6	7	8
август	1416	487	2339	1620	2944	1238	3333	1418
сентябрь	1212	686	2364	1700	2940	1435	3333	1600
октябрь	311	1001	2398	1671	2748	723	2939	969
ноябрь	394	849	2374	1744	2809	917	2941	1238
декабрь	707	669	2281	1811	2775	1193	2679	1392
январь	-99	971	2397	1827	2792	1146	2592	1341
февраль	-232	1080	2388	1825	2760	1138	2511	1303
март	1134	82	1405	1194	1933	1377	2420	1498
апрель	1064	351	1636	1411	2184	1573	2371	1660
№	9	10	11	12	13	14	15	16
май	1707	-1141	633	602	-329	1949	165	57
июнь	1841	-842	876	479	-226	1988	191	49
июль	1839	-567	1121	227	23	1992	329	145
август	1822	-506	1234	83	174	1789	314	87
сентябрь	1820	-326	1602	-341	623	1799	335	117
октябрь	1817	-961	648	640	-337	1998	67	-88
ноябрь	2074	-897	797	682	-349	1985	78	-49
декабрь	2089	-514	1210	235	115	1939	44	-33
январь	2130	-450	1183	311	32	1979	87	-58
февраль	2129	-345	1155	355	-23	1997	99	-84
март	2156	-317	1589	-51	368	1799	174	-60
апрель	2096	-97	1730	-230	526	1610	172	-34

ПРИЛОЖЕНИЕ Г. Акт об использовании результатов диссертационной работы

УТВЕРЖДАЮ

Генеральный директор

Филиала 💥 «СО ЕЭС» ОДУ Сибири

А.В. Хлебов

2 2020 г.

AKT

об использовании результатов диссертационной работы Труфакина С.С. «Стохастическая оптимизация долгосрочных режимов работы гидроэнергетических систем и комплексов»

Настоящим актом подтверждается использование результатов диссертационного исследования Труфакина Сергея Сергеевича «Стохастическая оптимизация долгосрочных режимов работы гидроэнергетических систем и комплексов» в следующих видах деятельности Филиала АО «СО ЕЭС» ОДУ Сибири:

- формировании балансов электроэнергии и мощности на календарный год и периоды в пределах года;
- формирование режимов работы ГЭС Ангаро-Енисейского каскада при подготовке предложений к заседаниям Межведомственной рабочей группы по регулированию режимов работы гидроузлов Ангаро-Енисейского каскада при Федеральном агентстве водных ресурсов;
- ежедневных уточняющих расчетов режимов работы ГЭС Ангаро-Енисейского каскада и в целом электроэнергетического режима работы ОЭС Сибири.

Научные исследования Труфакина С.С. использованы в рамках разработки программного обеспечения «Водно-энергетический расчета ГЭС Ангаро-Енисейского каскада» (далее ПО ВЭР) с присвоением Свидетельства о государственной регистрации программы для ЭВМ №2017618953 от 11.08.2017 года. Правообладателем программного продукты является АО «СО ЕЭС». ПО ВЭР внедрено в промышленную эксплуатацию в Филиалах АО «СО ЕЭС» ОДУ Сибири, Красноярское РДУ и Иркутское РДУ.

Sel Jeunceum As