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Introduction

In the present article, we deduce explicit variational formulas for a solution vector and
for the elements of its monodromy group to a third-order ordinary differential equation on a com-
pact Riemann surface of genus g > 2 with respect to a variation in the spaces of quadratic
and cubic holomorphic differentials. These theorems are a continuation of results by D. Hejhal,
V. V.Chueshev, and M. I. Tulina.

In [1–3], D. Hejhal began to study the dependence of a solution vector and the generators
of the monodromy group of the equation on small variations in the space of holomorphic differ-
entials.

Variational formulas found applications in the theory of Teichmüller spaces in connection
with the uniformization of compact Riemann surfaces (see [3–4]).

The coefficients of a third-order differential equation on a compact Riemann surface must be
the quadratic and cubic differentials at the corresponding derivatives (see [5]).

In the previous papers [4, 6, 7], a compact method was proposed for deducing the variational
formulas for the vector solution and the elements of its monodromy group with the use of matrix-
vector notation.

In the present article, we obtain formulas for the first variation with respect to a basis
in spaces of holomorphic cubic differentials for a solution vector and the monodromy group
on a compact Riemann surface for a third-order linear ordinary differential equation with any
holomorphic coefficients. Moreover, we find explicit variational formulas for a variation in spaces
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of holomorphic quadratic differentials for a solution vector as well as the formula for the first
variation of the solution vector for a variation with respect to a basis of quadratic holomorphic
differentials on a compact Riemannian surface of genus g > 2.

1. Preliminaries

Let F be a compact Riemann surface of genus g > 2, D be an open disk on the plane C.
Denote by Γ a Fuchsian group of the first kind uniformizing F in the disk D, i.e., F is conformally
equivalent to D/Γ.

Consider an linear ordinary differential equation

dnv

dtn
+ q2(t)

dn−2v

dtn−2
+ q3(t)

dn−3v

dtn−3
+ · · ·+ qn(t)v = 0, t ∈ D, (1)

where qj(t) is a meromorphic function on D, j = 2, . . . , n. Equation (1) has Fuchsian type on F

if it has only regular Fuchsian points and is preserved after the change of variables

ω = v(s)L′(t)
n−1
2 , (t, υ) → (s, ω), s = L(t), L ∈ Γ. (2)

A solution vector is a column-vector consisting of a basis in the space of holomorphic solutions
to an equation with holomorphic coefficients. Holomorphic differentials of order q have the form
Φ(z)dzq and are invariant under a change of coordinates on the surface, i.e.,

Φ(Lz)L′(z)q = Φ(z), z ∈ D, L ∈ Γ.

Denote by Ωq(F ) the vector space of holomorphic q-differentials on D/Γ, where q ∈ N (see [5]).

Lemma 1 ([2,3]). Suppose that a column vector U(t) consists of n linearly independent solutions
to equation (1) on F = D/Γ. Then the equality

U(Lt) = χ(L)U(t)ξL(t)
n−1, L ∈ Γ, ξL(t) =

√
L′(t), (3)

uniquely determines the monodromy homomorphism χ : Γ → GL(n,C) defined by the mapping
L → χ(L), L ∈ Γ.

The monodromy group of equation (1) is the image χ(Γ) of the group Γ. This is a matrix
group describing the multivaluedness of a solution vector.

Note that for n = 2 the variation is possible only with respect to one coefficient of the equation

u(2)(z) + (Q0(z)− µr(z))u(z) = 0.

For n = 3, for the equation

u(3)(z) + (Q0(z)− λq(z))u(1)(z) + (R0(z)− µr(z))u(z) = 0 (4)

we have already three substantially different variations: (1) with respect to r, i.e., with respect
to µ, in the space of cubic differentials; (2) with respect to q, i.e., with respect to λ, in the space
of quadratic differentials; (3) with respect to r and q, i.e., with respect to λ and µ.

Let U(z) = (u(z), v(z), w(z))T be the solution vector to the Cauchy problem at a point
z0 ∈ D,  u(z0)

υ(z0)

w(z0)

 =

 1

0

0

 ,

 u′(z0)

υ′(z0)

w′(z0)

 =

 0

1

0

 ,

 u′′(z0)

υ′′(z0)

w′′(z0)

 =

 0

0

1

 , (5)
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for the unperturbed equation, i.e., for λ = 0 and µ = 0.

Put

W (x) =

 u υ w

u′ υ′ w′

u′′ υ′′ w′′

 , W (z0) = E,

W1(x) =

∣∣∣∣∣∣
0 υ w

0 υ′ w′

f υ′′ w′′

∣∣∣∣∣∣ = f(−1)4
∣∣∣∣ υ w

υ′ w′

∣∣∣∣ = [f = ru] = ru

∣∣∣∣ υ w

υ′ w′

∣∣∣∣ ,

W2(x) =

∣∣∣∣∣∣
u 0 w

u′ 0 w′

u′′ f w′′

∣∣∣∣∣∣ = f(−1)5
∣∣∣∣ u w

u′ w′

∣∣∣∣ = [f = rυ] = rυ

∣∣∣∣ u w

u′ w′

∣∣∣∣ ,

W3(x) =

∣∣∣∣∣∣
u υ 0

u′ υ′ 0

u′′ υ′′ f

∣∣∣∣∣∣ = f(−1)6
∣∣∣∣ u υ

u′ υ′

∣∣∣∣ = [f = rw] = rw

∣∣∣∣ u υ

u′ υ′

∣∣∣∣ .
Then

V (z) =

 W1(z) 0 0

0 W2(z) 0

0 0 W3(z)

 ,

is a solution to the Lagrange adjoint unperturbed third-order equation on D/Γ. It is known
from [3] that it satisfies the equality

V (Lz) = ξL(z)
2V (z)χ(L)−1, L ∈ Γ, ξL(z) =

√
L′(z), z ∈ D.

2. Expansion of the solution vector in a series under
variation in the space of quadratic differentials

Consider the perturbed vector equation

U (3)(z) +
(
Q0(z)− λq(z)

)
U (1)(z) +R0(z)U(z) = 0, (6)

where λ ∈ C, |λ| < ε, ε is a sufficiently small number, and q(z)dz2 is a nonzero holomorphic
differential on D/Γ.

Denote by

U(z;λ; 0) =

 u(z;λ; 0) 0 0

0 υ(z;λ; 0) 0

0 0 ω(z;λ; 0)

 =

 u(z;λ; 0)

υ(z;λ; 0)

ω(z;λ; 0)


the solution vector to the Cauchy problem (5) at a point z0 for the perturbed equation (6).
By Poincaré’s small parameter method and the Cauchy–Kovalevskaya theorem, expand the so-
lution vector in the Taylor series

U(z;λ; 0) = U(z) + λU10(z) + λ2U20(z) + . . .+ λmUm0(z) + . . . ,

convergent for |λ| < ϵ, z ∈ D (see [2; 3]).
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Inserting this series in (6), we obtain the infinite system of differential equations in vector-
matrix form
U (3)(z) +Q0(z)U

(1)(z) +R0U(z) = 0,

U
(3)
10 (z) +Q0(z)U

(1)
10 (z) +R0U10(z) = q(z)U (1)(z),

U
(3)
20 (z) +Q0(z)U

(1)
20 (z) +R0U20(z) = q(z)U

(1)
10 (z),

· · ·
U

(3)
n0 (z) +Q0(z)U

(1)
n0 (z) +R0Un0(z) = q(z)U

(1)
n−1,0(z),

· · ·

Theorem 1. The solution vector

U (3)(z) +
(
Q0(z)− λq(z)

)
U (1)(z) +R0(z)U(z) = 0

with condition (5) on a compact Riemann surface F of genus g > 2 satisfies the explicit varia-
tional formula

U(z;λ; 0) =
[
E + λA0(z) + λ2A1(z) + . . .+ λnAn−1(z) + . . .

]
U(z),

where z ∈ D, |λ| < ε,

A(x) = q(x)U (1)(x)V (x), D(x) = q(x)U(x)V (x), A0(z) =

∫ z

z0

A(x)dx,

An(z) =

∫ z

z0

[
A(x)Dn(x) +A0(x)A(x)Dn−1(x) +A1(x)A(x)D

n−2(x)

+ . . .+An−2(x)A(x)D(x) +An−1(x)A(x)
]
dx,

and E is the identity matrix of order 3.

Proof. Find the solution to the second equation of the system by Lagrange’s method of variation
of constants:

U10(z) =

∫ z

z0

q(x)U (1)(x)V (x)dxU(z).

If n = 1 then U10(z) = A0(z)U(z).

For n > 1, denote by Un0(z) = An−1(z)U(z), where

An−1(z) =

∫ z

z0

q(x)U
(1)
n−1,0(x)V (x)dx.

For n = 2, we have U20(z) = A1(z)U(z). On the other hand,

U20(z) = A1(z)U(z) =

∫ z

z0

q(x)U
(1)
10 (x)V (x)dxU(z) =

∫ z

z0

q(x)[A0(x)U(x)]′xV (x)dxU(z).

It follows that
A1(z) =

∫ z

z0

q(x)[A0(x)U(x)]′xV (x)dx =

=

∫ z

z0

q(x)
[
A′

0(x)U(x) +A0(x)U
(1)(x)

]
V (x)dx =

=

∫ z

z0

q(x)[A(x)U(x) +A0(x)U
(1)(x)]V (x)dx =
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=

∫ z

z0

A(x)q(x)U(x)V (x)dx+

∫ z

z0

A0(x)q(x)U
(1)(x)V (x)dx =

=

∫ z

z0

A(x)D(x)dx+

∫ z

z0

A0(x)A(x)dx.

Thus,

U20(z) =
(∫ z

z0

A(x)D(x)dx+

∫ z

z0

A0(x)A(x)dx
)
U(z).

For n = 3, we have the equality U30(z) = A2(z)U(z). On the other hand,

U30(z) = A2(z)U(z) =

∫ z

z0

q(x)U
(1)
20 (x)V (x)dxU(z) =

∫ z

z0

q(x)
[
A1(x)U(x)

]′
x
V (x)dxU(z),

where

A2(z) =

∫ z

z0

q(x)
[
A1(x)U(x)

]′
x
V (x)dx =

∫ z

z0

q(x)
[
A′

1(x)U(x) +A1(x)U
(1)(x)

]
V (x)dx =

=

∫ z

z0

q(x)
[
A(x)D(x)U(x)V (x)dx

]
+

∫ z

z0

q(x)
[
A0(x)A(x)U(x)V (x)dx

]
+

+

∫ z

z0

q(x)
[
A1(x)U

(1)(x)V (x)dx
]
=

∫ z

z0

[
A(x)D2(x) +A0(x)A(x)D(x) +A1(x)A(x)

]
dx.

Therefore,

A2(z) =

∫ z

z0

[
A(x)D2(x) +A0(x)A(x)D(x) +A1(x)A(x)

]
dx

and

U30(z) =

(∫ z

z0

[
A(x)D2(x) + +A0(x)A(x)D(x) +A1(x)A(x)

]
dx

)
U(z).

By the induction assumption, for n = m we have the equality

Am(z) =

∫ z

z0

[
A(x)Dm(x)+A0(x)A(x)D

m−1(x)+A1(x)A(x)D
m−2(x)+ . . .+Am−1(x)A(x)

]
dx.

Prove this assertion for the case n = m+ 1. We have

Um+1,0(z) = Am(z)U(z) =

∫ z

z0

q(x)U
(1)
m0(x)V (x)dxU(z),

where
Am(z) =

∫ z

z0

q(x)
[
Am−1(x)U(x)

]′
x
V (x)dx =

=

∫ z

z0

q(x)
[
A′

m−1(x)U(x) +Am−1(x)U
(1)(x)

]
V (x)dx =

=

∫ z

z0

q(x)
[
A(x)Dm−1(x) +A0(x)A(x)D

m−2(x)+

+A1(x)A(x)Dm−3(x) + · · ·+Am−2(x)A(x)
]
U(x)V (x)dx+

∫ z

z0

q(x)Am−1(x)U
(1)(x)V (x)dx =
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=

∫ z

z0

q(x)A(x)Dm−1(x)U(x)V (x)dx+

∫ z

z0

q(x)A0(x)A(x)D
m−2(x)U(x)V (x)dx+

+

∫ z

z0

q(x)A1(x)A(x)D
m−3(x)U(x)V (x)dx+

+ · · ·+
∫ z

z0

q(x)Am−2(x)A(x)U(x)V (x)dx+

∫ z

z0

Am−1(x)A(x)dx =

=

∫ z

z0

[
A(x)Dm(x) +A0(x)A(x)D

m−1(x)+

+A1(x)A(x)D
m−2(x) + · · ·+Am−2(x)A(x)D(x) +Am−1(x)A(x)

]
dx.

Consequently, by induction, we have proved the formula for the matrix An for any n.

Let us now introduce the explicit variational formula with respect to λ for the solution vector:

U(z;λ; 0) = U(z) + λU10(z) + λ2U20(z) + . . .+ λnUn0(z) + . . .

= EU(z) + λA0(z)U(z) + λ2A1(z)U(z) + . . .+ λnAn−1(z)U(z) + . . .

=
[
E + λA0(z) + λ2A1(z) + . . .+ λnAn−1(z) + . . .

]
U(z).

Thus, the theorem is proved.

Remark 1. This theorem gives an explicit vatiational formula for the solution vector, i.e., all
the variational terms of any order or the whole Taylor series in λ under variation with respect
to one holomorphic differential in Ω2(F ).

Proposition 1. Let q1(z)dz
2, . . . , q3g−3(z)dz

2 be a basis of quadratic holomorphic differentials
on F = D/Γ of genus g > 2. Then the perturbed equation

U (3)(z) + (Q0(z)−
3g−3∑
j=1

λjqj(z))U
(1)(z) +R0(z)U(z) = 0

with condition (5) satisfies the formula for the first variation of the solution vector

U(z;λ1, . . . , λ3g−3; 0) =
[
E +

3g−3∑
j=1

λjA0;ej (z)
]
U(z) + o(λ1, . . . , λ3g−3),

where |λj | → 0, j = 1, . . . , 3g − 3, z ∈ D, A0;ej (z) =
z∫

z0

qj(x)U
(1)
x V (x)dx.

Proof. Since the coefficient at the first derivative depends holomorphically on λ = (λ1, . . . , λ3g−3),

the solution vector to this equation is representable as

U(z;λ1, . . . , λ3g−3; 0) = U(z) +

3g−3∑
j=1

λjU10;ej (z) + o(λ),

|λj | → 0, j = 1, . . . , 3g − 3. Here ej is the vector whose jth coordinate is equal to 1 and all
the remaining coordinates are zero. Now, put d = 3g − 3.
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Inserting this expression in the equation, we obtain the vector equality

U (3)(z) +

3g−3∑
j=1

λjU
(3)
10;ej

(z) + o(λ) +
(
Q0(z)− λ1q1(z)− . . . − λdqd(z)

)
×

×
(
U (1)(z) +

3g−3∑
j=1

λjU
(1)
10;ej

(z) + o(λ)

)
+R0(z)

(
U(z) +

3g−3∑
j=1

λjU10;ej (z) + o(λ)

)
= 0.

Note that here the following conditions are fulfilled:

U10;ej (z0) = U
(1)
10;ej

(z0) = U
(2)
10;ej

(z0) = 0, j = 1, . . . , d.

Hence we obtain a system of vector linear differential equations of the form

U (3)(z) +Q0(z)U
(1)(z) +R0(z)U(z) = 0,

U
(3)
10;ej

(z) +Q0(z)U
(1)
10;ej

(z) +R0(z)U10;ej (z) = qj(z)U
(1)(z), j = 1, . . . , d.

For each j, j = 1, . . . , d, solve the equation by Lagrange’s method of variation of constants:

U10;ej (z) =

[ ∫ z

z0

qj(x)U
(1)(x)V (x)dx

]
U(z).

Put Aj(z) = qj(z)U
(1)(z)V (z) and

A0;ej (z) =

∫ z

z0

Aj(x)dx, j = 1, . . . , d.

This gives the equality U10;ej (z) = A0;ej (z)U(z), j = 1, . . . , d. Therefore, we have the formula
of the first variation of the solution vector:

U(z;λ1, . . . , λ3g−3; 0) = U(z) + λ1A0;e1(z)U(z) + · · ·+ λdA0;ed(z)U(z) + o(λ1, . . . , λ3g−3) =

=
[
E + λ1A0;e1(z) + · · ·+ λdA0;ed(z)

]
U(z) + o(λ1, . . . , λ3g−3),

λ1 → 0, . . . , λ3g−3 → 0 under variation with respect to a basis of quadratic holomorphic differ-
entials on a compact Riemann surface of genus g > 1.

3. Elements of the monodromy group under a variation
with respect to a basis of cubic differentials

Consider the perturbed differential vector equation

U (3)(z) +Q0(z)U
(1)(z) + (R0(z)−

m∑
j=1

µjrj)U(z) = 0. (9)

on the surface F = D/Γ, where r1, . . . , rm is a basis of cubic holomorphic differentials
in the space Ω3(F ), m = 5g − 5, µ = (µ1, . . . , µm). As above, denote by U(z; 0;µ) =

= (u(z; 0;µ), v(z; 0;µ), w(z; 0;µ))T three linearly independent solutions to the Cauchy prob-
lem at a point z0 defined by the conditions

U(z0; 0, µ) = (1, 0, 0)T ; U (1)(z0; 0, µ) = (0, 1, 0)T ; U (2)(z0; 0, µ) = (0, 0, 1)T , (10)
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for every µ. By the Poincaré’s small parameter method and the Cauchy–Kovalevskaya theorem,
we have the solution to (9) in vector form

U(z; 0;µ1, . . . , µm) = U(z) +
m∑

k=1

µkU01;êk(z) + o(µ1, . . . , µm),

where µ1, · · · , µm → 0.

Inserting the last expression in (9), we obtain the vector equalities

U (3)(z) + µ1U
(3)
01;ê1

(z) + · · ·+ µmU
(3)
01;êm

(z) + o(µ)+

+Q0(z)(U
(1)(z) + µ1U

(1)
01;ê1

(z) + · · ·+ µmU
(1)
01;êm

(z) + o(µ))+

+(R0(z)−
m∑
j=1

µjrj(z))(U(z) + µ1U01;ê1(z) + · · ·+ µmU01;êm(z) + o(µ)) = 0.

Note that the following conditions are satisfied:

U01;êk(z0) = U
(1)
01;êk

(z0) = U
(2)
01;êk

(z0) = 0, k = 1, . . . ,m.

From this we obtain the system of vector linear differential equations

U (3)(z) +Q0(z)U
(1)(z) +R0(z)U(z) = 0;

U
(3)
01;êk

(z) +Q0(z)U
(1)
01;êk

(z) +R0(z)U01;êk(z) = rk(z)U(z), k = 1, . . . ,m.

For each k, k = 1, . . . ,m,, solve the second equation by Lagrange’s method of variation of con-
stants

U01;êk(z) =

∫ z

z0

rk(t)U(t)V (t)dtU(z).

Introduce the notations

Bk(z) = rk(z)U(z)V (z), B0;êk(z) =

∫ z

z0

Bk(t)dt, k = 1, . . . ,m.

Hence, we obtain the equalities

U01;êk(z) = B0;êkU(z), k = 1, . . . ,m.

Thus,

U(z; 0;µ1, . . . , µm) = U(z) +

m∑
k=1

µkB0;êk(z)U(z) + o(µ1, . . . , µm)

=

[
E +

m∑
k=1

µkB0;êk(z)

]
U(z) + o(µ1, . . . , µm),

where µ1, · · · , µm → 0.

For deducing the variational formulas for the elements of the monodromy group, we must
express U01;êk(Lz) through U(z) and the coefficients of the equation. We infer

U01;êk(Lz) =

[ ∫ Lz

z0

Bk(x)dx

]
U(Lz) =

[ ∫ Lz0

z0

Bk(x)dx+

∫ Lz

Lz0

Bk(x)dx

]
U(Lz) =
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= B0;êk(Lz0)χ(L)U(z)ξL(z)
2 + ξL(z)

2χ(L)U01;êk(z)

since ∫ Lz

Lz0

Bk(x)χ(L)dxξL(z)
2U(z) =< x = Lt >=

∫ z

z0

Bk(Lt)χ(L)dLtξL(z)
2U(z) =

=

∫ z

z0

rk(Lt)U(Lt)V (Lt)χ(L)L′(t)dtξL(z)
2U(z) =

=

∫ z

z0

rk(t)L
′(t)−3L′(t)χ(L)U(t)L′(t)V (t)χ(L−1)χ(L)L′(t)dtξL(z)

2U(z) =

= χ(L)

∫ z

z0

rk(t)U(t)V (t)dtξL(z)
2U(z) =

= χ(L)B0;êk(z)ξL(z)
2U(z) = χ(L)ξL(z)

2U01;êk(z).

Using the above-proven equality for U01;êk(Lz), deduce the first-order variational formula
for the elements of the monodromy group:

ξL(z)
2χ(L; 0;µ)U(z; 0;µ) = U(Lz; 0;µ) = U(Lz) +

m∑
k=1

µkU01;êk(Lz) + o(µ) =

= χ(L)U(z)ξL(z)
2 +

m∑
k=1

µk[B0;êk(Lz0)χ(L)U(z)ξL(z)
2 + χ(L)

m∑
k=1

µkU01;êk(z)ξL(z)
2 + o(µ) =

= χ(L)
[
U(z; 0;µ)ξL(z)

2 − o(µ)ξL(z)
2
]
+

m∑
k=1

µkB0;êk(Lz0)χ(L)U(z)ξL(z)
2 + o(µ) =

= χ(L)U(z; 0;µ)ξL(z)
2 − χ(L)o(µ)ξL(z)

2+

+
m∑

k=1

µkB0;êk(Lz0)χ(L)[U(z; 0;µ)ξL(z)
2 − o(1)ξL(z)

2] + o(µ) =

= χ(L)
[
U(z; 0, µ)− o(µ)

]
ξL(z)

2 +
m∑

k=1

µkB0;êk(Lz0)χ(L)U(z; 0, µ)ξL(z)
2−

−
m∑

k=1

µkB0;êk(Lz0)χ(L)o(1)ξL(z)
2 + o(µ) =

= [χ(L) +
m∑

k=1

µkB0;êk(Lz0)χ(L)]U(z; 0, µ)ξL(z)
2 − χ(L)o(µ)U−1(z; 0, µ)U(z; 0, µ)ξL(z)

2−

−
m∑

k=1

µkB0;êk(Lz0)χ(L)o(1)U
−1(z; 0, µ)U(z; 0, µ)ξL(z)

2 + o(µ).

Hence we obtain a formula for the first variation of the elements of the monodromy group:

χ(L; 0;µ) =

[
E +

m∑
k=1

µkB0;êk(Lz0)

]
χ(L)− o(µ)− o(µ), µ → 0.

Thus, we have proved the following theorem:
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Theorem 2. The following variational formulas hold for the solution vector and the elements
of the monodromy group of equation (9) perturbed with respect to the basis of holomorphic cubic
differentials rj , j = 1, . . . ,m = 5g − 5, with normalization (10):

U(z; 0;µ1, . . . , µm) =
[
E + µ1B0;ê1(z) + · · ·+ µmB0;êm(z)

]
U(z) + o(µ1, . . . , µm)

and

χ(L; 0;µ) =

[
E +

m∑
k=1

µkB0;êk(Lz0)

]
χ(L) + o(µ),

µ1, · · · , µm → 0, where

Bk(z) = rk(z)U(z)V (z), B0;êk(z) =

∫ z

z0

Bk(t)dt, k = 1, . . . ,m.

Remark 2. These variational formulas show how the generators of the monodromy group
χ(A1), . . . , χ(Ag), χ(B1), . . . , χ(Bg) and the solution vector to the third-order equation depend
of the parameters (µ1, . . . , µm) under a variation with respect to a basis of cubic holomorphic
differentials on F.

Now, consider the equation perturbed simultaneously with respect to λ = (λ1, . . . , λd) and
to µ = (µ1, . . . , µm),

U (3)(z) +

(
Q0(z)−

3g−3∑
j=1

λjqj(z)

)
U (1)(z) +

(
R0(z)−

5g−5∑
j=1

µjrj(z)

)
U(z) = 0 (11)

and the Cauchy problem at a point z0 defined by the condition

U(z0;λ;µ) = (1, 0, 0)T ; U (1)(z0;λ;µ) = (0, 1, 0)T ;

U (2)(z0;λ;µ) = (0, 0, 1)T , (12)

for any µ and λ.

Corollary 1. The solution vector to equation (11) with the Cauchy problem (12) satisfies the for-
mulas of the first variation

U(z;λ;µ) =

[
E +

3g−3∑
j=1

λjA0;ej (z) +

5g−5∑
j=1

µjB0;êj (z)

]
U(z) + o(λ1, . . . , λ3g−3) + o(µ1, . . . , µ5g−5),

λ1, . . . , λ3g−3 → 0, µ1, . . . , µ5g−5 → 0, where

A0;ej (z) =

∫ z

z0

qj(x)U
(1)
x V (x)dx, j = 1, . . . , 3g − 3,

B0;êk(z) =

∫ z

z0

rk(x)U(x)V (x)dx, k = 1, . . . , 5g − 5.

Remark 3. The equality U(Lz)(L′(z))−1 = χ(L)U(z), L ∈ Γ, means that the solution vec-
tor U(z) for the Cauchy problem at z0 is the form of vector third-order Prym 1-differentials
on F = D/Γ with respect to the matrix character χ of the group Γ with values in GL(3,C),
or, more exactly, U(z) is a holomorphic section of the vector bundle χ ⊗ K−1, where K is
the canonical bundle on F = D/Γ [5].
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Вариационные формулы группы монодромии
для уравнения третьего порядка на компактной
римановой поверхности

Александр В.Чуешев
Виктор В. Чуешев

Кемеровский государственный университет
Кемерово, Российская Федерация

Аннотация. В данной статье выводятся явные вариационные формулы для вектор-решения и
для элементов его группы монодромии обыкновенного дифференциального уравнения третьего
порядка на компактной римановой поверхности рода g > 2 относительно вариации в пространствах
квадратичных и кубических голоморфных дифференциалов.

Ключевые слова: римановы поверхности, уравнение третьего порядка на римановой поверхно-
сти, вариационные формулы, голоморфные дифференциалы.
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