
Journal of Siberian Federal University. Mathematics & Physics 2022, 15(3), 386–397

DOI: 10.17516/1997-1397-2022-15-3-386-397
УДК 532

Perturbation Approach for a Flow over a Trapezoidal
Obstacle

May Manal Bounif∗

Abdelkader Gasmi†
Laboratory of Pure and Applied Mathematics

Faculty of Mathematics and Informatics
University of Msila

Msila, Algeria

Received 04.10.2021, received in revised form 10.11.2021, accepted 04.02.2022

Abstract. In this paper, we tackle the two-dimensional and irrotational flow of inviscid and incom-
pressible fluid over a trapezoidal obstacle. The free surface of the flow which is governed by the Bernoulli
condition is determined as a part of solution of the problem. This condition renders difficult an analyt-
ical solution of the problem. Hence, our work’s objective is utilize the Hilbert transformation and the
perturbation technique to provide an approximate solution to this problem for large Weber numbers and
various configurations of the obstacle. The obtained results demonstrate that the used method is easily
applicable, and provides approximate solutions to these kinds of problems.
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Our study begins with a consideration of the steady two-dimensional and irrotational fluid
flow over a trapezoidal obstacle. On the one hand, we assume the fluid is incompressible and
inviscid. On the other hand, we consider the surface tension effect but neglect the effect of
gravity. A major characteristic of the present problem is the nonlinear condition given through
the Bernoulli equation on the free surface of an unknown shape. The latter can be identified as
part of the solution to the problem. In addition, because this condition the proposed problem
become difficult to solve it analytically, so it is necessary to look for an approximate solution
to it.

Free-surface flow problems have been approached using different techniques and methods
over the past few decades. Of these techniques and methods we can mention the series trun-
cation technique and boundary integral method, which helps determine the free surface shape
for potential flows over given obstacles. For example Forbes and Schwartz [1], determine the
non-linear solutions of subcritical and supercritical flows over a semi-circular obstacle, Gasmi
and Mekias [2], Gasmi and Amara [3] and Vanden-Broeck [4], studied the problems of flow over
an obstruction in a channel, whilst Dias, Killer and Vanden-Broeck [5] , obtained solutions to
both subcritical and supercritical free-surface flows past a triangular obstacle, Wiryanto [6] take
the problem of the flow under a sluice gate, M.B. Abd-el-Malek and S. Z. Masoud [7] obtains
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the linear solution of the flow over a ramp, by representing the bottom in integral form using
Fourier’s double-integral theorem. M.B. Abd-el-Malek and S.N. Hanna [8] solved numerically
the problem of the flow over a ramp with gravity effect by the Hilbert Method and the per-
turbation technique. M. B.Abd-el-Malek, S. N. Hanna and M. T. Kamel [9] investigated the flow
over triangular bottom. Bounif and Gasmi [10] , on the other hand, examined the problem that
involves a free-surface flows over a step at the bottom of a channel, they offered a solution to the
problem using the perturbation method.

The method that we employ in this paper to approximate a solution of the considered prob-
lem follows three steps. Initially, we map the flow field of the physical plane onto the upper
half plane using the Schwartz–Christoffel transformation. Accordingly, the Hilbert method helps
us identify a system of nonlinear equation when applied to the new upper half plane’s mixed-
boundary value problem. Finally, the perturbation technique is utilized to provide a solution to
the system for some large values of the Weber number and varied trapezoidal obstacle config-
urations. The employability of our method will then be clear given the acquired results, as it
provides approximate solutions to the selected kind of problems.

The outline of the paper can be given in four main sections. The first of which will introduce
the mathematical formulation of the present problem. Section 2 presents the approximation of
equations of the problem, while Section 3 delineates the application of the perturbation technique
to solve it. Finally, we show certain free streamline shapes and results in final section.

1. Formulation of problem

Let us consider the motion of a two-dimensional flow of a fluid over a trapezoidal obstacle. The
fluid is assumed to be incompressible, irrotational and inviscid. The effect of gravity is neglected
but we take into account the superficial tension effect. The flow we propose is uniform and has a
constant discharge U1h1 = U2h2 , where Ui, i = 1, 2 designates the velocities and hi, i = 1, 2 are
the depths of the flow upstream and downstream respectively. Hence, the bottom consists of the
horizontal walls A0A−1 and A1A

′
and the asymmetric polygon A−1A−2 . . . A−NAN . . . A2A1 of

2N angles αi and (2N−1) straight-line segments. Furthermore, we choose Cartesian coordinates
with the origin in the point (see Fig. 1).

Fig. 1. Sketch of the flow and of the coordinates
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The dimensionless variables are defined by choosing U1 as the unit velocity and h1 as the
unit length. We introduce the complex potential f(z) = φ(z) + iψ(z), where φ is the potential
function, ψ the stream function (φ and ψ are conjugate solutions of Laplace’s equation) and f(z)
is an analytic function of z within the region of flow with complex conjugate velocity

η =
df(z)

dz
= u− iv = qe−iθ. (1)

Let
κ = ln η = ln q − iθ, (2)

where κ is called the logarithmic hodograph variable. Then, from (1) and (2) we get

z =

∫
e−ωdf. (3)

Without loss of generality, we choose φ = 0 at a point A−1 , ψ = 1 on the streamline A0A
′
, and

ψ = 0 on the streamline A0A−1A−2 . . . A−NAN . . . A1A
′
(see Fig. 2). We denote the dimension-

less trapezoid depth by ri, where
ri = li sin(αi), (4)

where

li =

{
|AiAi−1|, i = −1, . . . ,−N + 1,
|AiAi+1|, i = 1, . . . , N − 1.

(5)

On the free-surface, where the pressure is uniform, the dimensionless form of the Bernoulli
equation is given by:

q2 +
2

We

∣∣∣∣ ∂θ∂φ
∣∣∣∣ q = 1, (6)

where We is the adimensional parameter, known as the Weber number and defined by:

We =
ρU2

1h1
T

, (7)

T is the surface tension, and ρ is the density of the fluid.

Fig. 2. The potential f plane

Using the Schwartz-Christoffel transformation, we map the potential plane f as seen in Fig. 2
onto the upper half of an auxiliary t-plane see Fig. 3.

The tranformation used is:
f(t) = − 1

π
ln (1− t) . (8)
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Fig. 3. The auxiliary t plane

1.1. The Hilbert method

In order to express κ as the single variable t function, we need to use the Hilbert method for
the obtained mixed problem of the new plane. Hence, the solution for an analytic function χ(t)
in the upper half-plane (see [11]) is given by

χ(t) =
1

π
p.v.

∫ +∞

−∞

Im [χ(s)]

s− t
ds+

∞∑
j=0

Bjt
j . (9)

Where Bj are real constants and p.v. is the principal value of the integral.
The real and imaginary parts of κ (t) are given by

Im [κ (t)] = −θ (t) ,
Re [κ (t)] = ln q(t).

(10)

Where

θ (t) =



0, t < 0 = t1,

αi, ti < t < ti−1, i = −N + 1, . . . ,−1,

−αi, ti+1 < t < ti, i = 1, . . . , N − 1,

0, tN < t < 1,

θ (t) , t > 1.

(11)

To switch the function κ (t) to χ(t), we use an auxiliary function H(t)

H(t) =

{ √
1− t, t < 1,

−i
√
t− 1, t > 1.

(12)

Using (10) and (12), with χ(t) = κ(t)/H(t), we get

χ (t) =


ln q(t)− iθ(t)√

1− t
, t < 1,

ln q(t)− iθ(t)

−i
√
t− 1

, t > 1.

 = U(t) + iV (t). (13)

Examining the upstream condition, we have

Bj = 0, j = 0, 1, 2, . . . .

and hence

χ(t) =
1

π
p.v.

∫ +∞

−∞

Im [χ(s)]

s− t
ds. (14)
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Therefore, using (13) and (14), we obtain

U(t) =
1

π
p.v.

∫ +∞

−∞

V (s)

s− t
ds. (15)

V (t) = − 1

π
p.v.

∫ +∞

−∞

U(s)

s− t
ds. (16)

Along the real axis of the upper half-plane Im(t) = 0 (see Fig 3), the distribution of both real
and imaginary parts of χ(t) can be recapitulated; check Tab. 1. Therefore, q0 is defined in t < 0

and q∞ is defined in tN < t < 1.
Using (15), (16) and Tab. 1, we obtain the following systems of the nonlinear integral equations:

Table 1. Distribution of the flow quantities along Im(t) = 0

t U(t) V (t)

t < 0 = t−1
ln q0(t)√
1− t

0

ti < t < ti−1; i = −N + 1, . . . ,−1
ln qi(t)√
1− t

−αi√
1− t

ti+1 < t < ti; i = 1, . . . , N − 1
ln qi(t)√
1− t

αi√
1− t

tN < t < 1
ln q∞(t)√

1− t
0

t > 1
θ(t)√
t− 1

ln q(t)√
t− 1

θ(t) =

√
t− 1

π
p.v.

∫ +∞

1

ln q(s)

(s− t)
√
s− 1

ds+
−1∑

i=−N+1

2αi

π
tan−1

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)
−

−
N−1∑
i=1

2αi

π
tan−1

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
, t > 1, (17)

where
mi =

√
1− ti. (18)

And

ln(qj(t)) =

√
1− t

π

{
p.v.

∫ +∞

1

ln q(s)

(s− t)
√
s− 1

ds+

−1∑
i=−N+1

αi

∫ ti−1

ti

ds

(s− t)
√
1− s

−

−
N−1∑
i=1

αi

∫ ti

ti+1

ds

(s− t)
√
1− s

}
, (19)

where p.v. is the principal value of the integral and for j=−N, . . . ,−1, qj(t) being the flow speed
in tj < t < tj−1, and for j = 1, . . . , N , qj(t) being the flow speed in tj+1 < t < tj .

Using (3) and (8), the coordinates of a point on the free-surface can be obtained as follows:

z(t) = z∞ − 1

π

∫ +∞

t

eiθ(s)

(1− s)q(s)
ds, t > 1. (20)
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By separating the real and imaginary parts, we get:

x(t) = x∞ − 1

π

∫ +∞

t

cos θ(s)

(1− s)q(s)
ds, t > 1, (21)

y(t) = 1− 1

π

∫ +∞

t

sin θ(s)

(1− s)q(s)
ds, t > 1. (22)

2. The approximate equations

In this section, we approximate the nonlinear integral equations (6), (17), (21) and (22) ,
when Weber number is large.

Using the first-order Taylor development with respect to
1

We

∣∣∣∣ ∂θ∂φ
∣∣∣∣, we can give the solution

to the Bernoulli equation as follows:

q(t) ≈ 1− 1

We

∣∣∣∣ ∂θ∂φ
∣∣∣∣ . (23)

Using the relation (8), we obtain:

∂θ

∂φ
=
∂θ

∂t

∂t

∂φ
= π(t− 1)

∂θ

∂t
, t > 1. (24)

Consequently, for t > 1 the flow speed is approximated by

q(t) ≈ 1− π

We
(t− 1)

∂θ

∂t
(t). (25)

which yields

ln q(t) ≈ − π

We
(t− 1)

∂θ

∂t
(t), (26)

and
1

q(t)
≈ 1 +

π

We
(t− 1)

∂θ

∂t
(t). (27)

For small angles αi, the change in θ will be minor, thus, allowing us to approximate sin θ by θ(t)
and cos θ by one.

Using (26), we can approximate the angle of the free surface with the horizontal (17) by

θ(t) ≈ −
√
t− 1

We
p.v.

∫ +∞

1

(s− 1)∂θ∂s (s)

(s− t)
√
s− 1

ds+

−1∑
i=−N+1

2αi

π
tan−1

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)
−

−
N−1∑
i=1

2αi

π
tan−1

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
, t > 1, (28)

substituting (27) into (21) and (22), and after simplification, the free surface equations take the
form:

x(t) ≈ x∞ − 1

π

∫ +∞

t

1

(1− s)

[
1 +

π

We
(s− 1)

∂θ

∂s
(s)

]
ds

≈ x∞ − 1

π

∫ +∞

t

1

(1− s)
ds+

1

We

[
lim

s−→∞
θ(s)− θ(t)

]
≈ x∞ − 1

π

∫ +∞

t

1

(1− s)
ds− 1

We
θ(t), (29)
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and

y(t) ≈ 1− 1

π

∫ +∞

t

θ(s)

(1− s)

[
1 +

π

We
(s− 1)

∂θ

∂s
(s)

]
ds

≈ 1− 1

π

∫ +∞

t

θ(s)

(1− s)
ds+

1

2We

[
lim

s−→∞
θ2(s)− θ(t)2

]
≈ 1− 1

π

∫ +∞

t

θ(s)

(1− s)
ds− θ2(t)

2We
. (30)

To solve the system of the nonlinear integral equations (25), (28)–(30), we use the Perturbation
technique.

3. Perturbation technique

We expand X(t) in terms of the small parameters αi

X(t) =
N−1∑

j=−N+1

∞∑
k=0

αk
jXk,αj

(t). (31)

Where X(t) stands for q(t), θ(t), θ
′
(t), x(t) and y(t).

3.1. Zero-order approximation

This case corresponds to the flow far upstream, which we consider as uniform. Then, the
zero-order approximation of the nonlinear integral equations (25), (28)–(30) is presented by:

• The velocity of the flow
q0(t) ≈ 1− π

We
(t− 1)θ

′

0(t) ≈ 1. (32)

• The velocity direction relative to the horizontal

θ0(t) ≈ −
√
t− 1

We
p.v.

∫ +∞

1

(s− 1)θ
′

0(s)

(s− t)
√
s− 1

ds ≈ 0. (33)

• The free streamline equations:

x0(t) ≈ x∞ − 1

π

∫ +∞

t

1

(1− s)
ds− 1

We
θ0(t)

≈ x∞ − 1

π

∫ +∞

t

1

(1− s)
ds. (34)

and

y0(t) ≈ 1− 1

π

∫ +∞

t

θ0(s)

(1− s)
ds− θ20(t)

2We
≈ 1. (35)

On the other hand, we have the formula:

x∞ ≈ 1

π
p.v.

∫ +∞

0

1

(1− s)
ds, (36)

hence
x0(t) ≈ − 1

π
ln(t− 1). (37)
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3.2. First-order approximation

Now, we find the first-order approximation of the nonlinear integral equations (25), (28)–(30)
by using development (31) and the zero-order approximation of the system.

Using the development (31), we can write

X1,αi(t) ≈
X(t)−X0(t)

αi
. (38)

Substituting (25) and (32) into (38) yields

q1,αi(t) ≈
π

We
(t− 1)θ

′

1,αi
(t). (39)

From (28), (33) and (38) we get:
• for i = −N + 1, . . . ,−1,

θ1,αi(t) ≈ −
√
t− 1

We

∫ +∞

1

(s− 1)θ
′

1,αi
(s)

(s− t)
√
s− 1

ds+
−1∑

i=−N+1

2

π
tan−1

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)
, (40)

• for i = 1, . . . , N − 1,

θ1,αi(t) ≈ −
√
t− 1

We

∫ +∞

1

(s− 1)θ
′

1,αi
(s)

(s− t)
√
s− 1

ds−
N−1∑
i=1

2

π
tan−1

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
. (41)

On the other hand, from (29), (30), (35), (37) and (38), we find:

x1,αi(t) ≈ − 1

We
θ1,αi(t), (42)

and

y1,αi(t) ≈ − 1

π

∫ +∞

t

θ1,αi(s)

(1− s)
ds. (43)

From (40), (41), and for a very large value of the Weber number We, we may neglect the first
term with respect to the second one. Thus, we get the first-order approximation of the velocity
direction relative to the horizontal axis:

θ1,αi
(t) ≈ 2

π
arctan

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)
, i = −N + 1, . . . ,−1, (44)

θ1,αi(t) ≈ − 2

π
arctan

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
, i = 1, . . . , N − 1. (45)

Substituting (44), (45) into (42) and (43) and carrying out the integration, one finds

x1,αi(t) ≈ − 2

πWe
arctan

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)
, i = −N + 1, . . . ,−1, (46)

x1,αi(t) ≈
2

πWe
arctan

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
, i = 1, . . . , N − 1, (47)

and

y1,αi(t) ≈
4 (mi −mi−1)

π2√mimi−1
arctan

(√
mimi−1

t− 1

)
, i = −N + 1, . . . ,−1, (48)
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y1,αi(t) ≈ −4 (mi+1 −mi)

π2√mi+1mi
arctan

(√
mi+1mi

t− 1

)
, i = 1, . . . , N − 1. (49)

Using results (35), (37), (46)–(49) and expanding (31) enables finding the approximate solutions
of the free-surface flow:

x(t) ≈ − 1

π
ln(t− 1)−

−1∑
i=−N+1

2αi

πWe
tan−1

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)

+

N−1∑
i=1

2αi

πWe
tan−1

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
, (50)

and

y(t) ≈ 1 +
−1∑

i=−N+1

4 (mi −mi−1)αi

π2√mimi−1
tan−1

(√
mimi−1

t− 1

)

−
N−1∑
i=1

4 (mi+1 −mi)αi

π2√mi+1mi
tan−1

(√
mi+1mi

t− 1

)
, t > 1. (51)

4. Application example for N = 2 and α−2 = α2 = 0

The previous approximate scheme is used to calculate the solutions and the free surface
profiles for fixed values of flow with large Weber number are found throughout a range of different
Weber number. The Fig. 4 presented the variation of the free surface shape with respect to the
Weber number, fixed the angles values α−1 = α1 = π/6, l−2 = l2 = 1, and the depth of the
obstacle value r−1 = 0.65 .

Fig. 4. Effect of Weber number on the free-surface profile at a fixed the trapezoid depth
r−1 = 0.65 and the angles α−1 = π/6, α1 = π/6.

As presented in Fig. 4, the curvature of the free surface is decreased if the Weber number
decreases, because this is an important characteristic property of the surface tension effects. The
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free-surface profiles for four different depths r−1 are plotted in Fig. 5 at a fixed Weber number
We = 200, l−2 = l2 = 1, α−1 = α1 =

π

8
. This clarifies that increasing the depth r−1 results in

more deviation of the free surface from the horizontal one.

Fig. 5. Effect of the trapezoid depth r−1 on the free-surface profile Weber number We = 200
and the angles α−1 = α1 = π/8

Fig. 6 shows the free-surface profiles for different angles α1 at a fixed α−1 = π/8,r−1 = 0.5,
and at a fixed Weber number We = 200. Fig. 6 shows the free-surface profiles for four different
angles α−1 at a fixed α1 = π/6,r−1 = 0.5 and at a fixed Weber number We = 200 .

Fig. 6. Effect of the angles α1 on the free-surface profile Weber number We = 200 , the angle
α−1 = π/6 and the trapezoid depth r−1 = 0.5
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Fig. 7. Effect of the angles α−1 on the free-surface profile Weber number We = 200 , the angle
α1 = π/8 and the trapezoid depth r−1 = 0.5

The two Fig. 6 and 7 evidently show that the deviation of the free-surface results from the
change in angles.

Conclusion

In this paper, the problem of flow over a trapezoidal obstacle is formulated as a system of
nonlinear integral equations. The perturbation technique is used to give an approximate solution
to this system for a large Weber number; the free surface profiles under the effect of small surface
tension and bottom configurations are illustrated and plotted. The obtained results demonstrate
that the used method is easily applicable, and provides approximate solutions to these kinds of
problems.
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Метод возмущений при обтекании трапециевидного
препятствия
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Аннотация. В этой статье мы рассматриваем двумерное и безвихревое течение невязкой и несжи-
маемой жидкости над трапециевидным препятствием. Свободная поверхность обтекателя регули-
руется условием Бернулли, которое определяется в рамках решения задачи. Это условие затрудняет
аналитическое решение проблемы. Следовательно, цель нашей работы — использовать преобразо-
вание Герберта и технику возмущений, чтобы обеспечить приближенное решение этой проблемы
для больших чисел Вебера и различных конфигураций препятствия. Полученные результаты пока-
зывают, что используемый метод прост в применении и дает приблизительные решения подобных
задач.

Ключевые слова: свободный поверхностный поток, поверхностное натяжение, несжимаемый по-
ток, метод Гильберта, возмущение техника.
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