Morera's Boundary Theorem in Siegel Domain of the First Kind

Bukharbay T. Kurbanov*
Karakalpak State University Nukus, Uzbekistan

Received 13.10.2021, received in revised form 27.01.2022, accepted 02.02.2022

Abstract

The paper considers the realization of the matrix unit polydisk in the form of a Siegel domain of the first kind and proves the boundary analogue of Morera's theorem.

Keywords: matrix unit polydisk, automorphism, Poisson kernel, holomorphic function, holomorphic extension.

Citation: B. T. Kurbanov, Morera's Boundary Theorem in Siegel Domain of the First Kind, J. Sib. Fed. Univ. Math. Phys., 2022, 15(2), 253-260. DOI: 10.17516/1997-1397-2022-15-2-253-260.

Introduction

In multidimensional complex analysis, the theory of integral representations has numerous applications in the study of functions with the one-dimensional holomorphic continuation property and in the proof of boundary analogues of Morera's theorem. Here it is worth noting the works of A. M. Kytmanov, S. G. Myslivets, S. Kosbergenov ([1-3]).The monograph [4] provides a detailed overview of the results in this direction obtained by various authors in recent years. In this article, using the properties of the Poisson integral, we prove a boundary version of Morer's theorem for one Siegel domain of the 1st kind ([5]). It asserts the possibility of a holomorphic continuation of the functions f from the boundary ∂D of the domain $D \subset \mathbb{C}^{n}$, provided that the integrals of f are equal to zero along the boundaries of analytical disks lying on ∂D.

The unit disc and its various multidimensional generalizations (unit n-dimensional ball, polydisk, matrix unit disc, classical domains of types according to Cartan's classification, matrix ball) are well studied: by now, many important questions of multidimensional complex analysis have been solved, such as description of automorphism groups, obtaining integral formulas of Cauchy-Szego, Bergman, Poisson type, proving necessary and sufficient conditions for holomorphic extendability of functions from the boundary, etc. Extensive results obtained in these areas are presented in the monographs [4] and [6].

Quite often, problems posed for a unit disc on a plane are transferred to the upper half-plane using the Cayley transform

$$
w=\frac{i(1+z)}{1-z} .
$$

In this regard, it is urgent to find multidimensional analogs of the formula for the realization of the "unit disc - upper half-plane" type ([7]). We consider the realization of the matrix unit polydisk in the form of the Siegel domain of the first kind and the transformation of the invariant Poisson kernel for such a realization.

[^0]
1. Realization of a matrix unit polydisk in the form of a Siegel domain of the 1st kind

Let be

$$
D=\left\{U=\left(U_{1}, \ldots, U_{n}\right) \in \mathbb{C}^{n}[m \times m]: \operatorname{Im} U_{j}>0, j=\overline{1, n}\right\}
$$

U_{j} is a matrix of order $[m \times m]$ with elements from \mathbb{C}. The skeleton of this domain is denoted

$$
\Gamma=\{\operatorname{Im} U j=0, j=\overline{1, n}\}=\Gamma_{1} \times \Gamma_{2} \times \cdots \times \Gamma_{n}
$$

Domain D is a Siegel domain of the 1 st kind ([5]). In particular, for $m=n=1$ the domain D is reduced to the upper half-plane, and the skeleton Γ coincides with the real axis.

Domain T of space $\mathbb{C}^{n}[m \times m]$:

$$
T=\left\{Z=\left(Z_{1}, \ldots, Z_{n}\right): Z_{j} Z_{j}^{*}<E, j=\overline{1, n}\right\}
$$

where Z_{j} is a matrix of order $[m \times m]$ with elements from \mathbb{C}, and E is the identity matrix of order m, is called matrix unit polydisk.

The boundary ∂T is a union of surfaces

$$
\gamma^{\nu}=\left\{Z=\left(Z_{1}, \ldots, Z_{n}\right): Z_{\nu} Z_{\nu}^{*}=E, Z_{\mu} Z_{\mu}^{*} \leqslant E, \nu \neq \mu\right\}
$$

each of which is a $\left(2 \mathrm{~nm}^{2}-1\right)$-dimensional surface (since the $2 \mathrm{~nm}^{2}$ coordinates of the point Z are related by one real relation $\operatorname{det}\left(E-Z_{\nu} Z_{\nu}^{*}\right)=0$). Therefore, the entire boundary

$$
\partial T=\bigcup_{\nu=1}^{n} \gamma^{\nu}
$$

is $\left(2 n m^{2}-1\right)$-dimensional. For the $\operatorname{disc} \tau_{j}=Z_{j} Z_{j}^{*}<E$, the skeleton is the set of all unitary matrices $S_{j}=Z_{j} Z_{j}^{*}=E$ ([8, page 10]). Then the skeleton $S(T)$ of the domain T, defined as the Cartesian product of the $\operatorname{discs} \tau_{j}$, is the Cartesian product of all S_{j} that is,

$$
S(T)=\left\{Z_{j} Z_{j}^{*}=E, j=\overline{1, n}\right\}=S_{1} \times S_{2} \times \cdots \times S_{n} \subset \partial T .
$$

The dimension of the skeleton is $n m^{2}$.
For $m=n=1$, the domain of T is reduced to a unit disc, and the skeleton of $S(T)$ is a unit circle from \mathbb{C}.

By $\Phi=\left(\Phi^{1}, \ldots, \Phi^{n}\right)$ we denote the transformation, where

$$
\begin{equation*}
U_{j}=\Phi^{j}(Z)=i\left(E+Z_{j}\right)\left(E-Z_{j}\right)^{-1}, \quad j=\overline{1, n} \tag{1}
\end{equation*}
$$

which is a biholomorphic map of T onto D, with $S(T)$ being mapped to Γ.
It is known that

$$
\Phi_{A_{j}}\left(Z_{j}\right)=R_{j}^{-1}\left(E-Z_{j} A_{j}^{*}\right)^{-1}\left(Z_{j}-A_{j}\right) Q_{j}
$$

is an automorphism of the generalized circle $Z_{j} Z_{j}^{*}<E$ taking the point A_{j} to 0 ([8]). Then the mapping

$$
\Phi_{A}(Z)=\left(\Phi_{A}^{1}(Z), \ldots, \Phi_{A}^{n}(Z)\right), \quad \Phi_{A}^{j}(Z)=\Phi_{A_{j}}\left(Z_{j}\right)
$$

is an automorphism of the domain T that maps the point $A=\left(A_{1}, \ldots, A_{n}\right)$ to $0=(0, \ldots, 0)$.
Using the transformations Φ and Φ_{A}, we define the following transformation

$$
\Psi_{B}=\Phi \circ \Phi_{A} \circ \Phi^{-1}, \quad B=\Phi(A)
$$

which is an automorphism of the domain D taking the point B to the point $(i E, \ldots, i E)$.

2. On the Poisson kernel in the Siegel domain of the 1st kind

Let \dot{Z} be the volume element in $S(T)$, and \dot{U} the volume element in Γ.
We have

$$
\dot{Z}=\prod_{j=1}^{n} \dot{Z}_{j}, \quad \dot{U}=\prod_{j=1}^{n} \dot{U}_{j}
$$

where \dot{Z}_{j} is the volume element in $Z_{j} Z_{j}^{*}=E$, and \dot{U}_{j} is volume element in $\operatorname{Im} U_{j}=0$.
Because

$$
\dot{Z}_{j}=2^{m^{2}}\left|\operatorname{det}\left(U_{j}+i E\right)\right|^{-2 m} \dot{U}_{j},([8])
$$

then \dot{Z} can be represented as

$$
\dot{Z}=\dot{Z}_{1} \wedge \cdots \wedge \dot{Z}_{n}=2^{n m^{2}} \prod_{j=1}^{n}\left|\operatorname{det}\left(U_{j}+i E\right)\right|^{-2 m} \dot{U}
$$

So the following is true
Lemma 1. The following relation holds

$$
\dot{Z}=2^{n m^{2}} \prod_{j=1}^{n}\left|\operatorname{det}\left(U_{j}+i E\right)\right|^{-2 m} \dot{U}
$$

The Poisson kernel for the generalized upper half-plane $\operatorname{Im} U_{j}>0$ has the form (see [8])

$$
P\left(U_{j}, B_{j}\right)=c \cdot \frac{\operatorname{det}^{m}\left(B_{j}-B_{j}^{*}\right)}{\left|\operatorname{det}\left(U_{j}-B_{j}^{*}\right)\right|^{2 m}}, \quad \operatorname{Im} B_{j}>0, \quad \operatorname{Im} U_{j}=0
$$

here c is some constant.
Since the domain D is defined as the Cartesian product of the generalized upper half-planes, then using the formula of repeated integration (Fubini's theorem) we obtain that the Poisson kernel for the domain D will have the form:

$$
P_{D}(U, B)=\prod_{j=1}^{n} P\left(U_{j}, B_{j}\right)=c^{n} \prod_{j=1}^{n} \frac{\operatorname{det}^{m}\left(B_{j}-B_{j}^{*}\right)}{\left|\operatorname{det}\left(U_{j}-B_{j}^{*}\right)\right|^{2 m}}
$$

where $B \in D, U \in \Gamma$.
The invariant Poisson kernel for the domain T is defined in the same way:

$$
P(W, A)=\prod_{j=1}^{n} P\left(W_{j}, A_{j}\right)=\prod_{j=1}^{n} \frac{\operatorname{det}^{m}\left(E-A_{j} A_{j}^{*}\right)}{\left|\operatorname{det}\left(E-A_{j} W_{j}^{*}\right)\right|^{2 m}},
$$

where $A \in T, W \in S(T)$.
Пусть $B=\Phi(A), U=\Phi(W)$.
Lemma 2. Mapping Φ transforms the Poisson kernel as follows:

$$
P\left(\Phi^{-1}(U), \Phi^{-1}(B)\right)=\frac{(-2 i)^{n m}}{c^{n}} \prod_{j=1}^{n}\left|\operatorname{det}\left(U_{j}+i E\right)\right|^{2 m} P_{D}(U, B)
$$

Proof. For each component of the mapping Φ with fixed j, we prove

$$
P\left(\Phi_{j}^{-1}\left(U_{j}\right), \Phi_{j}^{-1}\left(B_{j}\right)\right)=\frac{(-2 i)^{m}}{c} P\left(U_{j}, B_{j}\right)\left|\operatorname{det}\left(U_{j}+i E\right)\right|^{2 m}
$$

whence passing to the product over $j=\overline{1, n}$ we obtain the required equality. Finding the converse from (1), we have

$$
W_{j}=\left(U_{j}+i E\right)^{-1}\left(U_{j}-i E\right), \quad A_{j}=\left(B_{j}+i E\right)^{-1}\left(B_{j}-i E\right)
$$

Then

$$
\begin{gathered}
E-A_{j} W_{j}^{*}=E-\left(B_{j}+i E\right)^{-1}\left(B_{j}-i E\right)\left(U_{j}+i E\right)\left(U_{j}-i E\right)^{-1}= \\
=\left(B_{j}+i E\right)^{-1}\left(\left(B_{j}+i E\right)\left(U_{j}-i E\right)-\left(B_{j}-i E\right)\left(U_{j}+i E\right)\right)\left(U_{j}-i E\right)^{-1}= \\
=2 i\left(B_{j}+i E\right)^{-1}(U-B)\left(U_{j}-i E\right)^{-1}
\end{gathered}
$$

Similar

$$
\begin{aligned}
& E-W_{j} A_{j}^{*}=-2 i\left(U_{j}+i E\right)^{-1}\left(U-B^{*}\right)\left(B_{j}^{*}-i E\right)^{-1} \\
& E-A_{j} A_{j}^{*}=-2 i\left(B_{j}+i E\right)^{-1}\left(B-B^{*}\right)\left(B_{j}^{*}-i E\right)^{-1}
\end{aligned}
$$

Substituting these found into the expression for $P(W, A)$ and using the properties of the determinants of the matrices, we obtain the required equality. Lemma 2 is proved.

3. Morera's boundary theorem

Consider the following embedding of the circle $\triangle=\{t \in \mathbb{C}:|t|<1\}$ into D :

$$
\begin{equation*}
\left\{\zeta \in \mathbb{C}^{n}[m \times m]: \zeta_{j}=t \Lambda_{j}, j=1, \ldots, n, t \in \triangle\right\} \tag{2}
\end{equation*}
$$

where $\Lambda=\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma$. If Ψ is an arbitrary automorphism of the domain D, then set (2) under the action of this automorphism goes to some analytic disc with boundary on Γ.
Theorem 1. Let f be a continuous bounded function on Γ. If the function f satisfies the condition

$$
\begin{equation*}
\int_{\partial \triangle} f\left(\Psi\left(\Lambda^{0} t\right)\right) d t=0 \tag{3}
\end{equation*}
$$

for all automorphisms Ψ of the domain \mathcal{D} and fixed $\Lambda^{0} \in \Gamma$, then the function f extends holomorphically in D to a function of class $\mathcal{H}^{\infty}(D)$ continuous up to Γ.

Proof. Since Γ is invariant under unitary transformations, condition (3) will hold for arbitrary $\Lambda \in \Gamma$.

Consider an automorphism Ψ_{B} that takes the point B from D to the point $(i E, \ldots, i E)$:

$$
\Psi_{B}=\Phi \circ \Phi_{A}^{-1} \circ \Phi^{-1}
$$

Then substituting the automorphism Ψ_{B} into condition (3) instead of Ψ, we obtain

$$
\begin{equation*}
\int_{\partial \triangle} f\left(\Phi \circ \Phi_{A}^{-1} \circ \Phi^{-1}(\Lambda t)\right) d t=0 . \tag{4}
\end{equation*}
$$

We denote $\nu=\Phi^{-1}(\Lambda)$. Then (4) can be written as

$$
\begin{equation*}
\int_{\partial \triangle} f\left(\Phi \circ \Phi_{A}^{-1}(\nu t)\right) d t=0 \tag{5}
\end{equation*}
$$

We parametrize the manifold S_{j} as follows:

$$
\zeta_{j}=t \nu_{j}, \quad t=e^{i \phi}, \quad 0 \leqslant \phi \leqslant 2 \pi, \nu_{j} \in S_{j}^{\prime}
$$

if $\zeta_{j} \in S_{j}$. Here S_{j}^{\prime} is the group of special unitary matrices, that is, $\operatorname{det} \nu_{j}=1$. Volume element $d \mu_{j}$ on the manifold S_{j} can be written in the form

$$
d \mu_{j}=\frac{d \phi}{2 \pi} \wedge d \mu_{0}\left(\nu_{j}\right)=\frac{1}{2 \pi i} \frac{d t}{t} \wedge d \mu_{0}\left(\nu_{j}\right)
$$

where $d \mu_{0}\left(\nu_{j}\right)$ is a differential form that defines a positive measure on S_{j}^{\prime}.
Multiplying (5) by $d \mu_{0}$ and integrating over S_{j}^{\prime}, from (5) we obtain

$$
\begin{equation*}
\int_{S_{j}} f\left(\Phi \circ \Phi_{A}^{-1}\left(\zeta_{j}\right)\right) \zeta_{j}^{k} d \mu_{j}\left(\zeta_{j}\right)=0 \tag{6}
\end{equation*}
$$

where ζ_{j}^{k} is a component of the vector $\zeta_{j}\left(k=1, \ldots, m^{2}\right)$.
By Fubini's theorem, we obtain from this that

$$
\begin{equation*}
\int_{S=S_{1} \times \cdots \times S_{n}} f\left(\Phi \circ \Phi_{A}^{-1}(\zeta)\right) \zeta^{k} d \mu(\zeta)=0 \tag{7}
\end{equation*}
$$

where ζ^{k} is the k-th component of the vector ζ.
Let's make the change of variables $W=\Phi_{A}^{-1}(\zeta)$. Then (7) becomes the condition

$$
\begin{equation*}
\int_{S} f(\Phi(W)) \Phi_{A, l}^{k}(W) d \mu\left(\Phi_{A}(W)\right)=0 \tag{8}
\end{equation*}
$$

Since ([9, Lemma 3.4])

$$
d \mu_{j}\left(\Phi_{A}^{j}(W)\right)=P\left(W_{j}, A_{j}\right) d \mu_{j}\left(W_{j}\right)
$$

then

$$
d \mu\left(\Phi_{A}(W)\right)=P(W, A) d \mu(W)
$$

Then from (8) we obtain

$$
\begin{equation*}
\int_{S} f(\Phi(W)) \Phi_{A, l}^{k}(W) P(W, A) d \mu(W)=0 \quad\left(k=1, \ldots, m^{2}\right) \tag{9}
\end{equation*}
$$

As you know ([8])

$$
\Phi_{A, l}(W)=\Phi_{A}^{l}(W)=R_{l}^{-1}\left(E-W_{l} A_{l}^{*}\right)^{-1}\left(W_{l}-A_{l}\right) Q_{l}
$$

where R_{l}, Q_{l} are nonsingular and depend only on A_{l}. Therefore, if condition (9) is satisfied for the components of the mapping $\Phi_{A, l}$, then the same condition will be satisfied for the components of the mapping

$$
\varphi_{A, l}(W)=\left(E-W_{l} A_{l}^{*}\right)^{-1}\left(W_{l}-A_{l}\right) \quad(l=\overline{1, n})
$$

Denoting the components of the mapping $\varphi_{A, l}(W)$ by $\varphi_{A, l}^{s, k}(s, k=\overline{1, m})$, from (9) we get

$$
\begin{equation*}
\int_{S} f(\Phi(W)) \varphi_{A, l}^{s k}(W) P(W, A) d \mu(W)=0 \tag{10}
\end{equation*}
$$

Now let's make the change of variables $U=\Phi(W)$. Then, taking into account Lemma 1 and Lemma 2, we obtain

$$
\begin{equation*}
\int_{\Gamma} f(U) \psi_{0, l}^{s k}(U) P_{D}(U, B) d \mu_{\Gamma}(U)=0 \tag{11}
\end{equation*}
$$

here $d \mu_{\Gamma}$ is the volume element on Γ, and

$$
\begin{gathered}
\psi_{0}=\Phi_{A} \circ \Phi \\
\psi_{0, l}=\left(i E-B_{l}^{*}\right)\left(U_{l}-B_{l}^{*}\right)^{-1}\left(U_{l}-B_{l}\right)\left(B_{l}+i E\right)^{-1}
\end{gathered}
$$

Since $B_{l}-B_{l}^{*}$ is non-singular, then condition (11) will also hold for the components of the mapping

$$
\Phi_{B, l}=\left(U_{l}-B_{l}^{*}\right)^{-1}\left(U_{l}-B_{l}\right)\left(B_{l}-B_{l}^{*}\right)^{-1} \quad(l=\overline{1, n}) .
$$

So

$$
\begin{equation*}
\int_{\Gamma} f(U) \Phi_{B, l}^{s k}(U) P_{D}(U, B) d \mu_{\Gamma}(U)=0 \quad(s, k=\overline{1, m}, l=\overline{1, n}) \tag{12}
\end{equation*}
$$

In [10] (see also [6, p.141]) it was proved that

$$
\sum_{s, k=1}^{m} \bar{b}_{s k}^{j} \frac{\partial P\left(U_{j}, B_{j}\right)}{\partial \bar{b}_{s k}^{j}}+i \sum_{s=1}^{m} \frac{\partial P\left(U_{j}, B_{j}\right)}{\partial \bar{b}_{s s}^{j}}=m P\left(U_{j}, B_{j}\right)\left(\sum_{s, k=1}^{m} \bar{b}_{s k}^{j} \Phi_{B, j}^{s k}+i \sum_{s=1}^{m} \Phi_{B, j}^{s s}\right)
$$

where

$$
\prod_{j=1}^{n} P\left(U_{j}, B_{j}\right)=P_{D}(U, B)
$$

and $\Phi_{B, j}^{s k}$ is the $s k$-component of the mapping $\Phi_{B, j}$, where $\Phi_{B}=\left(\Phi_{B, 1}, \ldots, \Phi_{B, n}\right)$. From here

$$
\begin{gathered}
\sum_{s, k=1}^{m} \bar{b}_{s k}^{j} \frac{\partial P_{D}(U, B)}{\partial \bar{b}_{s k}^{j}}+i \sum_{s=1}^{m} \frac{\partial P_{D}(U, B)}{\partial \bar{b}_{s s}^{j}}= \\
=\sum_{s, k=1}^{m} \bar{b}_{s k}^{j} \frac{\partial \prod_{l=1}^{n} P\left(U_{l}, B_{l}\right)}{\partial \bar{b}_{s k}^{j}}+i \sum_{s=1}^{m} \frac{\partial \prod_{l=1}^{n} P\left(U_{l}, B_{l}\right)}{\partial \bar{b}_{s s}^{j}}= \\
=\prod_{l \neq j} P\left(U_{l}, B_{l}\right)\left[\sum_{s, k=1}^{m} \bar{b}_{s k}^{j} \frac{\partial P\left(U_{j}, B_{j}\right)}{\partial \bar{b}_{s k}^{j}}+i \sum_{s=1}^{m} \frac{\partial P\left(U_{j}, B_{j}\right)}{\partial \bar{b}_{s s}^{j}}\right]= \\
=\prod_{l \neq j} P\left(U_{l}, B_{l}\right) \cdot m \cdot P\left(U_{j}, B_{j}\right)\left(\sum_{s, k=1}^{m} \bar{b}_{s k}^{j} \Phi_{B, j}^{s k}+i \sum_{s=1}^{m} \Phi_{B, j}^{s s}\right)= \\
=m P_{D}(U, B)\left(\sum_{s, k=1}^{m} \bar{b}_{s k}^{j} \Phi_{B, j}^{s k}+i \sum_{s=1}^{m} \Phi_{B, j}^{s s}\right) .
\end{gathered}
$$

Hence,

$$
\sum_{j=1}^{n} \sum_{s, k=1}^{m} \bar{b}_{s k}^{j} \frac{\partial P_{D}(U, B)}{\partial \bar{b}_{s k}^{j}}+i \sum_{j=1}^{n} \sum_{s=1}^{m} \frac{\partial P_{D}(U, B)}{\partial \bar{b}_{s s}^{j}}=m P_{D}(U, B)\left(\sum_{j=1}^{n} \sum_{s, k=1}^{m} \bar{b}_{s k}^{j} \Phi_{B, j}^{s k}+i \sum_{j=1}^{n} \sum_{s=1}^{m} \Phi_{B, j}^{s s}\right) .
$$

Taking this into account, we obtain from (12)

$$
\begin{equation*}
\mathfrak{d} F(B)=0 \tag{13}
\end{equation*}
$$

where

$$
\mathfrak{d}=\sum_{j=1}^{n} \sum_{s, k=1}^{m} \bar{b}_{s k}^{j} \frac{\partial}{\partial \bar{b}_{s k}^{j}}+i \sum_{j=1}^{n} \sum_{s=1}^{m} \frac{\partial}{\partial \bar{b}_{s s}^{j}},
$$

and

$$
F(B)=\int_{\Gamma} f(U) P_{D}(U, B) d \mu_{\Gamma}(U)
$$

is the Poisson integral of the function f. The function $F(B)$ is real-analytic in the domain D. We expand it into a Taylor series in a neighborhood of the point $I=(i E, \ldots, i E)$:

$$
F(B)=\sum_{|\alpha|,|\beta|} c_{\alpha, \beta}(B-I)^{\alpha} \overline{(B-I)}^{\beta}
$$

where $|\alpha|=\left\|\alpha_{s k}^{l}\right\|,|\beta|=\left\|\beta_{s k}^{l}\right\|$ are matrices with integer elements,

$$
|\alpha|=\sum_{l=1}^{n} \sum_{s, k=1}^{m} \alpha_{s k}^{l}, B^{\alpha}=\prod_{l=1}^{n} \prod_{s, k=1}^{m} b_{s k}^{l, \alpha_{s k}^{l}} .
$$

Then condition (13) implies

$$
\mathfrak{d} F(B)=\sum_{|\alpha|,|\beta|}|\beta| \cdot c_{\alpha, \beta}(B-I)^{\alpha} \overline{(B-I)}^{\beta},
$$

hence all the coefficients $c_{\alpha, \beta}$. Hence $F(B)$ is holomorphic in D and belongs to $\mathcal{H}^{\infty}(D)$.

References

[1] A.M.Kytmanov, S.G.Myslivets, On a certain boundary analog of Morera's theorem, Sib. Math. J., 36(1995), no. 6, 1171-1174. DOI: 10.1007/BF02106840
[2] S.Kosbergenov, A.M.Kytmanov, S.G.Myslivets, Morera's boundary theorem for classical domains, Siberian Math. J., 40(1999), no. 3, 506-514. DOI: 10.1007/BF02679758
[3] S.G.Myslivets, On a boundary version of Morera's theorem, Sib. Math. J., 42(2001), no. 5, 952-960. DOI: 10.1023/A:1011923929133
[4] A.M.Kytmanov, S.G.Myslivets, Integral representations and their applications in multidimensional complex analysis, Krasnoyarsk: Siberian Federal University, 2010 (in Russian).
[5] I.I.Pyatetsky-Shapiro, Geometry of classical domains and theory of automorphic functions, Moscow, Nauka, 1961 (in Russian).
[6] G.Khudayberganov, A.M.Kytmanov, B.A.Shaimkulov, Complex analysis in matrix domains, Krasnoyarsk: Siberian Federal University, 2011 (in Russian).
[7] G.Khudayberganov, B.T.Kurbanov, On one realization of the classical domain of the first type, Uzbek. Mat. Zh., 1(2014), 126-129.
[8] Hua Lo-ken, Harmonic analysis of functions of several complex variables in classical domains, Moscow, IL, 1959 (in Russian).
[9] A.Koranyi, The Poisson integral for the generalized half planes and bounded symmetric domains, Ann. of Math., 82(1965), no. 2, 332-350. DOI: 10.2307/1970645
[10] G.Khudayberganov, B.T.Kurbanov, Morer's boundary theorem for the generalized upper half-plane, Uzbek. Mat. Zh., 1(2002), 78-83 (in Russian).

Граничная теорема Морера в области Зигеля первого рода

Бухарбай Т. Курбанов
Каракалпакский государственный университет
Нукус, Узбекистан

[^1]
[^0]: *bukharbay@inbox.ru https://orcid.org/0000-0003-3272-5789
 (C) Siberian Federal University. All rights reserved

[^1]: Аннотация. В работе рассмотрена реализация матричного единичного поликруга в виде области Зигеля первого рода и доказывается граничный вариант теоремы Морера.
 Ключевые слова: матричный единичный поликруг, автоморфизм, ядро Пуассона, голоморфная функция, голоморфное продолжение.

