A Note on Explicit Formulas for Bernoulli Polynomials

Laala Khaldi*
University of Bouira Bouira, Algeria
EDPNL\&HM Laboratory, ENS Kouba, Algeria
Farid Bencherif ${ }^{\dagger}$
Faculty of Mathematics USTHB, LA3C Algiers, Algeria
Abdallah Derbal ${ }^{\ddagger}$
EDPNL\&HM Laboratory, ENS Kouba, Algeria

Abstract

For $r \in\left\{1,-1, \frac{1}{2}\right\}$, we prove several explicit formulas for the n-th Bernoulli polynomial $B_{n}(x)$, in which $B_{n}(x)$ is equal to a linear combination of the polynomials $x^{n},(x+r)^{n}, \ldots,(x+r m)^{n}$, where m is any fixed positive integer greater than or equal to n.

Keywords: Appell polynomial, Bernoulli polynomial, binomial coefficients, combinatorial identities.
Citation: L. Khaldi, F. Bencherif, A. Derbal, A Note on Explicit Formulas for Bernoulli Polynomials, J. Sib. Fed. Univ. Math. Phys., 2022, 15(2), 224-233. DOI: 10.17516/1997-1397-2022-15-2-224-233.

1. Introduction and preliminaries

Let B_{n} and $B_{n}(x), n=0,1,2, \ldots$, be the Bernoulli numbers and polynomials defined by the generating functions

$$
\begin{gathered}
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}, \\
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!},
\end{gathered}
$$

respectively. These numbers and polynomials play important roles in many different branches of mathematics [14]. Since their appearance in [4], many different explicit formulas for Bernoulli numbers and polynomials have been discovered throughout the years, see for example $[5,8,11,12$, 15,17]. Gould's article [8] is a remarkable retrospective concerning some old explicit formulas of Bernoulli numbers and contains a rich and very interesting bibliography. It emerges from Gould's study, that over time, it often happened that the same explicit formula concerning the n-th

[^0]Bernoulli number B_{n} was rediscovered several times by different authors, each of these authors thinking to have discovered a new explicit formula. In [8], Gould reported that Munch [17] found an old result and published the formula in the form

$$
\begin{equation*}
B_{n}=\frac{1}{n+1} \sum_{k=1}^{n} \sum_{j=1}^{k}(-1)^{j} j^{n} \frac{\binom{n+1}{k-j}}{\binom{n}{k}} \tag{1}
\end{equation*}
$$

In 2016, Komatsu and Pita Ruiz [12] generalized Munch's formula (1) to Bernoulli polynomials by proving that

$$
B_{n}(x)=\frac{1}{m+1} \sum_{k=0}^{m} \sum_{j=0}^{k}(-1)^{k+j} \frac{\binom{m+1}{j}}{\binom{m}{k}}(x+k-j)^{n}
$$

where $0 \leqslant n \leqslant m$. This formula can be written as

$$
\begin{equation*}
B_{n}(x)=\sum_{j=0}^{m} \lambda_{j}(x+j)^{n} \tag{2}
\end{equation*}
$$

where $\lambda_{j}=\lambda_{j}(m)$ depending only on m and j is given by

$$
\lambda_{j}(m)=\frac{1}{m+1} \sum_{k=j}^{m}(-1)^{j} \frac{\binom{m+1}{k-j}}{\binom{m}{k}}
$$

More generally, it is easy to see that for any triplet (A, r, m) where $A=\left(A_{n}(x)\right)$ is a sequence of Appell polynomials, $r \neq 0$ is a complex number and $m \geqslant 0$ is an any integer, there exists an unique sequence of complex numbers $\mu_{j}=\mu_{j}(A, r, m)$ such that for $0 \leqslant n \leqslant m$, we have

$$
A_{n}(x)=\sum_{j=0}^{m} \mu_{j}(x+r j)^{n}
$$

Thus $\mu_{j}(B, 1, m)=\lambda_{j}(m)$ with $B=\left(B_{n}(x)\right)$.
The paper is organized as follows: In the second section we give a generalization of Theorem 2 given by Adell and Lekuona [1]. In the third section, we prove some lemmas. In the fourth and the last section, we determine different expressions of $\mu_{j}(B, r, m)$ for $r \in\left\{1,-1, \frac{1}{2}\right\}$ and we derive explicit formulas for Bernoulli polynomials among them the identity (2).

2. Generalization of a theorem of Adell and Lekuona

Let $A=\left(A_{n}(x)\right)_{n \geqslant 0}$ be a sequence of polynomials and $a_{n}=A_{n}(0) . A$ is called an Appell sequence [2] if $a_{0} \neq 0$ and if in addition, one of the following equivalent conditions is satisfied

$$
\begin{gather*}
A_{n}^{\prime}(x)=n A_{n-1}(x), \quad n \geqslant 1, \\
A_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} a_{k} x^{n-k}, \\
\sum_{n=0}^{\infty} A_{n}(x) \frac{t^{n}}{n!}=\left(\sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{n!}\right) e^{x t}, \\
A_{n}(x)=\Omega_{A}\left(x^{n}\right) \text { where } \Omega_{A}=\sum_{k=0}^{\infty} a_{k} \frac{D^{k}}{k!}, \tag{3}
\end{gather*}
$$

D being the usual differential operator. $B=\left(B_{n}(x)\right)_{n \geqslant 0}$ is obviously an Appell sequence for which we have

$$
\begin{equation*}
\Omega_{B}=\frac{D}{e^{D}-1}=\sum_{k=0}^{\infty} B_{k} \frac{D^{k}}{k!} . \tag{4}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\Omega_{B}=\frac{\log (1+\Delta)}{\Delta}=\sum_{k=0}^{\infty}(-1)^{k} \frac{\Delta^{k}}{k+1} \tag{5}
\end{equation*}
$$

where Δ is the difference operator. More generally, if Δ_{r} is the difference operator defined by

$$
\Delta_{r}\left(x^{n}\right)=(x+r)^{n}-x^{n}
$$

where $r \neq 0$ is a complex number, and Ω_{B} can be written as a series in Δ_{r}. To prove this, we need the use of Stirling numbers of the first and second kind, respectively denoted $s(n, k)$ and $S(n, k), k=0,1, \ldots, n$. These numbers are defined by [6]

$$
(x)_{n}=\sum_{k=0}^{\infty} s(n, k) x^{k}, \quad x^{n}=\sum_{k=0}^{\infty} S(n, k)(x)_{k}
$$

where $(x)_{n}=x(x-1) \cdots(x-n+1)$, or equivalently by their exponential generating functions

$$
\begin{equation*}
\frac{\log ^{k}(t+1)}{k!}=\sum_{n=0}^{\infty} s(n, k) \frac{t^{n}}{n!}, \quad \frac{\left(e^{t}-1\right)^{k}}{k!}=\sum_{n=0}^{\infty} S(n, k) \frac{t^{n}}{n!} \tag{6}
\end{equation*}
$$

The following lemma proves that every operator written as a serie in D can be written as a serie in Δ_{r} and reciprocally.

Lemma 1.2. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ two sequences of elements of \mathbb{C}. Then, the following equivalences hold

$$
\begin{aligned}
\sum_{k=0}^{\infty} a_{k} \frac{D^{k}}{k!}=\sum_{k=0}^{\infty} b_{k} \frac{\Delta_{r}^{k}}{k!} & \Leftrightarrow b_{n}
\end{aligned}=\sum_{k=0}^{n} s(n, k) \frac{a_{k}}{r^{k}}, \quad n \geqslant 0 .
$$

Proof. We have

$$
\Delta_{r}=e^{r D}-1 \text { and } D=\frac{1}{r} \log \left(1+\Delta_{r}\right) .
$$

The lemma results from the following two relations deduced from (6):

$$
\begin{align*}
& \frac{D^{k}}{k!}=\frac{1}{r^{k}} \frac{\log ^{k}\left(1+\Delta_{r}\right)}{k!}=\frac{1}{r^{k}} \sum_{n=0}^{\infty} s(n, k) \frac{\Delta_{r}^{n}}{n!} \tag{7}\\
& \frac{\Delta_{r}^{k}}{k!}=\frac{\left(e^{r D}-1\right)^{k}}{k!}=\sum_{n=0}^{\infty} r^{n} S(n, k) \frac{D^{n}}{n!} \tag{8}
\end{align*}
$$

Before stating our theorem, first we prove Lemma 1.2 which is an important consequence of the relation (7). We consider the translations τ_{r} of $\mathbb{C}[x]$ which are the operators defined by [18, p. 195]

$$
\tau_{r}\left(x^{n}\right)=(x+r)^{n}, n \geqslant 0
$$

Then, we have

$$
\tau_{r}=e^{r D}
$$

and

$$
\Delta_{r}^{k}=\left(\tau_{r}-1\right)^{k}=\left(e^{r D}-1\right)^{k}=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \tau_{r j}
$$

We deduce the useful following relation

$$
\begin{equation*}
\Delta_{r}^{k}\left(x^{n}\right)=\left(\tau_{r}-1\right)^{k}\left(x^{n}\right)=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}(x+r j)^{n} \tag{9}
\end{equation*}
$$

Lemma 2.2. For $r \in \mathbb{C}^{*}$ and $m \in \mathbb{N}$, the family of polynomials

$$
F_{m}=\left\{x^{m},(x+r)^{m},(x+2 r)^{m}, \ldots,(x+m r)^{m}\right\}
$$

forms a base of the \mathbb{C}-vectorial space

$$
\mathbb{C}_{m}[x]:=\{P(x) \in \mathbb{C}[x]: \operatorname{deg} P(x) \leqslant m\}
$$

Proof. Indeed, the family F_{m} consists of $m+1$ vectors of vector space $\mathbb{C}_{m}[x]$ which is of dimension $m+1$. It is therefore sufficient to prove that x^{k} belongs to the subspace generated by F_{m} for $0 \leqslant k \leqslant m$. Using the relation (7), for $0 \leqslant k \leqslant m$, we have

$$
\frac{D^{m-k}}{(m-k)!}\left(x^{m}\right)=\frac{1}{r^{m-k}} \sum_{\ell=0}^{m} s(\ell, m-k) \frac{\Delta_{r}^{\ell}}{\ell!}\left(x^{m}\right)
$$

Using the relation (9), we deduce the identity verified for $0 \leqslant k \leqslant m$

$$
\binom{m}{k} x^{k}=\sum_{j=0}^{m}\left(\sum_{\ell=j}^{m} s(\ell, m-k) \frac{(-1)^{\ell-j}}{r^{m-k} \ell!}\binom{\ell}{j}\right)(x+r j)^{m}
$$

through this demonstration we prove that x^{k} belongs to the vectorial subspace generated by F_{m} for $0 \leqslant k \leqslant m$ and this completes the proof.

From Lemma 2.2, we can deduce that if $A=\left(A_{n}(x)\right)$ is a sequence of Appell polynomials, for any complex $r \neq 0$ and for any integer $m \geqslant 0$, there exists unique sequence of complex numbers $\mu_{j}=\mu_{j}(A, r, m)$ such that for $0 \leqslant n \leqslant m$

$$
\begin{equation*}
A_{n}(x)=\sum_{j=0}^{m} \mu_{j}(x+r j)^{n} \tag{10}
\end{equation*}
$$

Indeed, from the fact that $\operatorname{deg} A_{m}(x)=m$, there exists unique sequence of complex numbers $\mu_{j}=\mu_{j}(A, r, m)$ such that

$$
\begin{equation*}
A_{m}(x)=\sum_{j=0}^{m} \mu_{j}(x+r j)^{m} \tag{11}
\end{equation*}
$$

Deriving $m-n$ times each of the two members of (11), we deduce that we have also (10). The following theorem is a generalization of Theorem 2 given in [1]. The desired theorem follows from Lemma 1.2 and the characterization (3) of Appell sequence.

Theorem 1.2. Let $r \in \mathbb{C}^{*}$. $A=\left(A_{n}(x)\right)_{n \in \mathbb{N}}$ is an Appell sequence $i f$, and only if, there exists a sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ of elements of \mathbb{C} such that $b_{0} \neq 0$ and

$$
A_{n}(x)=\Omega\left(x^{n}\right),
$$

where

$$
\begin{equation*}
\Omega=\sum_{k=0}^{\infty} \frac{b_{k}}{k!} \Delta_{r}^{k} \tag{12}
\end{equation*}
$$

Such sequence is defined by one of the following equivalence relations

$$
\begin{align*}
b_{n} & =\sum_{k=0}^{n} s(n, k) \frac{a_{k}}{r^{k}} \tag{13}\\
\frac{a_{n}}{r^{n}} & =\sum_{k=0}^{n} S(n, k) b_{k} \tag{14}
\end{align*}
$$

where $a_{k}=A_{k}(0)$.
Corollary 1.2. Let $r \in \mathbb{C}^{*}$ et $m \in \mathbb{N}$ and let $\left(A_{n}(x)\right)_{n \in \mathbb{N}}$ be a sequence of Appell polynomials of $\mathbb{C}[x]$. Then, there exists a unique sequence $\left(\mu_{j}\right)_{0 \leqslant j \leqslant m}$ of \mathbb{C} such that

$$
\begin{equation*}
\forall n \in\{0,1, \ldots, m\}, \quad A_{n}(x)=\sum_{j=0}^{m} \mu_{j}(x+j r)^{n} \tag{15}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\mu_{j}=\sum_{k=j}^{m} \frac{(-1)^{k-j}}{k!}\binom{k}{j} b_{k}, 0 \leqslant j \leqslant m \text { with } b_{k}=\sum_{\ell=0}^{k} s(k, \ell) \frac{A_{\ell}(0)}{r^{\ell}} . \tag{16}
\end{equation*}
$$

Proof. The existence and uniqueness of the sequence $\left(\mu_{j}\right)_{0 \leqslant j \leqslant m}$ come from Lemma 2.2, (15) is therefore proven. We deduce (16) from Theorem 1.2 and (9) noticing that

$$
A_{n}(x)=\sum_{k=0}^{\infty} \frac{b_{k}}{k!} \Delta_{r}^{k}\left(x^{n}\right)=\sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{k!}\binom{k}{j} b_{k}(x+r j)^{n}
$$

To obtain the desired expressions and explicit formulas, we give some lemmas which will be used later.

3. Lemmas

In the following lemma, we express the operator Ω_{B} defined by (4) in function of the operators Δ, Δ_{-1} and $\Delta_{\frac{1}{2}}$.

Lemma 1.3. We have

$$
\begin{equation*}
\Omega_{B}=\frac{\log (1+\Delta)}{\Delta}=\sum_{k=0}^{\infty}(-1)^{k} \frac{\Delta^{k}}{k+1} \tag{17}
\end{equation*}
$$

$$
\begin{align*}
& \Omega_{B}=\frac{\log \left(1+\Delta_{-1}\right)}{\Delta_{-1}}\left(1+\Delta_{-1}\right)=1-\sum_{k=1}^{\infty}(-1)^{k} \frac{\Delta_{-1}^{k}}{k(k+1)} \tag{18}\\
& \Omega_{B}=\sum_{k=0}^{\infty}\left(\sum_{s=0}^{k} \frac{(-1)^{k}}{(s+1) 2^{k-s}}\right) \Delta_{\frac{1}{2}}^{k} \tag{19}\\
& \Omega_{B}=\sum_{k=0}^{\infty}\left(\sum_{s=0}^{k} \frac{(-1)^{k}}{k+1}\binom{k}{s}^{-1}\right) \Delta_{\frac{1}{2}}^{k} . \tag{20}
\end{align*}
$$

Proof. (17) is the well know relations (5) and (17) is obtained by substituting Δ by $-\frac{\Delta_{-1}}{1+\Delta_{-1}}$ in relation (17). We obtain (19) noticing that $D=2 \log \left(1+\Delta_{\frac{1}{2}}\right)$ and thus

$$
\Omega_{B}=\frac{D}{e^{D}-1}=\frac{1}{1+\frac{1}{2} \Delta_{\frac{1}{2}}} \frac{\log \left(1+\Delta_{\frac{1}{2}}\right)}{\Delta_{\frac{1}{2}}}=\sum_{k=0}^{\infty}\left(\sum_{s=0}^{k} \frac{(-1)^{k}}{(s+1) 2^{k-s}}\right) \Delta_{\frac{1}{2}}^{k}
$$

The relation (20) follows from (19) using the following identity [9, p. 21] or [16, Theorem 1]

$$
\sum_{s=0}^{k} \frac{1}{(s+1) 2^{-s}}=\frac{2^{k}}{k+1} \sum_{s=0}^{k}\binom{k}{s}^{-1}
$$

The following lemmas will be useful to give explicit expressions for the coefficients $\mu_{j}(B, r, m)$ for $r \in\left\{1,-1, \frac{1}{2}\right\}$.

Lemma 2.3. For all integers j and m such that $0 \leqslant j \leqslant m$, we have

$$
\begin{equation*}
\sum_{k=j}^{m}\binom{k}{j} x^{k}=\sum_{k=j}^{m}\binom{m+1}{k-j} x^{k}(1-x)^{m-k} \tag{21}
\end{equation*}
$$

Proof. We have

$$
\begin{align*}
\sum_{k=j}^{\infty}\binom{k}{j} x^{k} & =\frac{x^{j}}{(1-x)^{j+1}}=x^{j}(1-x)^{-j-1}(x+(1-x))^{m+1}= \\
& =\sum_{k=0}^{m-j}\binom{m+1}{k} x^{k+j}(1-x)^{m-k-j}+\sum_{k=m+1-j}^{m+1}\binom{m+1}{k} x^{k+j}(1-x)^{m-k-j}= \\
& =\sum_{k=j}^{m}\binom{m+1}{k-j} x^{k}(1-x)^{m-k}+x^{m+1} \sum_{s=0}^{j}\binom{m+1}{j-s} \frac{x^{s}}{(1-x)^{s+1}} \tag{22}
\end{align*}
$$

We obtain (21) by writing the equality of the polynomial parts constituted by the terms of degree less than or equal to m in each of the two members of (22).

Lemma 3.3. For all integers j and m such that $0 \leqslant j \leqslant m$, we have

$$
\begin{equation*}
\sum_{k=j}^{m} \frac{(-1)^{j}}{k+1}\binom{k}{j}=\sum_{k=j}^{m} \frac{(-1)^{j}}{m+1} \frac{\binom{m+1}{k-j}}{\binom{m}{k}} \tag{23}
\end{equation*}
$$

Proof. By Lemma 2.3 and the identity $\int_{0}^{1} t^{k}(1-t)^{m-k} d t=\frac{1}{m+1}\binom{m}{k}^{-1}$ it follows

$$
\begin{aligned}
\sum_{k=j}^{m} \frac{(-1)^{j}}{k+1}\binom{k}{j} & =\sum_{k=j}^{m}(-1)^{j}\binom{k}{j} \int_{0}^{1} t^{k} d t= \\
& =\sum_{k=j}^{m}(-1)^{j}\binom{m+1}{k-j} \int_{0}^{1} t^{k}(1-t)^{m-k} d t= \\
& =\sum_{k=j}^{m} \frac{(-1)^{j}}{m+1} \frac{\binom{m+1}{k-j}}{\binom{m}{k}}
\end{aligned}
$$

Lemma 4.3. For all integers j and m such that $0 \leqslant j \leqslant m$, we have

$$
\begin{equation*}
\sum_{k=j}^{m} \frac{(-1)^{j}}{k+1}\binom{k}{j}=\sum_{k=j}^{m} \frac{(-1)^{k}}{k+1}\binom{m+1}{k+1} \tag{24}
\end{equation*}
$$

Proof. Let $\left[x^{j}\right](P(x))$ be the coefficient of x^{j} in the polynomial $P(x)=\sum_{k=0}^{m} \frac{(1-x)^{k}}{k+1}$. On the one hand, one have

$$
\begin{equation*}
\left[x^{j}\right](P(x))=\sum_{k=j}^{m} \frac{(-1)^{j}}{k+1}\binom{k}{j}, 0 \leqslant j \leqslant m . \tag{25}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
{\left[x^{j}\right] P(x) } & =\left[x^{j}\right] \frac{1}{x-1} \sum_{k=0}^{m} \int_{1}^{x}(1-t)^{k} d t= \\
& =\left[x^{j}\right] \frac{-1}{x-1} \int_{1}^{x} \frac{(1-t)^{m+1}-1}{t} d t= \\
& =\left[x^{j}\right] \frac{1}{x-1} \sum_{k=0}^{m}(-1)^{k}\binom{m+1}{k+1} \int_{1}^{x} t^{k} d t= \\
& =\left[x^{j}\right] \sum_{k=0}^{m} \frac{(-1)^{k}}{k+1}\binom{m+1}{k+1} \frac{x^{k+1}-1}{x-1}= \\
& =\left[x^{j}\right] \sum_{k=0}^{m} \frac{(-1)^{k}}{k+1}\binom{m+1}{k+1} \sum_{\ell=0}^{k} x^{\ell}= \\
& =\sum_{k=j}^{m} \frac{(-1)^{k}}{k+1}\binom{m+1}{k+1} . \tag{26}
\end{align*}
$$

By writing the equality of the two expressions (25) and (26) of $\left[x^{j}\right](P(x))$, we obtain (24).

4. Explicit expressions for Bernoulli polynomials

In this section, we determine different expressions of $\mu_{j}(B, r, m)$ for $r \in\left\{1,-1, \frac{1}{2}\right\}$.

Theorem 1.4. (Case $r= \pm 1$). For all integers m, n such that $0 \leqslant n \leqslant m$, we have

$$
\begin{align*}
& B_{n}(x)=\sum_{j=0}^{m}\left(\sum_{k=j}^{m} \frac{(-1)^{j}}{k+1}\binom{k}{j}\right)(x+j)^{n}, \tag{27}\\
& B_{n}(x)=\sum_{j=0}^{m}\left(\frac{1}{m+1} \sum_{k=j}^{m}(-1)^{j} \frac{\binom{m+1}{k-j}}{\binom{m}{k}}\right)(x+j)^{n}, \tag{28}\\
& B_{n}(x)=\sum_{j=0}^{m}\left(\sum_{k=j}^{m} \frac{(-1)^{k}}{k+1}\binom{m+1}{k+1}\right)(x+j)^{n}, \tag{29}\\
& B_{n}(x)=\frac{x^{n}}{m+1}+\sum_{j=1}^{m}\left(\sum_{k=j}^{m} \frac{(-1)^{j+1}}{k(k+1)}\binom{k}{j}\right)(x-j)^{n} . \tag{30}
\end{align*}
$$

Proof. From the relations (17) and (9) and noticing that $\Delta=\Delta_{1}$, we deduce that

$$
B_{n}(x)=\Omega_{B}\left(x^{n}\right)=\sum_{k=0}^{m} \frac{(-1)^{k}}{k+1} \Delta^{k}\left(x^{n}\right)=\sum_{j=0}^{m}\left(\sum_{k=j}^{m} \frac{(-1)^{j}}{k+1}\binom{k}{j}\right)(x+j)^{n} .
$$

This proves (27) and also gives

$$
\begin{equation*}
\mu_{j}(B, 1, m)=\sum_{k=j}^{m} \frac{(-1)^{j}}{k+1}\binom{k}{j} . \tag{31}
\end{equation*}
$$

From Lemma 3.3 and (31), we have

$$
\mu_{j}(B, 1, m)=\sum_{k=j}^{m} \frac{(-1)^{j}}{m+1} \frac{\binom{m+1}{k-j}}{\binom{m}{k}},
$$

and we obtain (28). From Lemma 4.3 and (31), we have

$$
\mu_{j}(B, 1, m)=\sum_{k=j}^{m} \frac{(-1)^{k}}{k+1}\binom{m+1}{k+1}
$$

and (29) follows. By the relations (18) and (9) we have

$$
\begin{aligned}
B_{n}(x) & =\Omega_{B}\left(x^{n}\right)=\left(1-\sum_{k=1}^{m} \frac{(-1)^{k} \Delta_{-1}^{k}}{k(k+1)}\right)\left(x^{n}\right)=x^{n}-\sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{j}}{k(k+1)}\binom{k}{j}(x-j)^{n}= \\
& =\left(1-\sum_{k=1}^{m} \frac{1}{k(k+1)}\right) x^{n}-\sum_{j=1}^{m}\left(\sum_{k=j}^{m} \frac{(-1)^{j}}{k(k+1)}\binom{k}{j}\right)(x-j)^{n},
\end{aligned}
$$

from which the identity (30) follows.
Theorem 2.4. (Case $r=\frac{1}{2}$). For all integers m, n such that $0 \leqslant n \leqslant m$, we have

$$
\begin{equation*}
B_{n}(x)=\sum_{j=0}^{m}\left(\sum_{k=j}^{m} \sum_{s=0}^{k} \frac{(-1)^{j}}{(s+1) 2^{k-s}}\binom{k}{j}\right)\left(x+\frac{j}{2}\right)^{n} \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
B_{n}(x)=\sum_{j=0}^{m}\left(\sum_{k=j}^{m} \sum_{s=0}^{k} \frac{(-1)^{j}\binom{k}{j}}{(k+1)\binom{k}{s}}\right)\left(x+\frac{j}{2}\right)^{n} . \tag{33}
\end{equation*}
$$

Proof. From the relations (19) and (9), we have

$$
\begin{aligned}
B_{n}(x) & =\Omega_{B}\left(x^{n}\right)=\sum_{k=0}^{m} \sum_{s=0}^{k} \frac{(-1)^{k}}{(s+1) 2^{k-s}} \Delta_{\frac{1}{2}}^{k}\left(x^{n}\right)=\sum_{k=0}^{m} \sum_{s=0}^{k} \frac{(-1)^{k}}{(s+1) 2^{k-s}} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \tau_{\frac{j}{2}}\left(x^{n}\right)= \\
& =\sum_{k=0}^{m} \sum_{s=0}^{k} \sum_{j=0}^{k} \frac{(-1)^{j}}{(s+1) 2^{k-s}}\binom{k}{j}\left(x+\frac{j}{2}\right)^{n} .
\end{aligned}
$$

We deduce (32). By the relations (20) and (9), we have

$$
B_{n}(x)=\Omega_{B}\left(x^{n}\right)=\sum_{k=0}^{\infty}\left(\sum_{s=0}^{k} \frac{(-1)^{k}}{k+1}\binom{k}{s}^{-1}\right) \Delta_{\frac{1}{2}}^{k}\left(x^{n}\right)=\sum_{k=0}^{\infty} \sum_{s=0}^{k} \sum_{j=0}^{k} \frac{(-1)^{j}\binom{k}{j}}{(k+1)\binom{k}{s}}\left(x+\frac{j}{2}\right)^{n} .
$$

We deduce (33).
The identity (28) was discovered in 2016 by Komatsu and Pita Ruiz and represents a generalization to Bernoulli polynomials of identity (1) that Munch [17] proved in 1959. Their proof is based on many combinatorial identities extracted from Gould tables [9, 10]. The identity (29) represents a generalization to Bernoulli polynomials of the following identity

$$
B_{n}=\sum_{k=1}^{n+1} \frac{(-1)^{k+1}}{k}\binom{n+1}{k} \sum_{j=0}^{k-1} j^{n}
$$

which is an identity proved by Kronecker [13] in 1883, rediscovered by Bergmann and Gould [3,8] and generalized later by Funkuhara et al. [7] in 2018.

References

[1] J.A.Adell, A.Lekuona, Closed form expressions for Appell polynomials, Ramanujan J., 49(2019), no. 3, 567-583.
[2] P.Appell, Sur une classe de polynômes, Ann. Sci. Éc. Norm. Supér, 9(1880), no. 2, 119-144.
[3] Horst Bergmann, Eine explizite Darstellung der Bernoullischen Zahlen, Math. Nachr., 34(1967), 377-378.
[4] J.Bernoulli, Ars Conjectandi, Thurnisiorum, 1713.
[5] R.Chellal, F.Bencherif, M Mehbali, An Identity for Generalized Bernoulli Polynomials, J. Integer Seq., 23(2020), Article 20.11.2.
[6] L.Comtet, Advanced Combinatorics, Dordrecht-Holland/Boston, 1974.
[7] S.Fukuhara, N.Kawazumi, Y.Kuno, Self-intersections of curves on a surface and Bernoulli numbers, Osaka J. Math., 55(2018), 761-768.
[8] H.W.Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly, 79(1972), 44-51.
[9] H.W.Gould, Combinatorial identities, revised edition, Morgantown, West-Virginia, 1972.
[10] H.W.Gould, Tables of Combinatorial Identities, Edited and compiled by Prof. Jocelyn Quaintance, 2010. Available at http://www.math.wvu.edu/ gould/.
[11] H.W.Gould, Table for combinatorial numbers and associated identities: Table 2, published electronically at https://www.math.wvu.edu/~ gould/Vol.8.PDF.
[12] T.Komatsu, C.Pita, Several explicit formulae for Bernoulli polynomials, Math. Commun., 21(2016), 127-140.
[13] L.Kronecker, Bemerkung zur Abhandlung des Herrn Worpitzky, J. Reine Angew. Math., 94(1883), 268-270.
[14] B.Mazur, Bernoulli numbers and the unity of mathematics, manuscript. http://people.math.harvard.edu/~ mazur/papers/slides.Bartlett.pdf.
[15] C.Pita, Carlitz-type and other Bernoulli identities, J. Integer Seq., 19(2016), Article 16.1.8.
[16] A.M.Rockett, Sums of the Inverses of Binomial Coefficients, Fibonacci Quart., 19(1981), no. 5, 433-437.
[17] Ove J. Munch, Om Potensproduktsummer, Nordisk Mat. Tidsskr., 7(1959), 5-19.
[18] A.M.Robert, A Course in p-adic Analysis, Springer-Verlag, New York, 2000.

Заметка о явных формулах для многочленов Бернулли

Лаала Халди
Университет Буиры
Буира, Алжир
Лаборатория EDPNL\&HM, ENS Куба, Алжир
Фарид Беншериф
Факультет математики USTHB, LA3C
Алжир, Алжир
Абдалла Дербал
Лаборатория EDPNL\&HM, ENS
Куба, Алжир

[^1]
[^0]: *l.khaldi@univ-bouira.dz https://orcid.org/0000-0001-8953-521X
 ${ }^{\dagger}$ fbencherif@yahoo.fr
 †abderbal@yahoo.fr
 © Siberian Federal University. All rights reserved

[^1]: Аннотация. При $r \in\left\{1,-1, \frac{1}{2}\right\}$ доказаны несколько явных формул для n-го многочлена Бернулли $B_{n}(x)$, в котором $B_{n}(x)$ равно линейной комбинации многочленов $x^{n},(x+r)^{n}, \ldots,(x+r m)^{n}$, где m - любое фиксированное натуральное число, большее или равное n.
 Ключевые слова: многочлен Аппеля, многочлен Бернулли, биномиальные коэффициенты, комбинаторные тождества.

