DOI: 10.17516/1997-1397-2022-15-2-194-198 УДК 517.55

An Analogue of the Hartogs Lemma for *R*-Analytic Functions

Alimardon A. Atamuratov^{*}

V.I. Romanovsky Institute of Mathematics Tashkent, Uzbekistan Urgench State University Urgench, Uzbekistan **Djurabay K. Tishabaev**[†] **Takhir T. Tuychiev**[‡] National University of Uzbekistan Tashkent, Uzbekistan

Received 02.09.2021, received in revised form 13.11.2021, accepted 20.12.2021

Abstract. The paper is devoted to the problem of R-analytic continuation of functions of several real variables which admit R-analytic continuation along parallel sections. We prove an analogue of the well-known Hartogs lemma for R-analytic functions.

Keywords: *R*-analytic functions, holomorphic functions, plurisubharmonic functions, pluripolar sets, Hartogs series.

Citation: A.A. Atamuratov, Dj.K. Tishabaev, T.T. Tuychiev, An Analogue of the Hartogs Lemma for *R*-Analytic Functions, J. Sib. Fed. Univ. Math. Phys., 2022, 15(2), 194-198. DOI: 10.17516/1997-1397-2022-15-2-194-198.

1. Introduction and preliminaries

In this paper we consider the *R*-analytic continuation of functions of several real variables that admit *R*-analytic continuation along parallel sections. Regarding to holomorphic functions, the first result in this direction is due to Hartogs [1]: if a holomorphic function $f('z, z_n)$ in the domain $U \times \{|z_n| < r\} \subset \mathbb{C}^n_{z_z} \times \mathbb{C}_{z_n}$, where $'z = (z_1, z_2, \ldots, z_{n-1})$, for each fixed $'z \in ('U)$ by z_n extends holomorphically to the disk $|z_n| < R$, R > r > 0, then it is holomorphic with respect to all variables in the domain $'U \times \{|z_n| < R\}$.

The following Forelli's theorem [2] is also directly related to Hartogs theorem: if f is infinitely smooth at a point $0 \in \mathbb{C}^n$, $f \in C^{\infty} \{0\}$, and the restrictions $f|_l$ are holomorphic in the disc $U(0,1) = l \bigcap B(0,1)$ for all complex lines $l \ni 0$, then f can be holomorphically extended to the ball $B(0,1) \subset \mathbb{C}^n$.

In a recent paper [3] A. Sadullaev proved the following analogue of Forelli's theorem for Ranalytic functions.

Theorem 1. Let a function f(x), $x = (x_1, x_2, ..., x_n)$ be smooth in some neighborhood of the origin $0 \in \mathbb{R}^n$, $f(x) \in C^{\infty}\{0\}$ and let for any real line $l : x = \lambda t$, $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n) \in S(0, 1) \subset I$

^{*}alimardon01@mail.ru https://orcid.org/0000-0003-2928-0694

[†]jura63@rambler.ru https://orcid.org/0000-0002-7428-3934

[‡] https://orcid.org/0000-0001-8092-2432

[©] Siberian Federal University. All rights reserved

 \mathbb{R}^n , $t \in \mathbb{R}$ is a parameter, the restriction $f|_l = f(\lambda t)$ is real-analytic (*R*-analytic) in the interval $t \in (-1,1)$. Then there is a closed pluripolar set $S \subset B(0,1)$ such that f(x) is *R*-analytic in $B(0,1) \setminus S$, where $B(0,1) \subset \mathbb{R}^n$ is the unit ball and $S(0,1) = \partial B(0,1)$ is the unit sphere.

Note that the well-known terminology is used here, a set $S \subset \mathbb{R}_x^n$ is called pluripolar if it is pluripolar in the ambient complex space \mathbb{C}_z^n , $\mathbb{R}_x^n \subset \mathbb{C}_z^n$, z = x + iy. An example of a function $f(x_1, x_2) = \frac{x_1^{k+1}}{(x_2 - 1)^2 + x_1^2}$ shows that exact analogues of Forelli's Theorem and Hartogs' Theorem for *R*-analytic functions are not true. The function $f(x_1, x_2)$ is real-analytic in the domain $\mathbb{R} \times \{|x_2| < \frac{1}{2}\}$, the restriction $f(x_1^0, x_2)$ is real-analytic on the whole line \mathbb{R} . However, f is not real-analytic at the point (0, 1).

The main result of this work is

Theorem 2. Let a function $f(x) = f(x, x_n)$ satisfy the following conditions:

1) The function $f(x, x_n)$ is R-analtic in a polycylinder $U = (U) \times \{|x_n| < r_n\}, r_n > 0$, where $x = (x_1, x_2, \dots, x_{n-1})$ and

$$'U = \left\{ 'x \in \mathbb{R}^{n-1} : |x_1| < r_1, |x_2| < r_2, \dots, |x_{n-1}| < r_{n-1} \right\} = \\ = \left\{ 'x \in \mathbb{R}^{n-1} : -r_1 < x_1 < r_1, -r_2 < x_2 < r_2, \dots, -r_{n-1} < x_{n-1} < r_{n-1} \right\}$$

2) For each fixed $('x^0) \in ('U)$ the function $f('x^0, x_n)$ that is R-analytic in the interval $|x_n| < r_n$, R-analytically continues into a larger interval $|x_n| < R_n$, $R_n > r_n$.

Then there exists a closed pluripolar set $S \subset (U)$ such that the function $f(x, x_n)$ R-analytically with respect to all variables (x, x_n) continues into the domain $(U \times \{|x_n| < R_n\}) \setminus (S \times \{|x_n| \ge r_n\})$.

The proof of Theorem 2 essentially uses the method of proving Theorem 1 proposed by A. Sadullaev, namely, the embedding of a real space $\mathbb{R}_x^n \subset \mathbb{C}_z^n$, z = x + iy, and the natural holomorphic continuation of *R*-analytic functions into \mathbb{C}^n , the holomorphic continuation of the Hartogs series and methods of pluripotential theory (see [4–5]).

Note that using the local transformation of the pencil of lines $l \ge 0$, into parallel ones, from Theorem 2 one can obtain a proof of Theorem 1.

Real analytic functions were also studied in the work of J. Sichak [6], where he proved that if the function f(x) is smooth in a domain $D \subset \mathbb{R}^n f \in C^{\infty}(D)$ and for each real line $l: x = x^0 + \lambda t, x^0 \in D, \ \lambda \in \mathbb{R}^n, \ |\lambda| = 1, \ t \in \mathbb{R}$, the restriction $f|_{\ell}$ is *R*-analytic by *t* in some neighborhood of zero, then f(x) is *R*-analytic in *D*.

2. Domain of holomorphy of Hartogs series

Let $U = (U) \times U_n$ be a domain in $\mathbb{C}_{z}^{n-1} \times \mathbb{C}_{z_n}$, where U_n is a disc centered at the point $z_n = 0$ and with a radius $\delta > 0$. If the function $f(z, z_n)$ is holomorphic in U, then it can be expanded in a Hartogs series:

$$f('z, z_n) = \sum_{k=0}^{\infty} c_k('z) \, z_n^k,$$
(1)

where, the coefficients $c_k(z)$ are holomorphic in 'U and determined by the formula

$$c_k('z) = \frac{1}{2\pi i} \int_{|\xi| = \delta'} \frac{f('z,\xi)}{\xi^{k+1}} d\xi, \quad 0 < \delta' < \delta, \ k = 0, \ 1, \ 2, \ \dots$$
 (2)

Then, it is known that if R('z) is the radius of convergence of series (1), then the function $u^*('z) = -\ln R_*('z)$ is plurisubharmonic in 'U, and the set $\{'z \in ('U) : R_*('z) < R('z)\}$ is pluripolar. Here $R_*('z) = \lim_{w \to z} R(w)$ is the lower regularization. Moreover, the series (1) converges uniformly on any compact subset $K \subset ('U) \times \{|z_n| < R_*('z)\}$. The proof of this fact can be found, for example, in [7,8].

The following lemma, which plays the key role in the proof of Theorem 2, is widely used in the theory of analytic continuation.

Lemma 1. Let a function $f('z, z_n)$ be holomorphic in the domain $'U \times \{z_n \in \mathbb{C} : |z_n| < \delta\}$, $'U \subset \mathbb{C}^{n-1}$. If for each fixed $'z^0 \in ('U_0)$ from some non-pluripolar set $'U_0 \subset ('U)$ the function $f('z^0, z_n)$ of variable z_n , extends holomorphically to the larger disc $\{z_n \in \mathbb{C} : |z_n| < \Delta\}, \ \Delta \ge \delta > 0$, then the function $f('z, z_n)$ holomorphically extends to the domain $\{'z \in 'U, |z_n| < \delta^{\omega^*('z,'U_0,'U)} \cdot \Delta^{1-\omega^*('z,'U_0,'U)}\}$, where $\omega^*('z,'U_0,'U)$ is the well-known plurisubharmonic measure of the set $'U_0$ with respect to the domain 'U, that is defined by the following

$$\omega^*('z, 'U_0, 'U) = \left(\sup\left\{u('z) \in psh('U) : u(z)|_{U} < 1, u(z)|_{U_0} \le 0\right\}\right)^*$$

Indeed, if we expand the function $f(z, z_n)$ in a Hartogs series of the form (1) in the domain $U \times \{z_n \in \mathbb{C} : |z_n| < \delta\}$, then the function $u(z) = -\ln R_*(z)$ is plurisubharmonic in the domain U and by the conditions of the lemma $u(z)|_{U} \leq -\ln \delta$, $u(z)|_{U_0} \leq -\ln \Delta$. According to the theorem on two constants (see [9], p. 103), we obtain the inequality

$$u('z) \leq (1 - \omega^*('z, 'U_0, 'U)) \cdot (-\ln \Delta) + \omega^*('z, 'U_0, 'U) \cdot (-\ln \delta).$$

Hence it follows that

$$\ln R_*('z) \ge (1 - \omega^*('z, 'U_0, 'U)) \cdot \ln \Delta + \omega^*('z, 'U_0, 'U) \cdot \ln \delta_2$$

or $R_*(z) \ge \delta^{\omega^*(z, U_0, U)} \cdot \Delta^{1-\omega^*(z, U_0, U)}$. Thus in accordance with above mentioned, the function $f(z, z_n)$ extends holomorphically to the domain

$$'U \times \{|z_n| < R_*('z)\} \supset ('U) \times \{|z_n| < \delta^{\omega^*('z,'U_0,'U)} \cdot \Delta^{1-\omega^*('z,'U_0,'U)}\}.$$

3. Proof of the main result

Without loss of generality we assume that for each fixed $x \in (U)$ the function $f(x, x_n)$ is *R*-analytic in the interval $(-R_n - \varepsilon, R_n + \varepsilon), \varepsilon > 0$. The proof of the theorem will be implemented in several steps.

Step 1. We embed the real space \mathbb{R}^n_x into the complex space \mathbb{C}^n_z , $\mathbb{R}^n_x \subset \mathbb{C}^n_z$, z = x + iy. Then, by definition of *R*-analyticity of a function $f(x, x_n)$, there exists a domain $\hat{U} \subset \mathbb{C}^n$, $\hat{U} \supset U$ and a holomorphic function $F(z) = F(z, z_n) \in O(\hat{U})$ such that $F(z, z_n)|_U = f(x, x_n)$.

It follows that from the conditions of the theorem the function $F(z) = F('z, z_n)$ satisfies the following conditions:

1) $F(z) \in O\left(\hat{U}\right)$.

2) For each fixed $z = (x) \in (U)$ the function $F(x, z_n)$ of the variable z_n , can be extended holomorphically into the ellipse of type $E_j : \frac{(Rez_n)^2}{R_n^2} + j^2(Imz_n)^2 < 1, \ j \in \mathbb{N}$, such that $E_j \supset \{|x_n| \leq R_n\} \ \forall j \in \mathbb{N}.$ We put $\hat{U} = \hat{U} \cap \mathbb{C}_{z}^{n-1}$ and fix a subdomain $\hat{V} \subset (\hat{U})$ such that $V = (\hat{V}) \cap (U) \neq \emptyset$. Then there is a circle $\{|z_n| < \sigma\}, \sigma > 0$, such that $\hat{V} \times \{|z_n| < \sigma\} \subset \hat{U}$, i.e. the function $F(z) = F(z, z_n)$ is holomorphic with respect to the (z, z_n) in $\hat{V} \times \{|z_n| < \sigma\}$. We fix the number $j \in \mathbb{N}$ and denote by V_j the set of points x from $V = (\hat{V}) \cap (U)$ for which the function $F(x, z_n)$ of variable z_n extends holomorphically into the ellipse E_j , i.e.

$$V_{j} = \{ x \in (V) : F(x, z_{n}) \in O(E_{j}) \}$$

It is obvious that

$$V_j \subset V_{j+1} \; \forall j \in \mathbb{N}$$

and

$$\bigcup_{j=1}^{\infty} ('V_j) = 'V.$$

Step 2. Since an open non-empty subset $V \subset \mathbb{R}^{n-1}$ is not pluripolar in \mathbb{C}^{n-1} , then there exists a number $j_0 \in \mathbb{N}$ such that for all $j > j_0$ the sets $V_j \subset (V)$ will be non-pluripolar in \mathbb{C}^n .

Let us fix $j \in \mathbb{N}$, $j > j_0$ and let the function $w = g_j(z_n)$ conformally maps the ellipse E_j into the unit circle $\{|w| < 1\}$, $g_j(0) = 0$. Since the function $F('z, z_n)$ is holomorphic in the neighborhood $\hat{V} \times \{|z_n| < \sigma\}$, the function $\Phi('z, w) = F('z, g_j^{-1}(w))$ is holomorphic in the domain $\hat{V} \times g_j^{-1}(\{|z_n| < \sigma\})$. Since $g_j(0) = 0$, there is a number $\delta_j > 0$ such that $(\hat{V}) \times \{|w| < \delta_j\} \subset (\hat{V}) \times g_j^{-1}(\{|z_n| < \sigma\})$, i.e. the function $\Phi('z, w)$ is holomorphic in the domain $\hat{V} \times \{|w| < \delta_j\}$. In addition, for each fixed variable $z = (x) \in (V_j)$, the function $\Phi(x, w)$ of the variable w extends holomorphically to the circle $\{|w| < 1\}$.

By Lemma 1, where $\delta = \delta_j$, $\Delta = 1$, the function $\Phi(z, w)$ is holomorphic in the domain

$$\left\{'z\in'\hat{V}, |z_n|<\delta_j^{\omega^*(\mathsf{v}z,'V_j,'\hat{V})}\right\}$$

Thus, if we substitute into $\Phi(z, w)$ the value $w = g_j(z_n)$, then we obtain that the function $F(z, z_n)$ extends holomorphically to the domain

$$G_{j} = \left\{ ('z, z_{n}) \in \mathbb{C}^{n} : ('z) \in ('\hat{V}), |g_{j}(z_{n})| < \delta_{j}^{\omega^{*}('z, 'V_{j}, '\hat{V})} \right\}$$
(3)

Note that if the point $x \in (V_j)$ is plurinegular, i.e. $\omega^*(x, V_j, \hat{V}) = 0$, then, according to (3), the ellipse $\{x\} \times \{|g_j(z_n)| < 1\} \subset G_j$. Consequently, the domain G_j contains some neighborhood of the segment $\{x\} \times [-R_n, R_n]$.

Step 3. By the construction of the domain G_j , F can be extended holomorphically to the domain $G_{'V} = \bigcup_{j=j_0}^{\infty} G_j$ as well. Let us denote by P_j the set of irregular points $'x \in ('V_j)$ and by $P_{'V} = \bigcup_{j=j_0}^{\infty} P_j$ the union of these sets $P_{V} \subset ('V)$. It is a pluripolar set in $\mathbb{C}_{'z}^{n-1}$. For each fixed point $'z = ('x) \in ('V) \setminus P_{'V}$, the union $G_{'V} = \bigcup_{j=j_0}^{\infty} G_j$ contains a neighborhood of the segment $\{'x\} \times [-R_n, R_n]$.

Step 4. We take a sequence of domains $\hat{V}_k \subset \hat{V}_{k+1} \subset \hat{U} : \bigcup_{k=1}^{\infty} (\hat{V}_k) = \hat{U}$ and put $P = \bigcup_{k=1}^{\infty} P_{V_k}$. Then $P \subset (U)$ is pluripolar set in \mathbb{C}_{z}^{n-1} . According to Step 3, the function F extends holomorphically to the domain $G = \bigcup_{k=1}^{\infty} G_{V_k}$, and for each fixed point $z = (x) \in (U) \setminus P$ the union $G = \bigcup_{k=1}^{\infty} G_{V_k}$ contains a neighborhood of the segment $\{x\} \times [-R_n, R_n]$. Therefore, for such points the given function $f(x, x_n)$ is R-analytic in the set of variables in the neighborhood of the segment $\{x\} \times [-R_n, R_n]$.

We note that the complement $S = ['U \times \{|x_n| < R_n\}] \setminus [G \cap \mathbb{R}^n]$ is a closed pluripolar set, $S \subset P \times \{|x_n| \ge r_n\}$, and the function $f('x, x_n)$ is *R*-analytically extended to $['U \times \{|x_n| < R_n\}] \setminus S$. The theorem is proved.

The authors are grateful to Professor A. Sadullaev for useful advices and comments to the article.

References

- A.Sadullaev, Real analyticity of a C[∞]-germ at a origin, Ann. Polon. Math., 2021, Published online. DOI: 10.4064/ap210125-31-3
- [2] A.S.Sadullaev, E M.Chirka, On continuation of functions with polar singularities, Math. USSR-Sb., 60(1988), no. 2, 377–384. DOI: 10.1070/SM1988v060n02ABEH003175
- [3] E.M.Chirka, Rational approximations of holomorphic functions with singularities of finite order, *Math. USSR-Sb.*, 29(1976), no. 1, 123–138.
 DOI: 10.1070/SM1976v029n01ABEH003656
- [4] J.Bochnak, J.Siciak, A characterization of analytic functions of several real variables, Ann. Polon. Math., 123 (2019), 9–13. DOI: 10.4064/ap180119-26-3
- [5] A.Sadullaev, Rational approximation and pluripolar sets, Math. USSR-Sb., 47(1984), no. 1, 91–113. DOI: 10.1070/SM1984v047n01ABEH002632
- [6] A.Sadullaev, Holomorphic functions of several variables, Urgench State University Publishing Department, Urgench, 2005 (in Russian).
- [7] A.Sadullaev, Pluripotential theory. Applications, *Palmarium Academic Publishing*, Germany, 2012.

Об аналоге леммы Гартогса для *R*-аналитических функций

Алимардон А. Атамуратов

Институт математики им. В. И. Романовского АН РУз Ташкент, Узбекистан Ургенчский Государственный Университет Ургенч, Узбекистан **Джурабай К. Тишабаев Тахир Т. Туйчиев** Национальный университет Узбекистана Ташкент, Узбекистан

Аннотация. Работа посвящена задачам *R*-аналитического продолжения функций многих действительных переменных, допускающих *R*-аналитическое продолжение на параллельные сечения. В ней доказывается аналог известной теоремы Гартогса для R-аналитических функций.

Ключевые слова: *R*-аналитические функции, голоморфные функции, плюрисубгармонические функции, плюриполярные множества, ряды Гартогса.