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Abstract. In the paper we consider systems of linear difference equations with discrete characteristic
sets. A multidimensional version of the principal theorem of linear difference equations with constant
coefficients is formulated and proved.
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1. Introduction and formulation of the main result

The main problems of the finite difference theory concern interpolation and summation of
functions. The latter is closely related to solving of equations in finite defferences. For linear
equations in finite differences a theory has been developed (see, for example, [5]), analogous
to theory of ordinary linear differential equations. In case of constant coefficients it is largely
completed, and together with the theory of generating functions they are powerful research tools
in combinatorial analysis and other branches of mathematics.

Let us recall the principal theorem of difference equations in one variable. First, it states that
a generating function of a solution is rational, and second, its Taylor coefficients has the form
of an exponential polynomial. Following the book by R. Stanley ([1], Section 4.1.1) we give its
formulation. Here Z> is the set of nonnegative integers.

Theorem. Let c1, c2, · · · , cd be complex numbers such that d > 1 and cd ̸= 0. For a function
f : Z> → C the following are equivalent

(i) Generating function of the sequence f(x) is a rational function∑
x>0

f(x)zx =
S(z)

T (z)
,

where T (z) = 1 + c1z + · · ·+ cdz
d and S(z) is a polynomial of degree less than d;

(ii) For any x ∈ Z> there holds

f(x+ d) + c1f(x+ d− 1) + · · ·+ cdf(x) = 0;
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(iii) The function f(x) is an exponential polynomial

f(x) =

m∑
j=1

Pj(x)γ
x
j ,

where γj are pairwise distinct reciprocals of the roots of the polynomial

T (z) = 1 + c1z + · · ·+ cdz
d =

m∏
j=1

(1− γjz)
dj ,

and Pj are polynomials of degrees deg Pj(x) < dj .

Let us stress out that in (iii) the naturals dj are orders (multiplicities) of roots γj of the
characteristic polynomial Q(z) = zdT

(
1
z

)
of the difference equation from (ii).

We introduce necessary notation and definitions. Denote by Zn = Z×· · ·×Z the n-dimensional
integer lattice and by Zn

> its subset of points with nonnegative components.
A difference equation (with respect to an unknown function f : Zn

> → C) is a relation∑
06α6d

cαf(x+ d− α) = 0, x ∈ Zn
>, (1)

where cα ∈ C are (constant) coefficients of the equation (1), and α > β for multi-indices α =
= (α1, . . . , αn), β = (β1, . . . , βn) denotes that αj > βj , j = 1, 2, . . . , n.

A characteristic polynomial for the difference equation (1) is the polynomial∑
06α6d

cαz
d−α =: Q(z),

where z = (z1, . . . , zn) ∈ Cn, zα = zα1
1 . . . zαn

n . The zeroes of Q are the characteristic roots, and
the set

V = {z ∈ Cn : Q(z) = 0} (2)

of all zeroes Q is called the characteristic set of the equation (1).
In the case n = 1 it is known (see [5] or the theorem above) that any solution of the equa-

tion (1) is a linear combination of functions of the form f(x) = xsγj , s = 0, . . . , dj − 1, where
γ−1
j are roots (of multiplicities dj) of the characteristic polynomial. Therefore, the dimension of

the space of solutions is finite and equal to the degree d of the characteristic polynomial Q(z).
For n > 1 a similar statement on finite dimension of the space of solutions of an equation of the
form (1) is not true, since the characteristic set V is infinite.

However, as the main result of this paper shows, a multidimensional analog of this theorem
exists, for example, when instead of one equation (1) for a function f in n variables one considers
a system of n equations. To each such system we can put into one-to-one correspondence a
system of algebraic equations. Consider polynomials Q = (Q1, . . . , Qn) of the form

Qi(z) =
∑

06α6di

ciαz
α, i = 1, 2, . . . , n,

where di are vectors from Zn
>. We shall assume that ci0 = 1, cidi ̸= 0.

Denote by VQ the zero set of the system

Q1(z) = Q2(z) = · · · = Qn(z) = 0, (3)

which we shall call characteristic.
Let Q : Ua → Cn be a holomorphic mapping of a neighborhood Ua ⊂ Cn of a such that

Q(a) = 0. The point a is called a simple zero of Q if the Jacobian JQ =
∂Q

∂z
does not vanish at
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a. From the implicit function theorem it follows that a simple zero is always an isolated one. If
JQ(a) = 0, than a is called a multiple zero of the mapping Q.

Consider the case when discrete zeroes of the characteristic system (2) may be multiple. In
one-dimensional case there are two equivalent definitions for multiplicity (order) of a root:

(i) z = a is a zero of order (multiplicity) d of the polynomial Q(z) if Q(z) can be represented
as

Q(z) = (z − a)dφ(z), φ(a) ̸= 0;

(ii) z = a is a zero of order (multiplicity) d of the polynomial Q(z) if for its derivatives we have

Q(a) = Q
′
(a) = . . . = Q(d−1)(a) = 0, Q(d)(a) ̸= 0.

Note that in multidimensional case the notions of order and multiplicity of a zero do not
coincide (see Section 2 below). In this case as an analog of (ii) we require that the roots a ∈ VQ

of the characteristic system (3) satisfy the following: for some da = (d1,a, . . . , dn,a) ∈ Zn
> we

have
∂αQi

∂zα
(a) = 0 for 0 6 α 6 da − I, i = 1, . . . , n, (4)

∆da
(z) = det

∥∥∥∥∥∂dl,aQi(z)

∂z
dl,a

l

∥∥∥∥∥
z=a

̸= 0. (5)

Here in (4) I = (1, . . . , 1) ∈ Zn and in (5) the indices l and i independently run over 1, 2, . . . , n.

In the case da = I the determinant (5) coincides with the Jacobian
∂Q

∂z
at a, therefore the point

z = a is a simple zero of the characteristic system (2).
Besides that we shall assume that the roots γ(j) of the system of algebraic equations (3) do

not lie on coordinate planes, i.e. that all coordinates of γ(j) are nonzero.
Let us now formulate the main result of the paper that generalizes the (one-dimensional)

principal theorem to the case of several variables.

Theorem 1. For a function f(x) = f(x1, . . . , xn) : Zn
> → C the following are equivalent:

(i) Generating function for the sequence f(x) is a rational function of the form

F (z) =
∑
x>0

f(x)zx =

m∑
j=1

bj(z)

(I − γ(j)z)
d(j)

,

where

(I − γ(j)z)
d(j) = (1− γ(j),1z1)

d(j),1(1− γ(j),2z2)
d(j),2 · · · (1− γ(j),nzn)

d(j),n ,

bj(z) are polynomials of the form
∑

06α<d(j)

bjαz
α;

(ii) For any x ∈ Zn
> the function f(x) satisfies the system of difference equations∑

06α6di

ciαf(x+ di − α) = 0, i = 1, 2, . . . , n, (6)

with characteristic roots satisfying the conditions (4), (5).

– 127 –



Evgeny D. Leinartas, August K.Tsikh On a Multidimensional Version of the Principal Theorem . . .

(iii) The function f(x) is an exponential polynomial

f(x) =

m∑
j=1

Pj(x)γ
x
(j), (7)

where γx
(j) = γx1

(j),1 · . . . · γ
xn

(j),n, and Pj(x) are polynomials of the form
∑

06k<d(j)

P
(j)
k xk.

Remark. In the proof of this theorem we will establish that the general form (7) of a solution
to a system of difference equations (6) is defined by the characteristic roots and by polynomials
Pj(z) that constitute the space of remainders after division by the ideal generated by the system
Q in local rings Oa of germs of holomorphic functions. This fact is closely related to the problem
of multidimensional interpolation studied in the recent papers [12,13].

2. Relations between notions of order and multiplicity
of roots of the characteristic system (3)

For the proof of Theorem 1 we need to relate conditions (4), (5) with dimension of spaces
of polynomials cj(x) in (iii) of the theorem. In fact, each such space coincides with the set
of remainders RQ,a after division of the local ring Oa of germs of holomorphic function by the
ideal Ia(Q) ⊂ Oa generated by the characteristic system Q = (Q1, . . . , Qn), where a = γ(j) is a
characteristic root.

Recall (see [10] or [7]) that the multiplicity of an isolated zero a ∈ Cn of a germ of a holo-
morphic mapping Q : (Cn, a) → (Cn, 0) is the limit

µa(Q) = lim
ξ→a

#{Ua ∩Q−1(ξ)},

where # denotes the cardinality of a set, Ua is a neighborhood of a whose closure does not contain
any zero of Q except for a. The geometric multiplicity µa(Q) is the number of simple roots we
get from a multiple root a under small perturbations of the mappings Q, i.e. after passing from
Q to Q− ξ (the roots of the latter is the preimage Q−1(ξ))

Lemma 1. Provided the conditions (4), (5) are fulfilled the multiplicity of the zero a of Q is
equal to product of orders: µa(Q) = d1,a · . . . · dn,a.

Proof. By the order of a holomorphic function g at a we call the least order of derivatives of g
that do not vanish at a; we denote this order by da(g). Thus, the Taylor expansion of g centered
at a starts with terms of degree da(g). The sum of terms of this degree is naturally called the
initial polynomial for g at a; we denote it by (g)∗. Obviously, (g)∗ is a homogeneous polynomial,
the number da(g) is usually called the degree of the polynomial (g)∗ in all variables.

Consider the system of initial polynomials of the system Q = (Q1, . . . , Qn) at a

(Q)∗ = ((Q1)∗, . . . , (Qn)∗).

It is known that (see [9] or [11], p. 10.3) that the multiplicity µa(Q) of the system Q is equal to
product of orders:

µa(Q) = da(Q1) · . . . · da(Qn), (8)

if and only if the a is an isolated zero of the system (Q)∗ of initial polynomials.
According to (4), (5) the Taylor expansions (at a) of Q′

is have the following form:

Qi(z) = (Qi)∗ +Θi(z), i = 1, . . . , n, (9)
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where
(Qi)∗ = bi1(z1 − a1)

d1,a + . . .+ bin(zn − an)
dn,a , i = 1, . . . , n, (10)

moreover, by Taylor’s formula bil =
1

dl,a!

∂dl,aQi

∂z
dl,a

l

(a). Taking into account (5), we have det(bil) ̸=0.

The polynomials (10) are not homogeneous (in all variables), therefore formula (8) for multi-
plicity of Q at a can not be applied immediately. However, thay are weighted homogeneous with
respect to the weight w = (w1, . . . , wn) with

wi = d1,a . . . [i] . . . dn,a, i = 1, . . . , n.

Thanks to (4), the remainders Θi do not contain monomials with exponents from the paral-
lelepiped {0 6 α 6 d}, therefore their w-weighted degrees a large than those of (Qi)∗.

Consider a superposition Q(a+ ξw) of the mapping Q(z) with the mapping

zi = ai + ξwi
i , i = 1, . . . , n.

After substitution z = a+ ξw the representation (9) becomes

Qi(a+ ξw) = (Q̃i)∗(ξ) + Θ̃i(ξ), i = 1, . . . , n,

where
(Q̃i)∗(ξ) = bi1ξ

u
1 + . . .+ binξ

u
n, i = 1, . . . , n, (11)

here u = d1,a · . . . · dn,a and d0(Θ̃i) > u. The system (11) consists of usual (with respect to
the weight (1, . . . , 1)) homogeneous polynomials. Since det(bil) ̸= 0, this system does not have
common roots except for ξ = 0. Therefore, the multiplicity of the zero ξ = 0 of the mapping
Q(a + ξw) is given by formula (8), i.e. it is un. Under superpositions the multiplicities are
multiplied, and since the multiplicity of ξ = 0 of the system (ξw1

1 , . . . , ξwn
n ) equals w1 · . . . ·wn =

= un−1, we get
µa(Q) =

un

un−1
= d1,a · . . . · dn,a.

The lemma is proved. 2

3. The proof of the main result and an example

Now we are ready to prove Theorem 1. Fix a mapping Q with properties (4), (5) and introduce
three vector spaces:

V1 = {f : Zn
> ⇒ Cn, f satisfies (i)},

V2 = {f : Zn
> ⇒ Cn, f satisfies (ii)},

V3 = {f : Zn
> ⇒ Cn, f satisfies (iii)}.

Let us first show that they all have the same dimension:

dimV1 = dimV2 = dimV3 =

m∑
j=1

d1,(j) · . . . · dn,(j). (12)

Indeed, the elements of V1 are defined by polynomials b1(z), . . . , bm(z), each running over a
space of polynomials with d1,(j) · . . . · dn,(j) independent coefficients b

(j)
α .

To compute the dimension of V2 we denote by I(Q) = (Q1, . . . , Qn) the ideal in the ring
C[z1, . . . , zn] generated by polynomials Q1, . . . , Qn. Use the following fact ([3], Proposition 2):
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If the quotient ring
R = C[z1, . . . , zn]/I(Q) (13)

has finite dimension and {zβ ; β ∈ B ⊂ Zn} is its monomial basis, then any solution f(x) of a
system of difference equations

Qi(δ)f(x) = 0, i = 1, . . . , n, (14)

is uniquely determined by its values on the set B.
Here the symbol δ = (δ1, . . . , δn) denotes a vector of atomic difference operators (shifts)

δjf(x) = f(x+ ej) = f(x1, . . . , xj−1, xj + 1, xj+1, . . . , xn), j = 1, . . . , n.

It is known (see [8], Sec. 5, and [7], Sec. 19) that dimension of R equals to the number of zeroes
of the system Q (with multiplicities). Therefore from Lemma 1 we get dimV2 = dimV1. Finally,
in the representation (iii) we may choose coefficients of Pj(x) arbitrarily, and their number is
equal to d1,(j) · . . . · dn,(j), therefore dimV3 = dimV2 = dimV1.

The proof of equivalence (iii) ≈ (i). Let f(x) has the form of an exponential polynomial as
in (iii):

f(x) =

m∑
j=1

cj(x)γ
x
(j) =

m∑
j=1

∑
06k<d(j)

l
(j)
k xkγx

(j).

We multiply both sides of the equality by zx and sum over x = (x1, . . . , xn). By this, we get
for the generating function F (z) the following representation:

m∑
j=1

∑
06k<d(j)

l
(j)
k

∑
x>0

(xkγx
(j)z

x) =

m∑
j=1

∑
06k<d(j)

l
(j)
k

∑
x1>0

(xk1
1 γx1

(j),1z
x1
1 ) · . . . ·

∑
xn>0

(xkn
n γxn

(j),nz
xn
n ). (15)

For a fixed k we consider one of series in xj separately, for brevity we omit the index j:∑
x>0

xkγxzx =
∑
x>0

xkwx, (16)

where w = γz, and k is a scalar, since it is the coordinate kj . To compute the last series, we
write down the geometric series in w, take its derivative and multiply both sides of it by w:

1

1− w
=

∞∑
x=0

wx,

( 1

1− w

)′
=

1

(1− w)2
=

∞∑
x=0

xwx−1,

w · 1

(1− w)2
=

∞∑
x=0

xwx.

Thus, we get an expression for the series (16) for k = 1. Repeating this procedure, we get an
expression for k = 2:( w

(1− w)2

)′
=

1 + 2w

(1− w)3
=

∞∑
x=0

x2wx−1,

∞∑
x=0

x2wx = w · 1 + 2w

(1− w)3
.

Iterating this procedure, for the ith series in (15) we get a representation as a rational function:∑
xj>0

xki
i γxi

(j),iz
xi
i =

Mi(γ(j),izi)

(1− γ(j),izi)kj+1
,
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where Mi(w) is a polynomial of degree k.
Now we turn back to the equality (15). After summation over k (as a multi-index) for the

generating function F (z) we get an expression

F (z) =

m∑
j=1

∑
06k<d(j)

lk

n∏
i=1

Mi(γ(j),izi)

(I − γ(j)z)k+I
=

m∑
j=1

bj(z)

(I − γ(j)z)
µ(j)

with polynomials bj(z) of the form
∑

06α<d(j)

bjαz
α as in (i).

The proof of equivalence (iii) ≈ (ii). Let α, k ∈ Zn
>, the inequality α 6 k means that αj 6 kj

for j = 1, . . . , n, and we write α 
 k if for some j0, 1 6 j0 6 n we have αj0 > kj0 .
For a difference operator δ − a = (δ1 − a1, . . . , δn − an), a ∈ Cn there holds the following

property: for any α 
 k one has (δ − a)αxkax = 0, x ∈ Zn
>.

For n = 1 this is checked by direct computation, and for n > 1 it follows from (δ−a)αxkax =
n∏

j=1

(δj − aj)
αjxkja

xj

j .

If a polynomial Qi(z) satisfies (4), (5) of the principal theorem at the point z = a, then it
can be represented as Qi(z) =

∑
α>0

α
di,a

c
(i)
α (z − a)α for some da = (da,1, . . . , da,n). Thus, for any

k < da and any α > 0, α 
 di,a there exists αj0 > kj0 , therefore Q(δ)[xkax] = 0 for x ∈ Zn
>.

If a ∈ VQ is a point of the characteristic set of the system (ii) and f(x) ∈ V3, then from what
we have shown above follows that Qi(δ)f(x) = 0, x ∈ Zn

>, i = 1, 2, . . . , n. Therefore, V3 ⊂ V2

and due to dimV3 = dimV2 we get V3 = V2.

As an example we consider the following system of equations satisfying (4) and (5):
Q1 = (z1 − 1)2 + (z2 − 1)2 +

1

3
(z1 − 1)2(z2 − 1)2;

Q2 = (z1 − 1)2 − (z2 − 1)2 +
2

3
(z1 − 1)2(z2 − 1)2.

(17)

This system is a superposition of the mappings{
x1 = (z1 − 1)2;

x2 = (z2 − 1)2
and


y1 = x1 + x2 +

1

3
x1x2;

y2 = x1 − x2 +
2

3
x1x2 .

The second mapping has in C2 two zeroes: (0, 0) and (6,−2) (and two zeroes at infinity in
accordance with Bezout’s theorem). Therefore the system (17) has in C2 eight zeroes: (1, 1) of
multiplicity 4 (in accordance with formula (8)) and 4 simple zeroes (γ±

1 , γ±
2 ) = (1±

√
6, 1± i

√
2).

The series representation of the generating function from (i) in Theorem 1 is

F (z) =
∑
ε,δ

bεδ
(1− γε

1z1)(1− γδ
2z2)

+
b5(z)

(1− z1)2(1− z2)2
,

where bεδ are constants (polynomials of zero degree), and b5(z) is a polynomial of the form
b00 + b10(z1 − 1) + b01(z2 − 1) + b11(z1 − 1)(z2 − 1).

This work was supported by Krasnoyarsk Mathematical Center financed by Ministry of Science
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О многомерном варианте основной теоремы разностных
уравнений с постоянными коэффициентами

Евгений Д. Лейнартас
Август К. Цих

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В работе рассматриваются системы линейных разностных уравнений с дискретным
характеристическим множеством. Сформулирован и доказан многомерный вариант основной тео-
ремы линейных разностных уравнений с постоянными коэффициентами.

Ключевые слова: линейные разностные уравнения, характеристическое множество, кратность
корней.

– 132 –


