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1. Introduction and some preliminaries

The theory of time scales was introduced by Stefan Hilger in his PhD thesis [9] in 1988, in
order to unify and generalize continuous and discrete analysis, see [2,6]. Bohner and Guseinov
have introduced the Lebesgue A-integral [6, Chapter 5]. Recent results, by A.Cabada, D.Vivero
in [8], are devoted on fundamental relations between Riemann and Lebesgue A-integrals. In
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2006, R. Agarwal et al. in [1], define and study Sobolev spaces in the sense of A-integrals on
time scales. After such pioneer work, the study of density properties in the Lebesgue spaces and
Sobolev spaces in the sense of the A-derivative on time scales was continued by A.Benaissa et
al. in [3,4]. B.Bendouma et al. in [5] presented a relationship between Riemann and Lebesgue
V-integrals.

The main purpose of this paper is to be investigated some important functional spaces. We
deduct some topological density properties of the considered functional spaces.

The paper is organized as follows. In the next section, we give some auxiliary results needed
to be proved our main results. Our results are represented in Section 3. We study functional
subspaces on the time scales by report Lebesgue spaces in the sense of V-integrals on time scales.
For example, the space of continuous functions C (T, R), the space of ld-continuous functions
C14 (T, R), and so on. In the last section, we present the use of density properties and we present
diagrams that summarizes our main results.

2. Auxiliary results

A time scale is an arbitrary nonempty closed subset of the real numbers. We will denote it
by T. We define the forward and backward jump operators o,0: T — T as follows

o(t)=inf{s € T: s>t} and o(t) =sup{s € T:s < t},

respectively, where supT = inf{), inf T = sup{®. The point ¢ € T is said to be left-dense, if
o(t) = t and t > inf T, left-scattered if p(t) < t, right-dense if o(t) = ¢t and ¢t < sup T, and
right-scattered if o(t) > t. The graininess function p : T — [0, 00) is defined by p (t) = o (t) — ¢
and the backward graininess function v : T — [0, 00) is defined by v (t) =t — o (¢). If T has a
right-scattered infimum m, define Ty, = T — {m}, otherwise, set T, = T. If T has a left-scattered
supremum M, define TF = T — {M}, otherwise, set T* = T.

Definition 2.1 (Nabla derivative [2,6]). Assume f: T — R and let t € Ty. We define

0 (4) —
fv(t): lim f () f(S)’
s—tseT  o(t) —s
provided the limit exists. We call f¥ (t) the nabla derivative of f at t. Moreover, we say that f
is nabla differentiable on Ty, provided f¥ (t) ewists for all t € Ty,. The function f¥ : Ty — R is
then called the (nabla) derivative of f on Tj.

Definition 2.2 (Delta derivative [2,6]). Assume f:T — R and let t € T*. We define

f7 @) = f(s)

s—t,seT o (t) — s

A=

b

provided the limit exists. We call f2 (t) the delta derivative of f at t. Moreover, we say that f
is nabla differentiable on T* provided f (t) ewists for allt € T*. The function f» : Ty — R is
then called the (delta) derivative of f on TF.

Definition 2.3 ([2,6]). The function f: T — R is called

1) ld-continuous provided it is continuous at left-dense points in T and right-sided limits exist
at right-dense points in T. The space of all ld-continuous functions on T will be denoted
by Cld (T, R) or Cld(T>-
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2) rd-continuous provided it is continuous at each right-dense points and has a left-sided limit
at each point. The space of all rd-continuous functions on T will be denoted by Crq4(T,R)
or Crq(T).

Lemma 2.1 ([5,8]). The set of all right-scattered points and the set of all left-scattered points
of T are at most countable.

We recall some notions and results related to the theory of V-measure (respectively A-
measure) and Lebesgue V-integration (respectively A-integration) for an arbitrary bounded time
scale T, where —co < a =inf T < sup T = b < co. For more details we refer the reader to [3,4,8].

Lemma 2.2 ([5,8]). Let A C T. Then the following properties are equivalent

1) Ais a V-measurable,
2) A is a A-measurable,

3) A is Lebesgue measurable.
Notation 2.1. For simplification, we note
R={teT,o() >t} and L={teT, o) <t}

Proposition 2.1 ([5,8]). Let A C T be a Lebesgue measurable set. Then the following properties
hold.

1) Ifa ¢ A, then py (A) = pr (A) + ’E%%A v(s),

2) Ifb¢ A, then pa (A) = pr (4) + G%:MM(S),

3) pv (A) = ur, (A) if and only if a ¢ A and A has no left-scattered points,
4) pua (A) = pur (A) if and only if b ¢ A and A has no right-scattered points.

Theorem 2.1 ([8]). Let A C T be a V-measurable set such that a ¢ A. Let also, f : T — R be
a V-measurable function. Then

/A f () Vit = /A £ ) dt+S;AV(s)f(8)- (1)

Theorem 2.2 ([5]). Let A C T be a A-measurable set such that b ¢ A. Let also, f: T — R be
a A-measurable function. Then

/Af(t)At=/Af(t)dt+ S u(s)£(5)- 2)

SERNA
We state some of their properties.

Definition 2.4 ([3]). Let p € [1,+00). Then, the set LX (T,R) is a Banach spaces together with
the norm defined for every f € LI\ (T,R) as follows

11 = [ 17)Pas < o

Theorem 2.3 ([4]). Let p € [1,00). Then C (T,R) is dense in L} (T,R).
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3. Main results
In this section, assume that T is a bounded time scale with a = supT < co and b = inf T >
—oo. For simplification, we note T, = TN (a,b] and Ty, = TN [a,d).

Definition 3.1. Let p € [1,4+00) and f : T — R be a V-measurable function. We say that
f € LY (T, R) provided

11 = [ 1) Vs < +oc. 3)
Remark 3.1. Let p € [1,+00). Then the spaces L%, (T,R) and L} (T,R) are not even spaces.
Really, let T ={a1,a2,as,a4} be such that a1 < ... < ayg and let f1,fo : T — R be two func-

tions such that fi (t) = (t —a1) ", fo(t) = (t —as)”". Then f; € L% (T,R), f1 ¢ L} (T,R),
fo ¢ L2 (T,R) and f, € L (T,R).

Lemma 3.1. Let p € [1,400), and f: T — R be a V-measurable function. Then f € L%, (T,R)
if and only if f7 € L\ (T,R).

Proof. Let s is left-scattered. Then p (s) is right-scattered and o(p(s)) = s. Hence,

v(s) = s —p(s) = a(p(s)) — p(s) = p(p(s))

and p(£) C R. Take f € LY, (T,R) arbitrarily. By Definition 3.1, Theorem 2.1 and Theorem 2.2,
we have

£, = /Tlf(S)l”dtJer(S)lf(S)l”:

seL

= [P Y ute)re)r.

seL
If s € R, then o (s) € £ and o(o(s)) = s. Therefore R C p(£) and o(£) = R. Consequently
1, = [ 12 OF @+ a7 F = 11
b TER
This completes the proof. O
Corollary 3.1. Let p € [1,00). Then L%, (T,R) is a Banach spaces equipped with the norm (3).

Proof. Tt is clear that L%, (T, R) is a normed space. Let (f.). be a Cauchy sequence in L%, (T, R).

By Lemma 3.1, we deduce that (f7). is a Cauchy sequence in LY (T,R), which is a Banach

space. Then there exists g° € L\ (T,R) such that lirr(l)fg = ¢° in LY (T,R). Hence, lirr(l)f‘S =g
e— e—

in LY, (T,R). This completes the proof. O

Lemma 3.2. Let p € [1,400) and f € Ciq(T). For e > 0, there is a continuous function
fe: T — R such that ||f—f5||L% — 0, as e — 0.

Proof. Let s be right-dense. Then there exist an ¢ > 0 and an element s, € T such that
0 < sc — s < e. Consider the function f. : T — R defined by

= { 1O+ g e seTm

f@, otherwise .

— 49 —



Fatima Zohra Ladrani. .. Density Problem some of the Functional Spaces for Studying. ..

Note that f. € Ca(T). Let t € [s,s.]; and s € T\R. Then

LO-FO] < FEI+FO+176) - f6l |22 <
< GO O+ 1f(s) = fsd)l <
NEVOIESVIOIESVICIESVICHIES
< A flloe-

Set B, = U, [5,5¢]p- By Proposition 2.1, we get
py (B = Y uv(ssedp) =) Alss)+d D, o)<

s€T\R seL seLteLN]s,s.]

< Z €+ Z e? =
seT\R seET\R

= D (e+)<
seT\R

< (e+ ) (b—a).

As a result, we find

1 1 1
1f = fell e, <40 flloc [ua (Bo)]? <4l flleo (e+ €))7 (b—a)r =0, as e—0.
This completes the proof. O

For ty € T, define the generalized polynomials as follows
t
hg (t,to) =1 and h, (t,to) = / hp_1 (7'7 to) VrforneN, teT. (4)
to

Lemma 3.3. Let tg,t € T be such that t > tg. Then, for all n € N, there are positive constants
ay and B, such that

B (t—1t0)" < hy (t,to) < (t—to)" for all t > to. (5)

Proof. For n =1, we have hy(t,tg) =t — to and for ay = 81 = 1, we get (5). Now, assume that
(5) holds for n — 1 for some n € N, n > 2. We will prove (5) for n. From Theorem 2.1, we have

t
ho (t,10) < an,l/ (r—t)" 1 Vr = (6)
to
t
_ an_1/ (r—to)" drtany Y w(n)(r—t)" ' <
to T€[tot]NL
1
< an i P )" forneN, ¢ >t (7)
Moreover, we have
t
hy (t,to) > anl/ (T —t)" 'Vr =
to
t
— B / (r—to) " dr 4By S v (r—to) >
to T€[to t)NL

WV

5’;1 (t —to)" forn € N, t > t,.
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By the last inequality and by (7), we get that (5) holds for n. Hence, we conclude that (5) holds
for any n € N. This completes the proof. O

Lemma 3.4. Let p € [1,+00) and f : T — R be V-differentiable such that fV € Cq(T). For any
e > 0, there is a function f- : T — R that is V-differentiable and fY € C(T), ||f — faHLg -0

andvaffsVHL,, — 0, ase — 0.
v

Proof. Let s be right-dense. Then for any ¢ > 0 there exists s € T such that 0 < s, — s < e.
Consider the function Q. (s,.) : [s, s¢] = R defined by

Qe (5,t) = f(8) + £V (5) (t — 8) + Acha (t,58) + vohs (t, 5)
and the function f. : T — R given by

£ () = { Q- (s,t), tels sy, seT\R, o

f@), otherwise.

It is clear that the function f. is continuous at all points ¢t € R\ {s. : s € T\R}.We choose the
constants A, 7. such that 1im+f (t) = lim Q: (s,t). We find

t—s2 t—s2

Achz (e, 8) + 7ehs (se,s) = f(se) — f(s) — fY (s) ha (s, 5). 9)
Moreover, f. is V-differentiable at all points t € R\ {s. : s € T\R} and fY is given by

7 (1) = FY(5) + Achi (8,9) +7cha (t,s), €€ [s,s)p, s € T\R,
) - fY (t), otherwise.

Note that £V is continuous at all points t € R\ {s. : s € T\R}. If 1im+fv (t) = lim QY (s,t),
t

—sg t—sc
we find
Aehi (S, 8) + Yeha (e, 8) = v (se) — v (s). (10)
By (9) and (10), we have

HREERCEN
Ve 18,8 PACEFE

By Lemma 3.3, we obtain
el < 20 oo + 1771 amd el < (e + 167 ) (11)
for some positive constant . Thus,
e = FOI<E=C[Ifllo + /7] and 55 (0) =5V (0)] <&
for some positive constant C. Then
If = fellpe < €lna(B)]F =0, as €0,

and )
va_fevHL% <§[MA (BE)}E —0, as e—0,

where B; is defined as in the proof of Lemma 3.2. This completes the proof. O
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Lemma 3.5. Let f : T — R be continuous. For any € > 0, there is a function f. : T — R that
is V-differentiable and Y Ciq(T), |f — f-|l. — 0, as e — 0.

Proof. Define the function g : T — R as follows

ST )(E=s), te(ols),s] s €L
9(t) = f@), otherwise .

Then g € C(T). Since C! (T) is dense in C (T), for ¢ > 0, we have B. (g) N C* (T) # 0, where
B:(9) ={h € C(T):|lg— h|l, <&} Then thereis g. € C* (T) such that [g- — g|| . < &. Now,
consider the function f. : T — R, defined by f. = g.. Then f. is V-differentiable on Ty and f~
is given by

9. (1), LET\L,

fev (t): 96(9(8)_96(3)
v (s) ’

We have that f. € Cjy (T,R) and || fo = fll, < llgc — gl <& This completes the proof. O

~—

te L.

Lemma 3.6. Let f: T — R be continuous. For any € > 0, there is a function f. : T — R that
is V-differentiable and fY € Cq(T) and || f — f5||L% —0, ase = 0.

Proof. Let f: T — R be continuous and ¢ > 0. From Lemma 3.5, it follows that there is f. €
Ciq (T,R) such that || f — f.|| ., — 0, as € = 0. Hence, || f — f€||Lpv <(b—-a)l|lf—fell, =0, as
€ — 0. This completes the proof. O

Remark 3.2. Note that C (T,R),Crq (T,R) and Ciq (T,R) are Banach spaces together with the
norm defined by

[flloe = sup{[f (®)| : t € T}.

Lemma 3.7. Let p € [1,+00), f : T — R is V-differentiable and fV € Ci4(T). For any
e > 0 there is a function f. : T — R that is V-differentiable and fY is continuous such that
| f = felloo =0, ase = 0.

Proof. Consider the function f. : T — R given by (8). By the proof of Lemma 7, we find

I1fe = Flloo < Ae[I1Flloe + 11£V ]I
for some positive constant A. This completes the proof. O

The next result is a generalization of the theoretical density(see [7, Theorem 4.3]).
Theorem 3.1. Let p € [1,00). Then Ciq (T,R) is dense in L% (T,R).

Proof. Let f € L%, (T,R). By Lemma 3.1, we have f7 € L (T,R). Then there exists a sequence
(92),, € C(T,R) that converges to f in LX (T,R). Set (fn),, = (9n), . We have (f,), C
C14 (T, R). Therefore

1 = Fallte = 1157~ 912, -

p =
v

Hence, (fn),, converges to f in L%, (T,R). This completes the proof. O
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We denote by

CL(T,R)={f:T—R:suchas f¥ € C(Ty,R)},
CH(T,R)={f:T—R:suchas f¥ € Cpq (Ti,R)}.

The following result is a consequence of Theorem 3.1.
Theorem 3.2. Let p € [1,00). Then C% (T,R) is dense in LY, (T,R).

Proof. Let f € LY (T,R) and € > 0. From Theorem 3.1, we have B: (f) N Ciq (T, R) # 0,
where B (f) := {g e LY (T,R) : |lg — f||L% < 6}. Then there is f.1 € Ciq (T,R) such that

3
e =y < 3

€ o
| fe2 — f5,1||L% <7 By Lemma 3.6, there exists is f. 3 € C, (T,R) such that ||f. 2 — f€73||L% <

Z. From Lemma 3.4, there exists is f. 4 € C! (T, R) so that ||f. 4 — f5,3||L% < Z Therefore, we
find || fe.a = fllpp < € which implies that Be (f) N C% (T,R) # 0. Then Cg (T,R) is dense in
L% (T,R). This completes the proof. O

By Lemma 3.2, we conclude that there is f.2 € C(T,R) such that

Remark 3.3. Let E,F,G be three spaces such that E C F C G and (G, T) be a topological
space. If E is dense in G, then F is dense in G.

By the previous result, we deduce the following corollary.

Corollary 3.2. Let p € [1,00). Then the spaces C}, (T,R),C (T,R) and C.q(T,R) are dense
in L2, (T,R).

Proof. Let p € [1,00). We have C& (T,R) C C} (T,R) C C(T,R) C Ciq(T,R). From Theo-
rem 3.1 and Remark 3.3, we conclude C}, (T,R), C (T,R) and C,4 (T,R) are dense in L%, (T, R).
This completes the proof. O

The next result shows that the spaces C}, (T,R) and C& (T, R) are dense in C (T, R).
Theorem 3.3. The spaces C; (T, R) and C%, (T,R) are dense C (T,R).

Proof. Let f € C(T,R) and ¢ > 0. By Lemma 3.5, we have Bz (f) N C} (T,R) # 0, where
B (f)={9€ C(T,R): ||f — gl <e} Then thereis g. € C}; (T,R) such that ||g- — f| ., < %

By Lemma 3.7, we conclude that there is h. € C! (T, R) such that ||h. — g5||L% < g Therefore

[lhe — f||L% < ¢ and hence, we conclude that B. (f) N Cg (T,R) # 0. This completes the
proof. O

4. Conclusion and application

Use of density properties: To show some results concerning a given function f, it is some-
times useful to look at the problem with hindsight by placing yourself in a suitable functional
spaces and using density properties of certain function subclasses. Thus, we are led to demon-
strate the desired property for simpler functions. We give an application that can be attacked
in the following way.
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Lemma 4.1. If f € L (T, R) is such that

/T FOeO)Vt=0, forpeCa(TR), (12)

then f(t) =0, V—a.e in T.
Proof. Let f € Ciq (T,R) be such that [ f(t) ¢ (¢t) Vi = 0. For ¢ € Cjq (T,R), take ¢ = f. We
T
obtain ||f||i2v(11',R) =[If (t)]? Vt = 0, which implies f (¢) = 0, V—a.e in T. So, the property (12)
T

is verified for f € Cj4 (T, R). As Ci4 (T, R) is dense in Ly, (T, R), if f € L, (T,R) and £ > 0, then
there is f. € C1q (T,R) such that lin(l)fg = fin LY (T,R) and [ f- (¢) ¢ (t) VE = 0, as € — 0.
E— T

This completes the proof. O

We give the results found in the paper in the following diagram density between some of the
functional spaces on time scales.

Clld (T, R) — Cld (T, R)
A N\ \:

Ca(T,R) — IE(T,R) — LL(T,R) (13)
T e T

CS(T,R) — Crq(T,R).
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IIpobsiema TIJIOTHOCTH HEKOTOPBIX (PYHKIIMOHAJIBHBIX
ITPOCTPAHCTB JIJII N3yYeHNUsl JUHAMUIECKNX ypPaBHEHUA
Ha BPEeMEHHBIX MacIITabax

daruma 3oxpa Jlagpanu

Kadenpa maremaruku Broiciieit memarorndeckoii mkosisl 1. Opan
(9HCO) Opan, Amxup

Amun Benaucca Illepud

Opanckuit yauBepcurer Hayku u Texaosnoruii "Moxamen—Bynad"

(YCTAMB) Opan, Amxup

Abneppaxman Bennanu

Jlaboparopust aHajM3a U yIPaBJIEHUS yPABHEHUSIMU C YACTHBIMU IIPOU3BOIHBIMHI
Yuusepcurerckuit ieHTp At Temyrenr,

Aita Temyment, Amkup

Xasen 3eHHUP

Komnenx vayk u uckyccrs, Anb-Pac, Yausepcurer Kacuma
Kopoaescrso Caynosckast ApaBust

Caetyinn I'eopruen

DakyJbTeT MATEMATUKU U UHMOPMATAKI

Codmiickuit yHUBEPCUTET

Codus, Bonrapus

Awnsoranms. B 510it ctarbe MBI n3ydYaeM HEKOTOPBIE CBONCTBA, TOMOJIOTMYECKON IIJIOTHOCTA HEKOTOPBIX
(bYHKIIMOHAJIBHBIX TPOCTPAHCTB Ha BPEMEHHBIX MacIITabaX W WX OTHOIIEHMS ¢ IpocTpaHcTBamu Jlebera
B CMBIC/IE V-UHTErpajoB HA BPEMEHHBIX MaciTabax. Hamm pe3ysibrarhl CHAOKEHBI TPUIOKEHUSIMH.

KuroueBrnle cioBa: mkKaJja BPEMEHH, INIOTHOCTh, MePa.
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