Remarks on: "Generalized Contractions to Coupled Fixed Point Theorems in Partially Ordered Metric Spaces"

Nicola Fabiano*
"Vinča" Institute of Nuclear Sciences National Institute of the Republic of Serbia
University of Belgrade
Belgrade, Serbia

Received 24.05.2021, received in revised form 29.06.2021, accepted 20.10.2021
Abstract. Remarks on the paper [1] are given and corrected proofs are presented. Their results remain correct.
Keywords: partially ordered metric spaces, rational contractions, coupled fixed point, monotone property.
Citation: N. Fabiano, Remarks on: "Generalized Contractions to Coupled Fixed Point Theorems in Partially Ordered Metric Spaces", J. Sib. Fed. Univ. Math. Phys., 2022, 15(1), 13-16.
DOI: 10.17516/1997-1397-2022-15-1-13-16.

1. The problem

Recently the paper [1] gave some interesting results for fixed point theorems of a self mapping obeying some rational type contractions. However even if their results are correct, their proofs suffered a fundamental flaw that we will address here.

The condition for the self mapping $f: X \times X \rightarrow X$ found in [1] formula (1) has the following form:

$$
\begin{align*}
& d(f(x, y), f(\mu, \nu)) \leqslant \alpha \frac{d(x, f(x, y))[1+d(\mu, f(\mu, \nu))]}{1+d(x, \mu)}+\beta \frac{d(x, f(x, y)) d(\mu, f(\mu, \nu))}{d(x, \mu)}+ \\
& \quad+\gamma[d(x, f(x, y))+d(\mu, f(\mu, \nu))]+\delta[d(x, f(\mu, \nu))+d(\mu, f(x, y))]+\lambda d(x, \mu) \tag{1}
\end{align*}
$$

for all $x, y, \mu, \nu \in X$ with $x \geqslant \mu$ and $y \leqslant \nu$. Observing the term proportional to β in (1) one sees that whenever $x=\mu$ we have a division by zero, which has no meaning. This fact spoils the proofs of theorems present in [1].

In order to correct the problem, instead of the term of (1) proportional to β we will use

$$
\begin{equation*}
\beta \frac{d(x, f(x, y)) d(\mu, f(\mu, \nu))}{1+d(x, f(x, y))} \tag{2}
\end{equation*}
$$

in analogy to the work [2] that among other results corrects a similar problem. The inequality written in this new manner avoids divisions by zero when $x=\mu$.

We will now proceed rewriting parts of [1] in order to give correct proofs of theorems present in there.

[^0]
2. Main results

Let us rewrite Theorem 1 of [1]. We have

$$
\begin{align*}
& d(f(x, y), f(\mu, \nu)) \leqslant \alpha \frac{d(x, f(x, y))[1+d(\mu, f(\mu, \nu))]}{1+d(x, \mu)}+\beta \frac{d(x, f(x, y)) d(\mu, f(\mu, \nu))}{1+d(x, f(x, y))}+ \\
& \quad+\gamma[d(x, f(x, y))+d(\mu, f(\mu, \nu))]+\delta[d(x, f(\mu, \nu))+d(\mu, f(x, y))]+\lambda d(x, \mu) \tag{3}
\end{align*}
$$

for all $x, y, \mu, \nu \in X$ with $x \geqslant \mu$ and $y \leqslant \nu$ with $\alpha, \beta, \gamma, \delta, \lambda \in[0,1)$ with

$$
\begin{equation*}
\frac{\beta+\gamma+\delta+\lambda}{1-\alpha-\delta-\gamma}<1 \tag{4}
\end{equation*}
$$

The sequences are

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}, y_{n}\right) \text { and } y_{n+1}=f\left(y_{n}, x_{n}\right) \text { for all } n \geqslant 0 \tag{5}
\end{equation*}
$$

Following [1] we know that $x_{n}<x_{n+1}$ and $y_{n}>y_{n+1}$, and we get

$$
\begin{align*}
& d\left(x_{n+1}, x_{n}\right)=d\left(f\left(x_{n}, y_{n}\right), f\left(x_{n-1}, y_{n-1}\right)\right) \leqslant \\
& \leqslant \alpha \frac{d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right)\left[1+d\left(x_{n-1}, f\left(x_{n-1}, y_{n-1}\right)\right)\right]}{1+d\left(x_{n}, x_{n-1}\right)}+ \\
& +\beta \frac{d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right) d\left(x_{n-1}, f\left(x_{n-1}, y_{n-1}\right)\right)}{1+d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right)}+ \\
& + \\
& \gamma\left[d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right)+d\left(x_{n-1}, f\left(x_{n-1}, y_{n-1}\right)\right)\right]+ \tag{6}\\
& \\
& \quad+\delta\left[d\left(x_{n}, f\left(x_{n-1}, y_{n-1}\right)\right)+d\left(x_{n-1}, f\left(x_{n}, y_{n}\right)\right)\right]+\lambda d\left(x_{n}, x_{n-1}\right)
\end{align*}
$$

it implies that

$$
\begin{align*}
d\left(x_{n+1}, x_{n}\right) & \leqslant \alpha \frac{d\left(x_{n}, x_{n+1}\right)\left[1+d\left(x_{n-1}, x_{n}\right)\right]}{1+d\left(x_{n}, x_{n-1}\right)}+\beta \frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n-1}, x_{n}\right)}{1+d\left(x_{n}, x_{n+1}\right)}+ \\
+ & \gamma\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)\right]+\delta\left[d\left(x_{n}, x_{n}\right)+d\left(x_{n-1}, x_{n+1}\right)\right]+\lambda d\left(x_{n}, x_{n-1}\right) . \tag{7}
\end{align*}
$$

Using the triangular inequality, $d\left(x_{n-1}, x_{n+1}\right) \leqslant d\left(x_{n-1}, d_{n}\right)+d\left(x_{n}, x_{n+1}\right)$, and solving for $d\left(x_{n+1}, x_{n}\right)$ we obtain

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right) \leqslant\left(\frac{\beta+\gamma+\delta+\lambda}{1-\alpha-\gamma-\delta}\right) d\left(x_{n-1}, x_{n}\right) \tag{8}
\end{equation*}
$$

Observe the difference with equation (9) of [1], in our case the β is at the numerator. Imposing the condition (4) we end up with a contraction, see [1] page 495.

For the last part of the proof, we have

$$
\begin{align*}
& d\left(x_{n+1}, z_{n+1}\right)=d\left(f\left(x_{n}, y_{n}\right), f\left(z_{n}, y_{n}\right)\right) \leqslant \alpha \frac{d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right)\left(1+d\left(z_{n}, f\left(z_{n}, y_{n}\right)\right)\right.}{1+d\left(x_{n}, z_{n}\right)}+ \\
& +\beta \frac{d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right) d\left(z_{n}, f\left(z_{n}, y_{n}\right)\right)}{1+d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right)}+\gamma\left[d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right)+d\left(z_{n}, f\left(z_{n}, y_{n}\right)\right)\right]+ \\
& \quad+\delta\left[d\left(x_{n}, f\left(z_{n}, y_{n}\right)\right)+d\left(z_{n}, f\left(x_{n}, y_{n}\right)\right)\right]+\lambda d\left(x_{n}, z_{n}\right) . \tag{9}
\end{align*}
$$

In the limit $n \rightarrow+\infty$ we get

$$
\begin{equation*}
d(x, z) \leqslant(2 \delta+\lambda) d(x, z) \tag{10}
\end{equation*}
$$

in complete analogy to [1], as in the above limit the term of (3) proportional to β goes to zero anyway. This completes the proof of Theorem 1.
Theorem 2. According to the bound given in (3), the inequality of Theorem 2 of [1] becomes

$$
\begin{align*}
& d\left(x, u_{n+1}\right)= d\left(f(x, y), f\left(u_{n}, v_{n}\right)\right) \leqslant \alpha \frac{d(x, f(x, y))\left[1+d\left(u_{n}, f\left(u_{n}, v_{n}\right)\right)\right]}{1+d\left(x, u_{n}\right)}+ \\
&+\beta \frac{d(x, f(x, y)) d\left(u_{n}, f\left(u_{n}, v_{n}\right)\right)}{1+d(x, f(x, y))}+\gamma\left[d(x, f(x, y))+d\left(u_{n}, f\left(u_{n}, v_{n}\right)\right)\right]+ \\
&+\delta\left[d\left(x, f\left(u_{n}, v_{n}\right)\right)+d\left(u_{n}, f(x, y)\right)\right]+\lambda d\left(x, u_{n}\right) \tag{11}
\end{align*}
$$

leading to

$$
\begin{equation*}
d\left(x, u_{n+1}\right) \leqslant\left(\frac{\gamma+\delta+\lambda}{1-\gamma-\delta}\right) d\left(x, u_{n}\right) \tag{12}
\end{equation*}
$$

in complete analogy to [1], as $d(x, f(x, y))=d(x, x)=0$ independently from the vaules of α and β. The rest of the proof is the same.
Theorem 3. Like for Theorem 2, from (3) we have

$$
\begin{align*}
& d\left(x_{n+1}, y_{n+1}\right)=d\left(f\left(x_{n}, y_{n}\right), f\left(y_{n}, x_{n}\right)\right) \leqslant \alpha \frac{d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right)\left[1+d\left(y_{n}, f\left(y_{n}, x_{n}\right)\right)\right]}{1+d\left(x_{n}, y_{n}\right)}+ \\
& +\beta \frac{d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right) d\left(y_{n}, f\left(y_{n}, x_{n}\right)\right)}{1+d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right)}+\gamma\left[d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right)+d\left(y_{n}, f\left(y_{n}, x_{n}\right)\right)\right]+ \\
& +\delta\left[d\left(x_{n}, f\left(y_{n}, x_{n}\right)\right)+d\left(y_{n}, f\left(x_{n}, y_{n}\right)\right)\right]+\lambda d\left(x_{n}, y_{n}\right) \tag{13}
\end{align*}
$$

thus obtaining in the limit $n \rightarrow+\infty$

$$
\begin{equation*}
d(x, y) \leqslant(2 \lambda+\delta) d(x, y) \tag{14}
\end{equation*}
$$

ending with a contradiction as $2 \delta+\lambda<1$. The rest of the proof is the same.

Remarks

1. $\alpha=\gamma=\delta=0$ Čirić et. al [3]: inapplicable, same problem of division by 0 of (1).
2. $\alpha=0$ Chandok et al. [4]: inapplicable, same problem of division by 0 of (1).
3. $\alpha=\beta=\gamma=\delta=0$ Banach [5]: no variations, remains the same for $\lambda<1$.
4. $\alpha=\beta=\delta=\lambda=0$ Kannan [6]: no variations, remains the same for $2 \gamma<1$.
5. $\alpha=\beta=\gamma=\lambda=0$ Chatterjee [7]: no variations, remains the same for $2 \delta<1$.
6. $\alpha=\gamma=0$ Singh and Chatterjee [8]: inapplicable, same problem of division by 0 of (1).

3. Applications

Theorem 4. The condition of [1] becomes:

$$
\begin{gather*}
\int_{0}^{d(f(x, y), f(\mu, \nu))} \varphi(t) d t \leqslant \alpha \int_{0}^{\frac{d(x, f(x, y))[1+d(\mu, f(\mu, \nu))]}{1+d(x, \mu)}} \varphi(t) d t+\beta \int_{0}^{\frac{d(x, f(x, y)) d(\mu, f(\mu, \nu))}{1+d(x, f(x, y))}} \varphi(t) d t+ \\
+\gamma \int_{0}^{d(x, f(x, y))+d(\mu, f(\mu, \nu))} \varphi(t) d t+\delta \int_{0}^{d(x, f(\mu, \nu))+d(\mu, f(x, y))} \varphi(t) d t+ \\
 \tag{15}\\
+\lambda \int_{0}^{d(x, \mu)} \varphi(t) d t .
\end{gather*}
$$

Theorem 5. The condition of [1] becomes:

$$
\begin{array}{r}
\int_{0}^{d(f(x, y), f(\mu, \nu))} \varphi(t) d t \leqslant \alpha \int_{0}^{\frac{d(x, f(x, y))[1+d(\mu, f(\mu, \nu))]}{1+d(x, \mu)}} \varphi(t) d t+\beta \int_{0}^{\frac{d(x, f(x, y) d(\mu, f(\mu, \nu))}{1+d(x, f(x, y))}} \varphi(t) d t+ \\
 \tag{16}\\
+\lambda \int_{0}^{d(x, \mu)} \varphi(t) d t
\end{array}
$$

Theorem 6, Theorem 7 and Theorem 8: as the conditions of those theorems do not depend on the parameter β, there are no variations.

For further references, consult [1] and references therein.

References

[1] N.Seshagiri Rao, K.Kalyani, Generalized Contractions to Coupled Fixed Point Theorems in Partially Ordered Metric Spaces, Journal of Siberian Federal University. Mathematics \& Physics 2020, 13, no. 4, 492-502. DOI: 10.17516/1997-1397-2020-13-4-492-502
[2] N.Fabiano, T.Došenović, D.Rakić, S.Radenović, Some New Results on s, q-Dass-GuptaJaggi Type Contractive Mappings in b-Metric-Like Spaces, Filomat, 34(2020), no. 12, 4015-4026. DOI: 10.2298/FIL2012015F
[3] L.Čirić, M.O.Olatinwo, D.Gopal, G.Akinbo, Coupled point theorems for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Adv. Fixed Point Theory, 2(2012), 1-8.
[4] S.Chandok, T.D.Narang, M.A.Taoudi, Some coupled fixed point theorems for mappings satisfying a generalized contractive condition of rational type, Palestine Journal of Mathematics, 4(2015), no. 2, 360-366.
[5] S.Banach, Sur les operations dans les ensembles abstraits et leur application aux equations untegrales, Fund. Math., 3(1922), 133-181.
[6] R.Kannan, Some results on fixed points-II, Am. Math. Mon., 76(1969), 71-76.
[7] S.K.Chatterjee, Fixed point theorems, C.R. Acad. Bulgara Sci., 25(1972), 727-730.
[8] M.R.Singh, A.K.Chatterjee, Fixed point theorems, Commun. Fac. Sci. Univ. Ank. Series A1, 37(1988), 1-4.

Замечания по статье: "Обобщенные сжатия теорем о связанных неподвижных точках в частично упорядоченных метрических пространствах"

Никола Фабиано

Институт ядерных наук "Виньца"
Национальный институт Республики Сербия
Белградский университет
Белград, Сербия

[^1]
[^0]: *nicola.fabiano@gmail.com https://orcid.org/0000-0003-1645-2071
 (C) Siberian Federal University. All rights reserved

[^1]: Аннотация. Даны примечания к статье [1] и приведены исправленные доказательства. Ее результаты остаются верными.
 Ключевые слова: частично упорядоченные метрические пространства, рациональные стягивания, связанная неподвижная точка, монотонность.

