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Abstract. The paper gives insights into modeling and well-posedness analysis driven by cyclic behavior
of particular rate-independent constitutive equations based on the framework of hypoplasticity and on
the elastoplastic concept with nonlinear kinematic hardening. Compared to the classical concept of
elastoplasticity, in hypoplasticity there is no need to decompose the deformation into elastic and plastic
parts. The two different types of nonlinear approaches show some similarities in the structure of the
constitutive relations, which are relevant for describing irreversible material properties. These models
exhibit unlimited ratchetting under cyclic loading. In numerical simulation it will be demonstrated, how
a shakedown behavior under cyclic loading can be achieved with a slightly enhanced simple hypoplastic
equations proposed by Bauer.
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Introduction

Classical elastoplasticity models based on the concept of yield surface, see, e. g., [17, 18,
26, 28, 29, 31, 32], have nice mathematical properties and are therefore often used in solving
practical problems involving inelastic rate-independent materials. In particular, when coupling
the elastoplastic constitutive law with momentum balance equations in continuum mechanics,
the monotonicity and continuity of the constitutive operator of elastoplasticity makes it possible
to use conventional methods for constructing the solution.

However, as observed in many experiments, the strain-stress law in real materials exhibits
ratchetting, that is, an irreversible progressive shift of the strain-stress path along the strain axis,
which cannot be explained within classical elastoplasticity theory. Ratchetting is, however, still a
rate-independent phenomenon in contrast to creep, which is an effect of rate-dependent viscosity.

An incrementally non-linear constitutive equation of the rate type within the framework of
hypoplasticity was introduced by Kolymbas [22]. Based on the general concept of hypoplasticity,
particular versions for modeling the behavior of soil and broken rockfill materials have been
proposed in the literature on geomechanics. In the present paper, a simplified version of the
hypoplastic model originally developed for cohesionless granular materials proposed by [3] and
[19] will be considered. For other variational approaches to modelling of granular and plastic
media we cite [1, 21,34].

Hypoplasticity offers a natural tool for modeling ratchetting. On the other hand, one draw-
back of hypoplasticity is the lack of continuity with respect to the sup-norm. In other words,
small inaccuracies of the input data may produce after a large number of cycles large inaccuracies
at the output. This is the reason why during the last decades, many modifications and refine-
ments have been developed in order to combine the ideas of hypoplasticity and elastoplasticity
to exploit the advantages of both models, for example [2, 9, 14–16,30].

The structure of the present contribution is the following one. In Section 1. the classical
elastoplastic concept is introduced, and a modification of hardening equations due to Armstrong–
Frederick, Bower, and Chaboche is provided with respect to local and global well-posedness. In
Section 2. mathematical modeling of hypoplastic constitutive relations is outlined and supported
by existence theorems for adopted simplifications by the rate and the Cauchy problems. In
particular, further we rely on simplified hypoplastic equations proposed by Bauer. Finally, in
Section 3. we present an analytical example for coaxial and homogeneous deformation under
isotopic stress cycles. We present our findings during numerical simulation of the shakedown
behavior that overcome the drawback of unlimited ratchetting phenomenon.

1. Kinematic hardening models

The classical Prandtl–Reuss theory of elastoplasticity (e.g., [26, 32]) consists in assuming
additive decomposition of the strain tensor ε = (εij)

3
i,j=1 into the elastic component εe and

plastic component εp, that is,
ε = εe + εp. (1)

Melan [28] and Prager [31] extended the theory by assuming that also the stress tensor σ =
= (σij)

3
i,j=1 is decomposed into a plastic component σp and the so-called backstress σb in the

form
σ = σp + σb. (2)

A linear elasticity law is assumed between εe and σ. More specifically, a symmetric positive
definite tensor A = (Aijkl)

3
i,j,k,l=1 is given such that

σ = Aεe. (3)
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The values of the plastic stress σp are restricted to a domain of admissible stresses Z ⊂ R3×3
sym

in the space R3×3
sym of symmetric 3× 3 tensors. As soon as σp reaches the boundary of Z, plastic

yielding occurs. Here, we assume the von Mises yield criterion stated in terms of the deviator
(σp)∗ = σp − tr(σp)I/3 of the plastic strain tensor

(σp)∗ : σp 6 r, (4)

where the double-dot implies the scalar product of second-order tensors, I is the identity tensor,
and r > 0 is given constant. In other words, Z is a cylinder in the space of symmetric 3 × 3
tensors along the I-axis.

In variational form, the yield condition is stated as

ε̇p : (σp − z) > 0 ∀z ∈ Z. (5)

Geometrically, it means that the plastic strain rate ε̇p points in the outward normal direction to
the boundary of Z if σp is on the boundary, and vanishes if σp is in the interior of Z. This is
also called the normality rule in the literature.

The constitutive equation for the backstress σb in (2) accounts for kinematic hardening. The
Melan–Prager setting consists in choosing a linear relation between σb and εp in the form

σb = Cεp, (6)

where the hardening parameter C > 0 is a constant, while C = 0 would correspond to the
original Prandtl–Reuss model. It is well known (see, e.g., [17, 18, 26, 29]) that for C > 0, the
system of equations (1)–(6) defines well-posed constitutive operators in both the stress-controlled
case ε = FMP(σ) and strain-controlled case σ = GMP(ε) with operators FMP and GMP acting
in the space of absolutely continuous functions with values in R3×3

sym. The subscript “MP” stands
for Melan–Prager, indeed.

The ratchetting effect produced by the linear relation (6) is very weak. This is why Armstrong
and Frederick proposed in [2] a nonlinear “hypoplastic” modification of the hardening equation
(6) in the form

σ̇b = γ(Rε̇p − σb∥ε̇p∥), (7)

where γ > 0, R > 0 are given constants, and ∥ · ∥ is the Frobenius norm

∥ε̇p∥ =
(
ε̇p : ε̇p

)1/2
.

In order to improve the description of ratchetting effects which occur during the elastoplastic
deformation of railway rails, Bower in [9] further refined the Armstrong–Frederick model by
introducing a second backstress component σ̇β satisfying the constitutive equations

σ̇b = γ(Rε̇p − (σb − σβ)∥ε̇p∥), (8)

σ̇β = c(σb − σβ)∥ε̇p∥, (9)

where c > 0 is an additional constant.
Another modification of the Armstrong–Frederick kinematic hardening law (7) was proposed

by Chaboche in a series of papers [14–16], and consists in representing the backstress σb as a
sum

σb =
∑
k∈J

σb
k (10)

of partial backstresses σb
k over an index set J , each of them satisfying the Armstrong–Frederick

kinematic hardening condition

σ̇b
k = γ(k)

(
R(k)ε̇p − σb

k∥ε̇p∥
)

(11)
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for k ∈ J with constants γ(k) > 0, R(k) > 0.
All the stress and strain controlled constitutive operators FAF,GAF,FB,GB,FCh,GCh gener-

ated by the Armstrong–Frederick, Bower, and Chaboche models can be shown to be well-posed
in spaces W 1,1(0, T ;R3×3

sym) of tensor-valued absolutely continuous functions, as well as in the
space CBV (0, T ;R3×3

sym) of continuous functions with bounded variation. The following results
are proved in [10–12].

Proposition 1 (Local well-posedness). If the initial conditions satisfy a natural compatibility
condition, then the operator FAF of the stress controlled Armstrong–Frederick model is well de-
fined on the domain

DFAF = {σ ∈ CBV (0, T ;R3×3
sym) : ∥(σ)∗∥∞ < R+ r}, (12)

and it is continuous with respect to the sup-norm and Lipschitz continuous with respect to the
W 1,1-norm on every subset of input functions with uniformly bounded variation.

Proposition 2 (Global well-posedness). Assuming that the initial data satisfy natural
compatibility conditions and under suitable technical hypotheses, the constitutive operators
FB,GB,FCh,GCh, GAF for the stress and strain controlled Bower and Chaboche models as well
as for the strain controlled Armstrong–Frederick model are well defined and possess the continuity
properties as in Proposition 1 without any restriction on the size of the input functions.

2. Initial boundary value problems in hypoplasticity

In the space R3×3
sym of second-order symmetric 3 × 3 tensors, the nonlinear theory of rate-

independent materials is constituted by response between the Cauchy stress σ = (σij)
3
i,j=1, its

objective rate
◦
σ = (

◦
σij)

3
i,j=1, and the strain rate ε̇ = (ε̇ij)

3
i,j=1 given in the general form of an

implicit function (see [33]):
f(σ,

◦
σ, ε̇) = 0. (13)

For the function f positively homogeneous of degree one with respect to rates:

f(σ, λ
◦
σ, λε̇) = λf(σ,

◦
σ, ε̇) for λ > 0, (14)

the constitutive law (13) is rate-independent. The special cases of (13) satisfying (14) is the
hypoelastic law (that cannot be derived from a strain energy, see [35]):

◦
σ − L(σ) : ε̇ = 0, L = (Lijkl)

3
i,j,k,l=1, (15)

which is linear with respect to both stress and strain rates. Here the colon stands for the double
contraction of the fourth-order tensor L(σ) with the second-order tensor ε̇. To extend (15) for
an inelastic behavior such that f(σ,

◦
σ,−ε̇) ̸= −f(σ,

◦
σ, ε̇), the nonlinearity of function f in ε̇ can,

for instance, be expressed as
◦
σ − L(σ) : ε̇−N(σ)∥ε̇∥ = 0, (16)

where the tensor N = (Nij)
3
i,j=1, the Frobenius norm ∥ε̇∥2 = tr(ε̇2), and tr( · ) stands for the

trace. Function (16) also satisfies (14) and represents the concept of hypoplasticity introduces
by Kolymbas [22]. As a consequence of the nonlinearity in the strain rate function (16) is apt
to model hysteresis behavior. Particular constitutive relations based on (16) were developed
for describing the mechanical behavior of granular materials and soils in geomechanics (e.g.
[8, 20,23,27]).

– 759 –



Victor A. Kovtunenko, Erich Bauer . . . Cyclic Behavior of Simple Models in Hypoplasticity . . .

The constitutive equation (16) is completed with the equilibrium equation

−divσ = F (17)

under the given body force F ∈ R3, and the symmetric part of the velocity gradient

ε̇ =
1

2

(
∇v +∇v⊤) (18)

with the velocity vector v ∈ R3. The system (16)–(18) for unknown σ and v is supported
by usual boundary and initial conditions. An appropriate objective stress rate for the present
hypoplastic constitutive equation is discussed in [4]. In the following we restrict ourselves to the
time derivative, e.g. for purely coaxial deformations, which implies that

◦
σ = σ̇. (19)

Moreover, for cohesionless granular materials only negative principal stresses (which are three
eigenvalues of the stress tensor) are relevant:

σ1 < 0, σ2 < 0, σ3 < 0, (20)

wherefrom it follows that the first invariant of the stress tensor is negative

tr(σ) = σ1 + σ2 + σ3 < 0. (21)

In general, mathematical analysis of highly nonlinear governing relations (16)–(20) is fully open
and relies on investigation of simplified models as follows.

In one approach, a suitable stress field σ satisfying (17) and (20) is prescribed a-priori.
Formally, replacing the objective derivative by the time derivative (19), we differentiate the
equilibrium equation (17) with respect to time and substitute (16) there. As the result, it follows
the rate problem for unknown velocity v:

−div
(
L(σ) : ε̇+N(σ)∥ε̇∥

)
= Ḟ (22)

by means of the strain velocity from (18) that is reminded here for completeness

ε̇ =
1

2

(
∇v +∇v⊤), (23)

and supported by usual boundary conditions of Dirichlet and Neumann type. The rate problem
(22) is well-known as the CloE model (see [13]). Applying the Browder–Minty existence theorem,
we can straightforwardly formulate the following result.

Proposition 3 (Well-posedness for rate problem). Let the operator of (22), (23)

v 7→ −div
(
L(σ) :

1

2

(
∇v +∇v⊤)+N(σ)

1

2

∥∥∇v +∇v⊤∥∥) for v ∈ H1
loc(R3×3

sym) (24)

be bounded, continuous, coercive, and monotone for some fixed σ. Then the operator is surjective,
and the rate problem has at least one solution.

In another approach, a suitable strain rate ε̇ satisfying (18) is prescribed a-priori. In this case,
considering the constitutive equation (16) in isolation, we get the Cauchy problem for unknown
stress σ ∈ R3×3

sym:
◦
σ = L(σ) : ε̇+N(σ)∥ε̇∥ (25)
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under the initial condition
σ(0) = σ0 (26)

and subject to the constraint of negative principal stresses (20). Applying the simplifying as-
sumption (19), the existence of solution to the corresponding nonlinear ODE system

dσ

dt
= L(σ) : ε̇+N(σ)∥ε̇∥ (27)

follows from the Cauchy–Lipschitz theorem, which provides the following result.

Proposition 4 (Global well-posedness for Cauchy problem). For fixed ε̇ let the operator

σ 7→ L(σ) : ε̇+N(σ)∥ε̇∥ for σ ∈ R3×3
sym (28)

be Lipschitz-continuous. Then the Cauchy problem (26), (27) has a global in time solution σ(t).

However, Proposition 4 does not guarantee the negativeness of principal stresses (20).
For example, we consider a simplified version of the hypoplastic model proposed by Bauer [5]

L(σ) : ε̇ = c
(
a2tr(σ)ε̇+

σ : ε̇

tr(σ)
σ
)
, N(σ) = cfca

(
2σ − 1

3
tr(σ)I

)
, (29)

where the colon denotes the double contraction of second-order tensors, I stands for the identity
tensor, c < 0 and fc > 0 are scaling parameters. Constant a > 0 determines the opening of
the conical surface, which bounds the admissible stress states in the space of negative principal
stress. It can be checked that the nonlinear operator induced by (29) satisfies the assumptions of
Proposition 3. However, there is no a priori evidence that tr(σ) remains bounded away from zero
independently of the input histories ε̇. We cannot therefore guarantee in general the validity of
the global Lipschitz continuity condition in Proposition 4 for the case (29), and a detailed local
in time analysis will be necessary.

Previously we studied the Bauer model (29) in the context of the nonlinear ODE (27), i.e.

dσ

dt
= c

(
a2tr(σ)ε̇+

σ : ε̇

tr(σ)
σ + fca

(
2σ − 1

3
tr(σ)I

)
∥ε̇∥

)
. (30)

For constant ε̇ we derived an analytical solution to (30) in the closed form, as described in details
in [7] (there fc = 1 was set). The explicit solution was used to establish asymptotic behavior for
the stress under proportional loading (known as Goldscheider’s rule) in [7], to prove the Lyapunov
stability for the dynamic system in [24], and to outline a feasible region where principal stresses
are non-positive in [25]. The solution procedure was extended further to a modified model in [6].

In the following section we construct an explicit solution to (30) for numerical simulation of
ratchetting under loading-unloading cycles.

3. Numerical simulation of ratchetting
For coaxial and homogeneous deformation the matrix representation of σ and ε̇ is as follows:

σ =

σ1 0 0
0 σ2 0
0 0 σ3

 and ε̇ =

ε̇1 0 0
0 ε̇2 0
0 0 ε̇3

 .

Moreover, we consider in the following isotopic compression and isotropic extension starting from
an isotropic stress state. Then σ1 = σ2 = σ3 and ε̇1 = ε̇2 = ε̇3 holds. By omitting indices from
the notation (hence, we write σi = σ and ε̇i = ε̇ for i = 1, 2, 3), it follows

tr(σ) = 3σ, σ : ε̇ = 3σε̇, ∥ε̇∥ =
√
3|ε̇|.
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Thus, by replacing dσ/dt with σ̇ we obtain from (30) the equation for the principal stress

σ̇ = 3cσ
(
a2ε̇+

1

3
ε̇+ fc

a√
3
|ε̇|

)
. (31)

Herein ε̇ < 0 for the compression (loading) phase and ε̇ > 0 for the extension (unloading) phase.
Hence we obtain two equations

σ̇ = 3c
(
a2 +

1

3
− fc

a√
3

)
σε̇ for loading, (32)

σ̇ = 3c
(
a2 +

1

3
+ fc

a√
3

)
σε̇ for unloading. (33)

The equations in (32) and (33) are solved on closed intervals depending on the loading, resp.
unloading phase of the cycle. The final state after one loading (resp. unloading) phase becomes
an initial state for the following unloading (resp. loading) phase. For the initial loading we
assume that σ(0) = σ0 < 0 and ε(0) = 0. The phase switching happens whenever σ reaches the
prescribed values σI and σII . We assume without loss of generality that σI < σII < 0; unloading
goes from σI to σII whilst loading from σII to σI .

Let us denote
λ± = 3c

(
a2 +

1

3
± fc

a√
3

)
.

Then we can solve the equation σ̇ = λ±σε̇ on an arbitrary interval [τ, T ], 0 6 τ < T , easily by
using the method of separation of variables. We obtain

σ(t) = σ(τ)eλ±(ε(t)−ε(τ)) (τ 6 t 6 T ). (34)

We can rewrite the formula (34) above in order to get an equation for the strain ε(t) for t ∈ [τ, T ].
In particular, the strain ε at the time t = T reads

ε(T ) =
1

λ±
ln
(σ(T )
σ(τ)

)
+ ε(τ). (35)

Here, τ is the time at which the un/loading phase of a cycle starts and T is the time at which
this phase ends.

In order to do numerical simulations, we need an additional information either on the stress or
on the strain. Let us assume that ε̇ = diag(k0, k0, k0), where k0 ∈ R. As the constitutive equation
(30) describes a rate independent material behavior, the amount of k0 is arbitrary. However, the
sign of k0 defines as to whether the material is subjected to compression, i.e. sign(k0) = −1,
or to extension, i.e. sign(k0) = +1. Thus, ε satisfies the equation ε̇ = k0 which has an explicit
solution, namely,

ε(t) = k0t+ (ε(τ)− k0τ)

on every interval [τ, T ]. By substituting for ε(t) in (34) we obtain

σ(t) = σ(τ)eλ±k0(t−τ) (τ 6 t 6 T ).

and, in particular,

T =
1

λ±k0
ln
(σ(T )
σ(τ)

)
+ τ. (36)

We observe that ε(T ) > ε(τ) for every unloading phase (sign(k0) = +1).
The initial loading phase on an interval [τ0, T0] starts at τ0 = 0 with σ(0) = σ0 and ε(0) = 0

and ends at the time T0, at which σ(T0) = σI . Therefore,

T0 =
1

λ−k0
ln
(σI

σ0

)
, σ(t) = σ0e

λ−ε(t) = σ0e
λ−k0t and εI := ε(T0) = k0T0.
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Then, the first cycle starts with an unloading phase from σI to σII . We solve (33) on [τ1, T1]
where τ1 = T0, σ(τ1) = σI and ε(τ1) = εI . We obtain from (34)-(36) that for εII := ε(T1)

T1 =
1

λ+k0
ln
(σII

σI

)
+ τ1, σ(t) = σIe

λ+(ε(t)−εI) = σIe
λ+k0(t−τ1), εII = k0(T1 − τ1) + εI

since the unloading ends for σ(T1) = σII . Then we switch back to the reloading phase from σII

to σI to complete the first cycle. We solve (32) on yet another interval [τ2, T2] with τ2 = T1,
σ(τ2) = σII and ε(τ2) = εII . We deduce from (33)-(35) that for εIII := ε(T2)

T2 =
1

λ−k0
ln
( σI

σII

)
+ τ2, σ(t) = σIIe

λ−(ε(t)−εII) = σIIe
λ−k0(t−τ2), εIII = k0(T2 − τ2) + εII

since the loading ends for σ(T2) = σI . Analogously, we obtain stresses, strains and the respective
time intervals for every of the following cycles. A typical response of the material to isotropic
stress cycles is shown in Fig. 1.

Fig. 1. Response of the constitutive equation (31) under isotropic stress cycles for the parameters
c = −550, a = 0.33 and σ0 = −20, σI = −300, σII = −100; loading paths are shown by solid
curves and unloading paths are shown by dashed curves. Left panel: without shakedown, fc = 1.
Right panel: with shakedown fc = e−n/d for n = 8 and d = 3

Under cyclic loading with small stress amplitudes, the model exhibits an unlimited accu-
mulation of deformation, which is physically not relevant for granular materials. The so-called
unlimited ratchetting for the case of stress cycles under isotropic condition is illustrated in Figure 1
(left panel) for the special case of fc = 1. Although the model describes different incremental
stiffness for loading and unloading, the amount of the incremental stiffness is only a function
of the current stress and the direction of the strain rate and, consequently, independent on the
number of cycles. In order to overcome this drawback different concepts for introducing appro-
priate state variables and memory functions depending on the loading history where proposed
in enhanced versions of hypoplastic models [8, 30].

In order to improve the simplified hypoplastic model considered in the present paper a so-
called shakedown factor fc is added in the nonlinear part of the constitutive equation (29). To
demonstrate the effect of the shakedown factor fc on the extended equation (31) the following
exponential function is introduced:

fc = e−n/d (37)

where n is the number of cycles and a parameter d > 0 triggers the amount of diminution
of ratchetting. The selection of the function for factor fc is motivated by the experimental
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observations with granular materials that the effect of ratchetting declines with the number of
cycles and finally a so-called shakedown is reached. Fig. 1 (right panel) shows the shakedown
behavior of Eq. (30) under isotropic stress cycles.

It is obvious that fc → 0 in (37) for n → ∞ and equation (30) reduces to the following
incrementally linear constitutive relation:

dσ

dt
= c

(
a2tr(σ)ε̇+

σ : ε̇

tr(σ)
σ
)
. (38)

Equation (38) describes a nonlinear elastic material behavior and the present version belongs to
the class of hypoelasticity. For alternative representations of L(σ) : ε̇ also a hypereleastic mate-
rial behavior can be considered. It can be noted that the feature of factor fc in the constitutive
equation (30) has certain similarities to the pressure and void space dependent density factor
embedded in the hypoplastic model for cohesionless granular materials (e.g. [3] and [19]). In
particular, cyclic loading leads to a rearrangement of the grains within the grain skeleton and,
with an increase of the number of cycles with small stress amplitudes, the void space between the
grain skeleton reduces until the minimum possible value of a given granular material is reached.
Experiments with granular materials show that the shakedown behavior not only depends on the
current backing density of the material but also on the amount of the stress amplitude and the
direction and history of the loading path. Therefore, the simulation of general path dependent
material properties requires a more sophisticated modeling.
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for proportional loading and unloading of hypoplastic materials, In: Extended Abstracts

– 764 –



Victor A.Kovtunenko, Erich Bauer . . . Cyclic Behavior of Simple Models in Hypoplasticity . . .

Spring 2018. Singularly Perturbed Systems, Multiscale Phenomena and Hysteresis: Theory
and Applications, A.Korobeinikov, M.Caubergh, T.Lázaro, J.Sardanyés (eds.), Trends in
Mathematics, Vol. 11, Birkhäuser, Ham, 2019, 201–210.
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[29] J.Nečas, I.Hlaváček, Mathematical Theory of Elastic and Elastoplastic Bodies: An Intro-
duction, Elsevier, Amsterdam, 1981.

[30] A.Niemunis, I.Herle, Hypoplastic model for cohesionless soils with elastic strain range, Mech.
Cohes.-Frict. Mat., 2(1997), 279–299.

[31] W.Prager, Recent developments in the mathematical theory of plasticity, J. Appl. Phys.,
20(1949), 235–241.

[32] L.Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. Angew. Math.
Mech., 8(1928), 85–106.

[33] K.R.Rajagopal, A.R.Srinivasa, On a class of non-dissipative materials that are not hypere-
lastic, Proc. R. Soc. A., 465(2009), 493–500.

[34] O.Sadovskaya, V.Sadovskii, Mathematical Modeling in Mechanics of Granular Materials,
Springer, Berlin, Heidelberg, 2012.

[35] C.Truesdell, Remarks on hypo-elasticity, J. Res. Natl. Bur. Stand., Ser. B. Math. Math.
Phys., 67B(1963), 141–143.

Циклическое поведение упрощенной модели
гипопластичности и пластичности с нелинейным
кинематическим упрочнением

Виктор А. Ковтуненко
Университет Грац

Грац, Австрия
Институт гидродинамики им. М. А.Лаврентьева СО РАН

Новосибирск, Российская Федерация
Эрих Бауер

Технический университет Грац
Грац, Австрия
Ян Элиаш

Университет Грац
Грац, Австрия

Павел Крейчи
Технический университет в Праге

Прага, Чешская Республика
Жизель А.Монтейро

Институт математики Чешской академии наук
Прага, Чешская Республика

Ленка Стракова (Сивакова)
Технический университет в Праге

Прага, Чешская Республика

– 766 –



Victor A.Kovtunenko, Erich Bauer . . . Cyclic Behavior of Simple Models in Hypoplasticity . . .

Аннотация. Статья описывает вопросы моделирования и математического анализа корректно-
сти задач, мотивированных циклическим поведением уравнений состояния, которые не зависят
от скорости, в рамках теорий гипопластичности и пластичности с нелинейным кинематическим
упрочнением. По сравнению с классической теорией упругопластичности в гипопластичности нет
необходимости разлагать деформацию на упругую и пластичную части. Два рассматриваемых ти-
па нелинейных подходов показывают некоторое сходство в структуре определяющих соотношений,
которое важно для описания поведения пластических материалов. При этом обе модели демон-
стрируют неограниченные флуктуации при циклической нагрузке. В результате численного моде-
лирования продемонстрировано, как ограничение флуктуаций может быть достигнуто с помощью
слегка улучшенного простого гипопластического уравнения, предложенного Бауэром.

Ключевые слова: теория пластичности, гипопластичность, система, не зависящая от скорости,
гистерезис, циклическая нагрузка, математическая корректность, численное моделирование.
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