
Journal of Siberian Federal University. Mathematics & Physics 2021, 14(5), 667–671

DOI: 10.17516/1997-1397-2021-14-5-667-671
УДК 512.54

Satisfiability in Boolean Logic (SAT problem) is polynomial

Vladimir V. Rybakov∗

Siberian Federal University
Krasnoyarsk, Russian Federation

A.P. Ershov Institute of Informatics Systems
Novosibirsk, Russian Federation

Received 10.07.2021, received in revised form 10.08.2021, accepted 21.08.2021

Abstract. We find a polynomial algorithm to solve SAT problem in Boolean Logic.
Keywords: Boolean Logic, Satisfiability Problem, SAT algorithm.

Citation: V.V. Rybakov, Satisfiability in Boolean Logic (SAT problem) is polynomial, J. Sib. Fed.
Univ. Math. Phys., 2021, 14(5), 667–671. DOI: 10.17516/1997-1397-2021-14-5-667-671.

Introduction

The satisfiability problem (SAT) in Boolean propositional logic is the question to determine if
any given formula F is satisfiable (i.e. if there is a substitution of literals TUE-FALSE instead
the propositional letters from given formula F making the formula TRUE). Extended SAT
problem is to find a such substitution if the one exists. SAT is an NP-complete problem, and is
one of the most intensively studied problems.

As well known SAT was the first known NP-complete problem, that was proved by S.Cook
at the University of Toronto in 1971 (cf. [1]) and also independently by L.Levin in 1973 (cf. [2]).
Remarkably that before these results, the idea, the concept, of an NP-complete problem did not
even exist, so was totally out of consideration. .

That generated a very active area in complexity theory; since the SAT problem is NP-
complete, and only algorithms with exponential worst-case complexity are until now known
for it, better algorithms for SAT where in grate demand. In particular researchers looked for
efficient and scalable algorithms for SAT for formulas in restricted form; and during the 2000s
algorithms making dramatic advances in our ability to automatically solve problem was developed
(cf. [3, 4, 10–12]). In this paper we will prove that SAT may be solved in polynomial time.

1. Proof, Deterministic Algorithm with Random Any
Choice

We first need to restrict the amount of necessary formulas in our considerations. We will do
this restriction by Theorem 1 placed below. Actually this result was known for long ago, for
example the author introduced reduced normal forms for inference rules in [5,6] where he solved
Friedman problem about recognition inference rules for intuitionistic propositional logic. This
technique was efficiently applied in [5–9] for study inference rules and unification. The point here
is that the premises of such rules are exactly the normal reduced forms for just formulas. These
approach also possibly was observed even earlier when researchers used reduction formulas for

∗Vladimir_Rybakov@mail.ru
c⃝ Siberian Federal University. All rights reserved

– 667 –



Vladimir V.Rybakov Satisfiability in Boolean Logic (SAT problem) is polynomial

3-Sat problem and relative subsequent research (cf. [3,4,10–12]). I am not sure about history
and priority not being very expert in the SAT area. Though it turned out that Theorem 1 is
also very useful for positive solution SAT problem and we present it now.

Definition. We say that Boolean formula F has reduced normal form if

F = A1 ∧A2 ∧ · · · ∧Ak,

where
Aj := Bj1 ∨Bj2 ∨Bj3 ,

and Bji ∈ {p,¬p}, p ∈ Prop and Prop is a set of letters.

In the sequel we may consider also Aj containing less then 3 disjunct members. Simply for
convenience and simplicity in notation we will always refer to 3 disjunct members, thinking that
it might be less.

Theorem 1. There is a polynomial algorithm constructing by any given boolean formula G a
formula F in reduced normal form which has the following properties. (1) F has all variables
of G and some more in amount not bigger then the length of G. (2) F is equivalent to G w.r.t
satisfiability. (3) Any substitution σ for F satisfying G acting at only variables of G satisfies G,
(and vice versa any substitution satisfying G may be computably extended on additional variables
of F satisfying it).

Proof. It is a simple statement; as much as I remember I myself proved it first time in my works
for constructing reduced normal forms for inference rules in my research to resolve Friedman
problem about recognizing admissible rules in intuitionistic logic cf. [6], 1984. A short draft of
the proof is as follows. In fact, we simply shall specify the general algorithm described already
several times in [5–9] to the language of our logic.

So, let we start. If φ = α ◦ β, where ◦ is a binary logical operation and both formulas α and
β are not simply variables or unary logical operations applied to variables (which both we call
final formulas), take two new variables xα and xβ and the formula

f1 := (xα ◦ xβ) ∧ (xα ≡ α) ∧ (xβ ≡ β).

If one from formulas α or β is final and another one not, we apply this transformation to the
non-final formula. It is clear that f and f1 are equivalent w.r.t. satisfiability.

If φ = ¬α and α is not a variable, take a new variable xα and the formula

f1 := ¬xα ∧ (xα ≡ α).

Again f and f1 are equivalent w.r.t. satisfiability. We continue this transformation over the
resulting formulas ∧

j∈J1

γj ∧
∧
i∈I1

xαi
≡ αi

until all formulas αi and γj in the formula above will be either atomic formulas, i.e. logical
operations applied to variables, or variables.

Evidently this transformation is polynomial. Further, we transform the formulas using ≡ in
the ones using only disjunctions and conjunctions and negations. After that we obtain formula
in form as required for reduced normal forms. The only point is that the conjuncts may continue
less that 3 disjunct formulas, we then may double some until 3 members. As the result we get
the final formula f2 which evidently has all required properties. Q.E.D.

– 668 –



Vladimir V.Rybakov Satisfiability in Boolean Logic (SAT problem) is polynomial

Now we turn to SAT problem. In the sequel a literal is either a propositional letter or
a letter with applied negation (¬p for p). Below we will always refer to only 3 disjuncts in
F = A1 ∧A2 ∧ · · · ∧Ak,, where Aj := Bj1 ∨Bj2 ∨Bj3 . But we could admit less disjuncts, simply
we keep all 3 for simplicity of notation.

Theorem 2. If a formula F has reduced normal form then there is a polynomial algorithm
verifying its satisfiability and constructing its some unifier if F is satisfiable.

Proof. Let
F = A1 ∧A2 ∧ · · · ∧Ak,

where
Aj := Bj1 ∨Bj2 ∨Bj3 ,

and Bji ∈ {p,¬p}, p ∈ Prop where Prop are propositional letters. Assume F has exactly m
letters.

It is evident that F is satisfiable iff there is at least one path from A1 to Ak passing through
each Aj via some unique Bji (in this Aj) not containing contradictory literals along all path.

We will try to construct such a path now. We do it by induction on j in Aj so we do it by
induction on k in A1 ∧A2 ∧ · · · ∧Ak. Let k = 1 then we have the path.

Inductive step. Assume that n steps are already done and (1) all sets Imp(Bni) are con-
structed and any Imp(Bni) contains absolutely all possible literals g (in given m letters) to
which we cannot make step from Bni

that is g is any literal contradicting to some lateral in any
possible not contradictory paths leading from any disjunct from A1 to Bni

. (2) The sets To(Bni
)

contain all Bn−1j which themselves are reached by non-contradictory (no matter which) paths
from A1 and from which we (non-contradictory) moved in Bni

. Note that we do not store (record
or memorize) paths themselves - we just fix (record) their existence by marking all Bn−1j from
which we made final steps to (Bni). (That is why we summarize things (steps, actions) while
the procedure but do not multiply them.)

Of course we assume all sets To(B1i) to be {B1i} and for n = 1 all is ready, and for all i,
Imp(B1i) = {¬B1i} if B1i is a letter and Imp(B1i) = {B1i} otherwise.

Now we turn to the inductive step itself, we try to move to (n+ 1)-th conjunct from An, to
make (n + 1)-th step. Assume that n steps are done and we arrived to Bni

(which informally
means by not-contradictory path; which in our formalism only means that To(Bni) ̸= ∅, or n = 1)
and all Imp(Bnj ) and To(Bnj ) are constructed. Consider any Bn+1j . Define immediately

Imp(Bn+1j ) := [Imp(Bn1
) ∩ Imp(Bn2

) ∩ Imp(Bn3
)] ∪ {¬Bn+1j}

and
To(Bn+1j )

are unions of all Bnl
which do not contradict Bn+1j and where To(Bn,l) are not empty (which, by

the way, means that Bn,l are reached by some non-contradictory paths, and, recall the inductive
assumption, — sets Imp(Bnl

) are already successfully constructed).
It is clear that Imp(Bn+1j ) is the set containing all literals to which we cannot step form

Bn+1j further at all, even, in particular, to literals which occurs An+2. Consider all Bn+2l

from level n + 2; if any of them occurs in Imp(Bn+1j ) we cross out such Bn+1j from further
consideration. And if that indeed holds for all Bn+1l the procedure stops and formula F is not
satisfiable.

If we can continue, recall that earlier we put in To(Bn+1j ) all Bni
from which we arrived to

Bn+1j . The step (n+1) is completed.
If we came to some Bkj

the formula F is satisfiable otherwise not. And the sets To(Bn+1j ) give
us a satisfying substitution, if we will move from Bkj

back to A1 via sets To(Bkj
) subsequently

using To(Bnj ) towards A1. The trick here is that we do not do any choice at all; during moving

– 669 –



Vladimir V.Rybakov Satisfiability in Boolean Logic (SAT problem) is polynomial

we just take any Bkj from To(Bn+1j ) (and we have at most 3 options for that each choice) and
move towards A1.

The interesting thing here is that we do not do choice at all — we can take subsequently any
from any occurring in Bnj moving to the origin A1. That looks as not deterministic algorithm
but in fact it is the one, a good one, since we can take any disjunct from at most 3 possible
options and any of them will lead us to success.

The amount of steps in this algorithm is polynomial: the general amount of steps used in our
inductive procedure in constructing Imp(Bnj

) and To(Bn+1j ) is at most k. And in the inductive
step itself from n to n + 1 for constructing Imp(Bn+1j ) and To(Bn+1j ), the amount of steps
is at most 3 × [3 × (2m)2] (m is the number of letters in formula) for computing intersections
Imp(Bn1

) ∩ Imp(Bn2
) ∩ Imp(Bn3

)]. Q.E.D.

This research is supported by High Schools of Economics (HSE) Moscow; supported by the
Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education
of the Russian Federation (Grant No. 075-02-2020-1534/1).

References

[1] S.Cook, The complexity of theorem proving procedures, Proceedings of the Third Annual
CAM Symposium on Theory of Computing, 1971, 151–158.

[2] L.A.Levin, Universal sequential search problems, Problemy Peredachi Informatsii, 9(1973),
no. 3, 115–116 (in Russian); Translated into English by B.A.Trakhtenbrot, A survey of
Russian approaches to perebor (brute-force searches) algorithms, Annals of the History of
Computin, 6(1984), no. 4, 384–400.

[3] B.Selman, D.Mitchell, H.Levesque, Generating Hard Satisfiability Problems, Artificial In-
telligence, 81(1996), no. 1, 1729.

[4] T.J.Schaefer, (1978) The complexity of satisfiability problems, Proceedings of the 10th An-
nual CAM Symposium on Theory of Computing, San Diego, California, 216226.

[5] V.Rybakov, Admissible Rules in Pretabular Modal Logic, Algebra and Logic, 20(1981),
291–307.

[6] V.Rybakov, Criterion for Admissibility for Rules in the Modal System S4 and Intuitionistic
Logic, Algebra and Logic, 23(1984), no. 5, 291–307.

[7] V.V.Rybakov, Logical equations and admissible rules of inference with parameters in modal
provability logics, Studia Logica, 49(1990), no. 2, 215–239

[8] V.V.Rybakov, Problems of substitution and admissibility in the modal system Grz and
in intuitionistic propositional calculus Annals of Pure and Applied Logic, 50(1990), no. 1,
71–106.

[9] V.V.Rybakov, Admissibility of Logical Inference Rules, Vol. 136, 1st Edition, Elsevier, 1997.

[10] F.Massacci, L.Marraro, Logical Cryptanalysis as a SAT Problem, Journal of Automated
Reasoning, 24(2000), no. 1, 165203.

[11] Marijn J.H.Heule, Hans van Maaren, Look-Ahead Based SAT Solvers, Handbook of Satis-
fiability, IOS Press, 2009, 155184.

[12] C.Moore, S.Mertens, The Nature of Computation, Oxford University Press, 2011.

– 670 –



Vladimir V.Rybakov Satisfiability in Boolean Logic (SAT problem) is polynomial

Проблема выполнимости формул в булевой логике (SAT)
полиномиальна?

Владимир В. Рыбаков
Сибирский федеральный университет

Красноярск, Российская Федерация
Институт систем информатики им. А.П.Ершова

Новосибирск, Российская Федерация

Аннотация. Находится полиномиальный алгоритм решающий проблему SAT в Булевой логикуе.

Ключевые слова: булева логика, проблема выполнимости, алгоритм SAT.

– 671 –


