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Abstract. We discuss the construction of a long semi-exact Mayer–Vietoris sequence for the homology
of any finite union of open subspaces. This sequence is used to obtain topological conditions of repre-
sentation of the integral of a meromorphic n-form on an n-dimensional complex manifold in terms of
Grothendieck residues. For such a representation of the integral to exist, it is necessary that the cycle of
integration separates the set of polar hypersurfaces of the form. The separation condition in a number
of cases turns out to be a sufficient condition for representing the integral as a sum of residues. Earlier,
when describing such cases (in the works of Tsikh, Yuzhakov, Ulvert, etc.), the key was the condition
that the manifold be Stein. The main result of this article is the relaxation of this condition.
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Introduction

In the theory of functions of one complex variable the Cauchy residue of a function f at an
isolated singular point a is represented in a local coordinate z by the integral over the cycle
γ(a) = {|z − a| = ε} in a sufficiently small punctured neighborhood Ua \ {a}. The cycle γ(a) is
called local cycle at a. By Cauchy’s theorem the definition of the residue does not depend on the
choice of a local cycle (choice of the local coordinate and the radius ε). It’s usually not difficult
to represent the integral ∫

γ

f dz

of a meromorphic function f over a cycle γ lying outside the polar set of the function as a sum
of residues: it suffices to know the homological expansion of the cycle γ in terms of local cycles.

The multidimensional analogue of the Cauchy residue is the Grothendieck residue of a mero-
morphic differential n-forms ω given on an n-dimensional complex-analytic manifold. This
residue in turn is represented by the integral over a local n-cycle in a neighborhood of an isolated
intersection point of polar hypersurfaces of ω. In this case, it is possible to show that in order for
the integral of a meromorphic form to be represented in terms of residues, it is necessary that the
cycle of integration in a certain sense separates the set of polar hypersurfaces of the form. The
most complete results on the characterization of such separating cycles and their relationship to
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local cycles in Stein manifolds are presented by Tsikh and Yuzhakov (see [5, 9]) (these results
have recently been complemented in [6, 7]). In this article, we develop a method for studying
separating cycles, which makes it possible to weaken the homological conditions for the manifold
and a family of polar hypersurfaces of integrating form, abandoning the Stain property of the
manifold.

Our main tool is a generalization of the well-known Mayer–Vietoris long exact sequence. All
the necessary information about the homology of the union of open subspaces (the homology of
the topological space with open cover U) is discussed in Section 1. The case of the union of more
than two subspaces leads to the study of the double complex of a cover and the Mayer–Vietoris
spectral sequence (see [3]).

In Section 2 we construct a connecting homomorphism that allows us to get the long
Mayer–Vietoris sequence for any finite cover. This sequence is not exact in the general case,
but it is semi-exact. In obtaining our results, ideas from Gleason’s article [4] are essentially
used. The notion of the resolution for a cycle associated with an open covering of the space (the
U-resolution) in [4] is not standard, but it is very appropriate in our opinion.

The main results are presented in Section 3. Note that our results are formulated under
the assumption that the (2n − 1)-dimensional homology of the manifold is trivial and that the
intersection of the set of n polar hypersurfaces of the integrating form ω is discrete. In terms of
the corresponding long Mayer–Vietoris sequence, we have obtained (Theorem 3.1) a necessary
and sufficient condition under which any separating cycle is represented in terms of local cycles
(and therefore the integral is calculated in terms of the residues). However, this is only a
reformulation of the problem in the language of homological algebra. Theorem 3.2 gives a more
practical sufficient condition (in terms of homology of complements of polar hypersurfaces of the
form ω) under which any separating cycle is represented in terms of local cycles. This condition,
in particular, is satisfied for Stein manifolds and arbitrary set of n polar hypersurfaces, which
allows us to obtain another proof of the Tsikh theorem on separating cycles in Stein manifolds
(Theorem 3.3). Therefore, the condition from Theorem 3.2 gives the desired relaxation of the
condition of Steinnes of the manifold.

1. Homology of the union of open subspaces

Let U = {Ui}i∈I be an open cover of topological space X, where I is an ordered index set.
We will use the standard notation Sq(X) for the group of singular chains of dimension q (with
coefficients in C) in X. Also, by S∗ = S∗(X) we will denote the corresponding chain complex
with the boundary operator ∂.

Definition 1.1. A U-chain in X of multiplicity p and dimension q is an alternating function σ
on Ip+1 with values

σ(i0, i1, . . . , ip) ∈ Sq(Ui0 ∩ Ui1 ∩ . . . ∩ Uip),
which vanishes except at a finite number of a points of Ip+1.

Note that U-chains can be identified with elements of the bigraded group

Cp,q =
⊕

i0<i1<...<ip

Sq(Ui0 ∩ Ui1 ∩ . . . ∩ Uip), p, q = 0, 1, . . .

We denote by SU
q = SU

q (X) the subgroup in Sq = Sq(X) generated by singular q-simplices
∆, such that supp∆ ⊂ Ui for some Ui ∈ U. The natural inclusion ι : SU

∗ → S∗(X) obviously is a
chain map.
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For the chain complex C∗ with the boundary operator d we use the following standard nota-
tions for subgroups of cycles, subgroups of boundaries and homology groups:

Zq(C∗) = ker(d : Cq → Cq−1),

Bq(C∗) = im(d : Cq+1 → Cq),

Hq(C∗) = Zq(C∗)/Bq(C∗).

The following fact shows that when calculating the homology of the space X it is sufficient
to use the complex SU

∗ .

Theorem 1.1 (see [8]). The homomorphism ι∗ : H(SU
∗ ) → H(X) induced by the chain map

ι : SU
∗ → S∗(X) is the isomorphism.

Consider first the case I = {1, 2}. In this situation, there is the well-known long exact Mayer–
Vietoris sequence for homology of the union of two open subsets. This sequence is obtained from
short exact sequences

SU
q (X)

ε←− Sq(U1)⊕ Sq(U2)
δ←− Sq(U1 ∩ U2), (1)

where ε : (σ1, σ2) 7→ σ1 + σ2 is an epimorphism and δ : σ 7→ (σ,−σ) is a monomorphism, at that
ε and δ are chain maps. Passing to homology, we get sequences

Hq(S
U
∗ )

ε∗←− Hq(U1)⊕Hq(U2)
δ∗←− Hq(U1 ∩ U2),

in which in general ε∗ is not an epimorphism аnd δ∗ is not a monomorphism. The following
properties hold: 1) im δ∗ = ker ε∗; 2) the connecting homomorphism ϕ : Hq(S

U
∗ )→ Hq−1(U1∩U2)

induced by the multivalued map δ−1∂ε−1 is correctly defined, at that imϕ = ker δ∗ and kerϕ =

im ε∗. We get the required long exact sequence:

. . .←− Hq−1(U1 ∩ U2)
φ←− Hq(S

U
∗ )

ε∗←− Hq(U1)⊕Hq(U2)
δ∗←− Hq(U1 ∩ U2)←− . . . ,

in which groups Hq(S
U
∗ ) are replaced by isomorphic groups Hq(X).

Let now card(I) > 2. We will describe a sequence of chain groups generalizing the short exact
sequence (1). Inclusions Ui0 ∩Ui1 ∩ . . .∩Uip ↪→ Ui0 ∩Ui1 ∩ . . . [ik] . . .∩Uip , k = 0, . . . , p, induce
the Čech boundary operator δ : Cp,q → Cp−1,q defined by the formula "alternating sum":

(δσ)(i0, i1, . . . , ip−1) =
∑
i∈I

σ(i, i0, . . . , ip−1).

In turn, the inclusions Ui ⊂ X induce the operator ε : C0,q → SU
q , which acts according to the

same "alternating sum" formula as follows:

εσ =
∑
i∈I

σ(i),

at that εδ = 0. We obtain the following Mayer–Vietoris sequence for the groups of singular
chains of the union

0←− SU
q

ε←− C0,q
δ←− C1,q

δ←− C2,q
δ←− . . . . (2)

Theorem 1.2 (see [1]). The sequence (2) is exact for all q = 0, 1, . . . .
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If card(I) = 2 then this sequence coincides with the sequence (1). In what follows, we will
assume that card(I) > 2. Maps δ : Cp,∗ → Cp−1,∗ and ε : C0,∗ → SU

∗ are, as above, chain maps of
the corresponding complexes with the boundary operator ∂. In passing to homology, the exact
sequence (2) goes over into the sequence

0←− Hq(S
U
∗ )

ε∗←− Hq(C0,∗)
δ∗←− Hq(C1,∗)

δ∗←− Hq(C2,∗)
δ∗←− . . . , (3)

about which, in general, we can say that it is only semi-exact. In this case, the measure of
"inexactness" is the homology groups of the sequence (3), considered as a chain complex with a
boundary operator δ∗ (or ε∗).

More abstract point of view on the generalization of the Mayer–Vietoris sequence for ho-
mology of the union relates to consideration of two spectral sequences of the double complex
C = (Cp,q; δ, ∂) (see [2, 3]). This double complex is a first quarter complex (Cp,q = 0 for p < 0

or q < 0). By adding to C a column (SU
q ; ∂) and a chain map ε : C0,∗ → SU

∗ we get the extended
double complex

�� �� ��
0 SU

q
oo

∂ ��

C0,q
εoo

∂ ��

C1,q
δoo

∂ ��

. . .
δoo

0 SU
q−1

oo

∂
��

C0,q−1
εoo

∂
��

C1,q−1
δoo

∂
��

. . .
δoo

. . .
∂ ��

. . .
∂ ��

. . .
∂ ��

0 SU
0

oo

��

C0,0
εoo

��

C1,0
δoo

��

. . .
δoo

0 0 0

(4)

of singular chains which is dual to the familiar Čech–de Rham double complex for differential
forms. Based on a double complex C we build a total complex TC, formed by a graded group

(TC)n =
⊕
p+q=n

Cp,q

and a boundary operator D : (TC)n → (TC)n−1 such that D
∣∣
Cp,q

= δ + (−1)p∂.
The first of the spectral sequences {(Erp,q; dr)} of the complex C corresponds to filtration for

TC determined by the formula Fp(TC)n =
⊕

i6p Ci,n−i. We have E0
p,q = Cp,q and d0 = ±∂, so

E1
p,q = Hq(Cp,∗) (the vertical homology of the complex C) and the differential d1 : E1

p,q → E1
p−1,q

coincides with the map induced by the chain map δ : Cp,∗ → Cp−1,∗, i.e. d1 = δ∗. Further, the
term E2

p,q (the horizontal homology of the vertical homology of the complex C) describes the
homology of the sequence (3). Therefore, this spectral sequence (called the Mayer–Vietoris
spectral sequence) is a generalization of the long exact Mayer–Vietoris sequence.

The second spectral sequence for C is determined by another filtration of the total complex:
Fp(TC)n =

⊕
j6p Cn−j,j . In this case E0

p,q = Cq,p, so E1 is determined by the horizontal
homology of the complex C. Since the strings of the extended complex (4) are exact, then
E1
p,0 = SU

p and E1
p,q = 0 for q > 0. Considering the vertical homology, we obtain E2

p,0 = Hp(X)

and E2
p,q = 0 for q > 0. This means that the second spectral sequence "degenerates" and gives

the isomorphism Hq(TC) ∼= Hq(S
U
∗ ). Thus, the double complex C "calculates" the homology of

the space X.
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2. Connecting homomorphism

Pursuing the goal of finding a generalization of the long exact Mayer–Vietoris sequence in
the case of any finite open cover of the space X, we construct a homomorphism, which is a
connecting homomorphism for semi-exact sequences (3).

We will use the following notation:

C∂p,q = Zq(Cp,∗) = ker(∂ : Cp,q → Cp,q−1).

For the chain complex (2) consider the subcomplex

0←− Zq(SU
∗ )

ε←− C∂0,q
δ←− C∂1,q

δ←− C∂2,q
δ←− . . . .

In general, there are nontrivial homology groups Hp(C
∂
∗,q) = Zp(C

∂
∗,q)/Bp(C

∂
∗,q), p = 0, 1, . . .

Lemma 2.1. Let ξ be the cycle belongs to Zp(C∂∗,q), where p > 0, q > 1, and ξ = δξp+1 for some
U-chain ξp+1 ∈ Cp+1,q. Then ∂ξp+1 belongs to Zp+1(C

∂
∗,q−1) and the homology class [∂ξp+1] ∈

Hp+1(C
∂
∗,q−1) depends only on the class [ξ] ∈ Hp(C

∂
∗,q). The correspondence [ξ]→ [∂ξp+1] defines

a homomorphism
ϕp+1 = (∂δ−1)∗ : Hp(C

∂
∗,q)→ Hp+1(C

∂
∗,q−1).

Proof. Note that the existence of a U-chain ξp+1 such that ξ = δξp+1 follows from the fact that
strings of the complex (4) are exact, due to condition δξ = 0 (εξ = 0 for p = 0). We have
∂(∂ξp+1) = 0, δ(∂ξp+1) = ∂(δξp+1) = ∂ξ = 0 (see the diagram (5)), so ∂ξp+1 ∈ Zp+1(C

∂
∗,q−1).

0 ξ
δoo

∂
��
φp+1

C
C

!!C
C

ξp+1
δoo

∂
��

0 ∂ξp+1
δ

oo

0 ξ
εoo

∂
��

φ1

@
@

��@
@

ξ1
δoo

∂
��

0 ∂ξ1
δ

oo

(5)

If also ξ = δξ′p+1, then δ(ξp+1 − ξ′p+1) = 0. So there exists a U-chain τ ∈ Cp+2,q such that
ξp+1−ξ′p+1 = δτ . This implies ξ′p+1 = ξp+1−δτ . We have ∂ξ′p+1 = ∂(ξp+1−δτ) = ∂ξp+1−∂(δτ),
at that ∂(δτ) ∈ Bp+1(C

∂
∗,q−1), because ∂(δτ) = δ(∂τ), where ∂(∂τ) = 0. Hence it follows

[∂ξp+1] = [∂ξ′p+1] ∈ Hp+1(C
∂
∗,q−1).

Finally, let ξ′ be an arbitrary representative of the class [ξ] ∈ Hp(C
∂
∗,q). Then there exist a U-

chain σ ∈ Cp+1,q, for which ξ−ξ′ = δσ and ∂σ = 0. If δξp+1 = ξ, then δ(ξp+1−σ) = ξ−δσ = ξ′.
The class [ξ′] maps to the class of the U-chain ∂(ξp+1 − σ) = ∂ξp+1 − ∂σ = ∂ξp+1, which was
required.

It remains to note that for the map [ξ] 7→ [∂ξp+1] the image of the sum of classes is obviously
equal to the sum of the images, so this map is a homomorphism.

Remark 2.1. We have C∂p,0 = Cp,0 for p > 0, so Hp(C
∂
∗,0) = Hp(C∗,0) = 0. Hence for q = 1 the

homomorphism described in the Lemma 2.1 is trivial.

Lemma 2.2. Let be the cycle belongs to ξ Zq(SU
∗ ), where q > 1, and ξ = εξ0 for some U-chain

ξ0 ∈ C0,q. Then ∂ξ0 belongs to Z0(C
∂
∗,q−1) and the homology class [∂ξ0] ∈ H0(C

∂
∗,q−1) depends

only on the class [ξ] ∈ Hq(S
U
∗ ). The correspondence [ξ]→ [∂ξ0] defines a homomorphism

ϕ0 = (∂ε−1)∗ : Hq(S
U
∗ )→ H0(C

∂
∗,q−1).
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Proof. Existence of a U-chain ξ0, such that ξ = εξ0, follows from the surjectivity of ε. The fact
that ∂ξ0 ∈ Z0(C

∂
∗,q−1) and independence of the class [∂ξ0] ∈ H0(C

∂
∗,q−1) from choice of ξ0 can

be proved in the same way as in Lemma 2.1.
Let ξ′ represents a class [ξ] ∈ Hq(S

U
∗ ). So there exists a chain σ ∈ SU

q+1, such that
ξ − ξ′ = ∂σ. Since ε is an epimorphism, there exists τ ∈ C0,q+1, such that σ = ετ . We have
ε(ξ0 − ∂τ) = ξ − ε(∂τ) = ξ − ∂(ετ) = ξ − ∂σ = ξ′, therefore ∂-cycle ξ′ corresponds to the
class [∂(ξ0 − ∂τ)] = [∂ξ0 − ∂∂τ ] = [∂ξ0]. In this way the map [ξ] 7→ [∂ξ0] is correctly defined.
Obviously, this is a homomorphism.

Remark 2.2. For q = 1 the homomorphism ϕ0 is trivial.

The last two lemmas allow us to write the following "diagonal" sequence of maps:

Hr(S
U
∗ )

φ0−→ H0(C
∂
∗,r−1)

φ1−→ H1(C
∂
∗,r−2)→ . . .→ Hr−2(C

∂
∗,1)

φr−1−→ Hr−1(C
∂
∗,0)
∼= 0. (6)

The sequence of homomorphisms (6) is related to the following notion of a resolution for a
cycle by Gleason (see [4]).

Definition 2.1. A U-resolution for the cycle ξ ∈ Zr(S
U
∗ ) is a sequence {ξp}rp=0 of U-chains,

ξp ∈ Cp,r−p, such that:

1) εξ0 = ξ;

2) δξp = ∂ξp−1, p = 1, . . . , r.

Remark 2.3. The existence of a U-resolution {ξp} for any cycle ξ ∈ Zr(SU
∗ ) follows from the

fact that the strings of the complex (4) are exact. Gleason’s definition of a resolution suggests
that ξ ∈ Zr(S∗). So the condition ξ ∈ Zr(S

U
∗ ) is given as a criterion for the existence of the

resolution.

Remark 2.4. The U-resolution for a cycle ξ (accurate to sign ± in front of its term) is, in
fact, such D-cycle, which represents the image of the class [ξ] under the isomorphism Hq(S

U
∗ )→

Hq(TC). It is a "zig-zag" of the double complex C.

Comparing the definitions of homomorphisms ϕp+1 and ϕ0 from Lemmas 2.1, 2.2 with Defi-
nition 2.1, we obtain the following statement.

Proposition 2.1. Let {ξp} be the U-resolution of a cycle ξ ∈ Zr(S
U
∗ ). Then the sequence of

images of the cycle [ξ] ∈ Hr(S
U
∗ ) under homomorphisms (6) has the form

[ξ] 7−→ [∂ξ0] 7−→ [∂ξ1] 7−→ . . . 7−→ [∂ξr−2] 7−→ [∂ξr−1] = [0].

In a similar way, one can consider a part of the sequence of homomorphisms (6) starting
from the group Hp(C

∂
∗,q) for p > 0 and q > 1. In this case, we have the following sequence of

homomorphisms

Hp(C
∂
∗,q)→ Hp+1(C

∂
∗,q−1)→ . . .→ Hp+q−1(C

∂
∗,1)→ Hp+q(C

∂
∗,0) ' 0,

which is naturally leads to following version of the notion of the U-resolution.

Definition 2.2. Let ξ by a U-chain of the multiplicity p > 0 and the dimension q > 1 such that
∂ξ = 0 and δξ = 0 (εξ = 0 for p = 0). A sequence {ξk} of U-chains ξk ∈ Ck,p+q−k+1, is said to
be the U-resolution of the ξ, if the following conditions hold:

1) δξp+1 = ξ;

2) δξk = ∂ξk−1, k = p+ 2, . . . , p+ q + 1.
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Remark 2.5. As in the case ξ ∈ Zr(SU
∗ ), the resolution exists for any cycle ξ ∈ Zp(C∂∗,q).

The existence of the connecting homomorphism assumes that the open cover U of topological
space X is finite (card(I) < ∞). In what follows, we will assume that this covering consists of
m (m > 2) elements.

In this case, for the double complex (4), we have Cp,q ∼= 0 for p > m. Since the strings of the
complex are exact, we see that δ : Cm−1,∗ → Cm−2,∗ is monomorphism. Hence

Zm−1(C∗,q) ∼= 0, Hm−1(C
∂
∗,q) = Hm−1(C∗,q) ∼= 0.

For any resolution {ξk} of a cycle ξ ∈ Zr(SU
∗ ), r > m, we have ξk = 0 for all k > m − 1, at

that ∂ξm−1 = 0. We assume that the ∂-cycle ξm−1 is the end term of this resolution, ignoring
the following zero terms. We will proceed similarly with the resolution of cycle ξ ∈ Zp(C∂∗,q).

The following statement is the last step to the construction of the desired generalization of a
connecting homomorphism.

Lemma 2.3. Let ξ ∈ Zm−3(C
∂
∗,q), q > 1, and let {ξm−2, ξm−1} be the resolution of ξ. The

correspondence of classes [ξ] ∈ Hm−3(C
∂
∗,q) and [ξm−1] ∈ Hq−1(Cm−1,∗) defines correctly a

homomorphism of homology groups

ψm−1 = (δ−1∂δ−1)∗ : Hm−3(C
∂
∗,q)→ Hq−1(Cm−1,∗).

Proof. The action of the homomorphism ψm−1 is illustrated by the following diagram:

0 ξ
δoo

∂
��

ψm−1

L

,,
S U W

ξm−2
δoo

∂
��

0 ∂ξm−2
δ

oo ξm−1
δ

oo

First, we show that the image [ξm−1] does not depend on the choice of the resolution. Let
{ξm−2, ξm−1} and {ξ′m−2, ξ

′
m−1} are resolutions of ξ ∈ Zm−3(C

∂
∗,q). We have δ(ξm−2 − ξ′m−2) =

= δξm−2 − δξ′m−2 = ξ − ξ = 0, so there is (the only one) U-chain τ ∈ Cm−1,q for which
δτ = ξm−2 − ξ′m−2. Hence ξ′m−2 = ξm−2 − δτ , and

δξ′m−1 = ∂ξ′m−2 = ∂(ξm−2 − δτ) = ∂ξm−2 − ∂(δτ) = δξm−1 − δ(∂τ) = δ(ξm−1 − ∂τ).

Since δ : Cm−1,∗ → Cm−2,∗ is a monomorphism, we get ξ′m−1 = ξm−1 − ∂τ . Therefore [ξ′m−1] =
= [ξm−1] in Hq−1(Cm−1,∗).

Next, we will show that the image [ξm−1] also does not depend on the choice of the cycle
representing the class in Hm−3(C

∂
∗,q). If [ζ] = [ξ] then ζ = ξ + δσ, where ∂σ = 0. We put

ζm−2 = ξm−2 + σ, ζm−1 = ξm−1. We have δζm−2 = δ(ξm−2 + σ) = δξ + δσ = ξ + δσ = ζ,

∂ζm−2 = ∂(ξm−2 + σ) = ∂ξm−2 + ∂σ = ∂ξm−2 = δξm−1 = δζm−1.

Hence, {ζm−2, ζm−1} is the resolutions for ζ, at that ζm−1 = ξm−1.
In order to prove that this correspondence of homology classes is a homomorphism, it suffices

to note that a resolution for the sum of U-chains is the sum (term-by-term) of resolutions.

Remark 2.6. Let m = 2. For the cycle ξ ∈ Zr(S
U
∗ ) and its resolution {ξ0, ξ1} similarly the

correspondence [ξ] 7→ [ξ1] gives the homomorphism

ψ1 = (δ−1∂ε−1)∗ : Hr(S
U
∗ )→ Hr−1(C1,∗),

which is the connecting homomorphism ϕ for the usual long exact Mayer–Vietoris sequence.
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Consider the homomorphisms ϕ0, ϕ1, . . . , ϕm−3 from the sequence (6) and complement them
with the homomorphism ψm−1 from Lemma 2.3. We obtain a sequence of homomorphisms whose
action, according to Proposition 2.1 and Lemma 2.3, is described in terms of a resolution of the
cycle as follows.

Theorem 2.1. For any r > m there exists a sequence of homomorphisms

Hr(S
U
∗ )

φ0−→ H0(C
∂
∗,r−1)

φ1−→ . . .
φm−3−→ Hm−3(C

∂
∗,r−m+2)

ψm−1−→ Hr−m+1(Cm−1,∗), (7)

given by the following sequence of images:

[ξ] 7−→ [∂ξ0] 7−→ . . . 7−→ [∂ξm−3] 7−→ [ξm−1],

where {ξp} is the resolution for the cycle ξ ∈ Zr(SU
∗ ).

Finally, taking the composition of all homomorphisms from (7), we obtain the desired con-
necting homomorphism ϕ = ψm−1ϕm−3 . . . ϕ1ϕ0 = (δ−1∂δ−1 . . . ∂δ−1∂ε−1)∗.

Theorem 2.2. Let U = {Ui} be a finite open cover of a topological space X, consisting of m > 2
elements. Then the correspondence of homology classes [ξ]→ [ξm−1], where ξ ∈ Zr(SU

∗ ) and {ξp}
is arbitrary U-resolution of cycle ξ, defines a connecting homomorphism

ϕ : Hr(S
U
∗ )→ Hr−m+1(Cm−1,∗).

For m > 2 this homomorphism generates a semi-exact long sequence of homology groups

. . .←−Hq−m+1(Cm−2,∗)
δ∗←− Hq−m+1(Cm−1,∗)

φ←− Hq(S
U
∗ )

ε∗←− Hq(C0,∗)
δ∗←− . . .

· · · δ∗←− Hq(Cm−1,∗)
φ←− Hq+m−1(S

U
∗ )

ε∗←− Hq+m−1(C0,∗)←− . . .
(8)

Proof. It remains to show that imϕ ⊂ ker δ∗ and im ε∗ ⊂ kerϕ. The first inclusion follows
from the equality δ∗[ξm−1] = [δξm−1] = [∂ξm−2] = 0. Let us prove the second inclusion. Let
[ξ] ∈ im ε∗. Then ξ = εξ0 for some U-chain ξ0 ∈ C0,q, and ∂ξ0 = 0. Therefore ϕ0[ξ] = [∂ξ0] = 0,
and hence ϕ[ξ] = 0.

Remark 2.7. In what follows, we will assume that the codomain of the connecting homo-
morphism is the subgroup Hsep

q−m+1(Cm−1,∗) = ker δ∗ ⊂ Hq−m+1(Cm−1,∗). The notation
Hsep
q (Cm−1,∗) will be discussed later. In this way,

ϕ : Hq(S
U
∗ )→ Hsep

q−m+1(Cm−1,∗).

Similarly, from the previous proof, we can conclude that imψm−1 ⊂ ker δ∗. Therefore, we further
assume that ψm−1 : Hm−3(C

∂
∗,q)→ Hsep

q−1(Cm−1,∗).

The proofs of the following properties of the homomorphisms ϕ0, ϕp+1 and ψm−1, from which
the connecting homomorphism is "glued", are completely standard. Moreover, conditions on the
homology appear as sufficient conditions for inverting the required vertical arrows of the complex
(4) at diagrammatic search.

Lemma 2.4. If Hq−1(C0,∗) ∼= 0, then the homomorphism ϕ0 : Hq(S
U
∗ ) → H0(C

∂
∗,q−1) is an

epimorphism. If Hq(C0,∗) ∼= Hq−1(C1,∗) ∼= 0, then it is a monomorphism.

Lemma 2.5. If Hq−1(Cp+1,∗) ∼= 0, then the homomorphism ϕp+1 : Hp(C
∂
∗,q)→ Hp+1(C

∂
∗,q−1) is

an epimorphism. If Hq−1(Cp+2,∗) ∼= 0, then it is a monomorphism.
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Lemma 2.6. The homomorphism ψm−1 : Hm−3(C
∂
∗,q)→ Hsep

q−1(Cm−1,∗) is an isomorphism.

Remark 2.8. For m = 2 the homomorphism ψ1 : Hq(S
U
∗ )→ Hsep

q−1(C1,∗) is only an epimorphism
in general case.

Considering that the composition of epimorphisms is an epimorphism, and the composition
of monomorphisms is a monomorphism, we obtain the following property of the connecting
homomorphism.

Theorem 2.3. For the connecting homomorphism

ϕ : Hq(S
U
∗ )→ Hsep

q−m+1(Cm−1,∗)

to be an epimorphism, it suffices to satisfy the condition

Hq−1(C0,∗) ∼= Hq−2(C1,∗) ∼= . . . ∼= Hq−m+2(Cm−3,∗) ∼= 0, (9)

and for ϕ to be a monomorphism, it suffices to satisfy the condition

Hq(C0,∗) ∼= Hq−1(C1,∗) ∼= . . . ∼= Hq−m+2(Cm−2,∗) ∼= 0. (10)

Remark 2.9. The homomorphism ϕ : Hq(S
U
∗ ) → Hsep

q−m+1(Cm−1,∗) is surjective if and only if
the sequence (8) is exact in the term Hq−m+1(Cm−1,∗).

Remark 2.10. The condition (9) can be replaced by the following weaker condition: if ξ ∈
Cp,q−p−1 such that ∂ξ = 0 and δξ = 0 (εξ = 0), then [ξ] = 0 in Hq−p−1(Cp,∗), p = 0, . . . ,m− 3.

3. Separating cycles

The notion of the separating cycle appeared in complex analysis in connection with a property
of the Grothendieck residue. Let ω be a meromorphic n-form on an n-dimensional complex-
analytic manifold M , and F1, . . . , Fn are polar hypersurfaces of ω, F = F1 ∪ . . . ∪ Fn. In a
sufficiently small neighborhood Ua of an isolated point a of the intersection Z = F1 ∩ . . . ∩ Fn
the form ω is given by

ω =
h(z) dz1 ∧ . . . ∧ dzn
f1(z) . . . fn(z)

, (11)

where h, f1, . . . fn are holomorphic germs at a, Fk|Ua
= {fk = 0}. The grothendieck residue of

the form ω at the point a is represented by the integral

resa ω =
1

(2πi)n

∫
γ(a)

ω, (12)

where γ(a) is a local cycle at a having the form

γ(a) = {z ∈ Ua : |f1(z)| = ε1, . . . , |fn(z)| = εn}. (13)

The orientation of γ(a) is determined by the condition d(arg f1) ∧ . . . ∧ d(arg fn) > 0. It is not
hard to see that γ(a) ∈ Zn(M \ F ).

The mentioned property of the residue (12) is as follows: it is zero if h belongs to the ideal
generated by f1, . . . , fn in the ring Oa of germs of holomorphic functions. This property is of
a topological nature. Indeed, if h = hjfj , then ω has poles only on the n − 1 hypersurfaces
Fk = {fk = 0}, k = 1, . . . [j] . . . , n, in the complement of which the n-cycle γ(a) becomes
homologically trivial. Indeed, γ(a) is a boundary of the (n+ 1)-chain σj = {|f1| = ε1, . . . , |fj | 6
εj , . . . , |fn| = εn} taken with a suitable orientation, so γ(a) ∼ 0. Therefore, according to Stokes’
formula, the integral (12) for the h = hjfj is zero.
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Definition 3.1. A n-dimensional cycle Γ ∈ Zn(M \ F ) separates hypersurfaces F1, . . . , Fn, if it
satisfies the conditions

Γ ∼ 0 in M \ (F1 ∪ . . . [j] . . . ∪ Fn) for all j = 1, . . . , n.

By the above, the local cycle γ(a) from the definition of the Grothendieck residue separates
the set of polar hypersurfaces of ω.

An important argument for the use of Grothendieck residues of meromorphic forms is their
rational computability in terms of a finite number of Taylor coefficients of functions h, f1, . . . , fn
at the point a. In this connection there is a problem of the representation of the integral of a
meromorphic form ω by residues. The topological formulation of this problem is as follows. Let
F = {F1, . . . , Fn} be a set of hypersurfaces in an n-dimensional complex-analytic manifold M .
Let us denote by F the union of these hypersurfaces, and by Z0 the discrete part of their
intersection Z = F1 ∩ . . . ∩ Fn. It is required to find out in which case the given n-cycle Γ in
M \ F is homologically expressed in terms of local cycles γ(a), a ∈ Z0. In view of the above, for
this it is necessary the cycle Γ separates the given set of hypersurfaces F .

We denote by H loc
n (M \ F ) the subgroup in Hn(M \ F ) generated by the classes of all local

cycles γ(a), a ∈ Z0. We also denote by Hsep
n (M \F ) the subgroup of classes of all cycles separating

the set of hypersurfaces F . We have

H loc
n (M \ F ) ⊂ Hsep

n (M \ F ).

We are interested in sufficient conditions on the manifold M and the collection of hypersurfaces F
under which Hsep

n (M \F ) = H loc
n (M \F ), that is, in which any separating cycle is homologically

represented in terms of local cycles.
Consider the space X =M \Z and its cover U formed by open sets Uj =M \Fj , j = 1, . . . , n.

We get the corresponding extended double complex (4) and the semi-exact sequence (8) for
q = m = n. Given the isomorphism of Theorem 1.1, this sequence can be written as

· · · ←− Hn(Cm−2,∗)
δ∗←− Hn(M \ F )

φ←− H2n−1(M \ Z)
ε∗←− H2n−1(C0,∗)←− . . . . (14)

The condition for separating the set F by a cycle Γ means that δΓ is an ∂-boundary in the
group Cn−2,n. So Hsep

n (M \ F ) = ker δ∗, which explains the previously used (see Remark 2.7)
notation for the subgroup Hsep

q−m+1(Cm−1,∗) = ker δ∗ ⊂ Hq−m+1(Cm−1,∗). Let us show that
H loc
n (M \ F ) ⊂ imϕ.

It suffices to show that each generator [γ(a)], a ∈ Z0, of the group H loc
n (M \F ) have preimage

in H2n−1(M \Z). For a fixed point a ∈ Z0, consider the (2n− 1)-dimensional sphere Sa centred
at the point a of a small radius. The class [Sa] can be represented as a cycle ∂Πa, where

Πa = {z ∈ Ua : |fi(z)| < εi, i = 1, . . . , n}, (15)

where the orientation of the special analytical polyhedron Πa is induced by the orientation of
the manifold M . Moreover, the boundary ∂Πa of the polyhedron Πa is the sum of its (n − 1)-
dimensional faces τj = {|f1| 6 ε1, . . . , |fj | = εj , . . . , |fn| 6 εn}, j = 1, . . . , n, taken with suitable
orientation, at that supp τj ⊂ Uj . Therefore, ∂Πa ∈ Z2n−1(S

U
∗ ), and for the cycle ∂Πa can be

built the U-resolution {ξp}. It is directly verified that terms of the resolution can be taken as
follows:

ξp(i0, i1, . . . , ip) = ±τi0 ∩ τi1 ∩ . . . ∩ τip .
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Moreover, the final term ξn−1 = ξn−1(1, . . . , n) of the resolution is the local cycle γ(a). So
ϕ[Sa] = ϕ[Πa] = [γ(a)], as required to prove. It also follows from the last reasoning that if the
groupH2n−1(M\Z) is generated by the classes of cycles Sa, a ∈ Z0, in particular ifH2n−1(M) ∼= 0

and Z = Z0, then H loc
n (M \ F ) = imϕ. This fact, with considering Remark 2.10, proves the

following theorem.

Theorem 3.1. Let H2n−1(M) ∼= 0 and let the intersection Z = F1 ∩ . . . ∩ Fn be discrete. Then
the groups Hsep

n (M \F ) and H loc
n (M \F ) are coincide if and only if the semi-exact sequence (14)

is exact in the term Hn(M \ F ).

Remark 3.1. For n = 2 the sequence (14) turns into a long exact Mayer–Vietoris sequence.
Therefore, under the assumptions made on the manifold and the set of hypersurfaces, the equality
H loc

2 (M \ F ) = Hsep
2 (M \ F ) is always the case.

Consider (see Remark 2.7) the connecting homomorphism ϕ from the sequence (14) as the
homomorphism

ϕ : H2n−1(M \ Z)→ Hsep
n (M \ F ).

Sequence (14) is exact in the term Hn(M \F ) if and only if ϕ is an epimorphism (see Remark 2.9).
Considering Theorem 2.3, we obtain the following sufficient condition.

Theorem 3.2. Let H2n−1(M) ∼= 0 and let the intersection Z = F1 ∩ . . . ∩ Fn be discrete. Then
for the equality of groups Hsep

n (M \ F ) = H loc
n (M \ F ) it suffices to satisfy the condition

H2n−2(C0,∗) ∼= H2n−3(C1,∗) ∼= . . . ∼= Hn+1(Cn−3,∗) ∼= 0. (16)

Remark 3.2. In last two theorems, instead the triviality of the group H2n−1(M) and the
discreteness of the intersection Z = F1 ∩ . . .∩Fn, we can assume the following weaker condition:
the group H2n−1(M \ Z) is generated by classes of cycles Sa, a ∈ Z0. The condition (16) can
also be replaced (see Remark 2.10) by the following weaker condition: if ξ ∈ Cp,2n−p−2 such that
∂ξ = 0 and δξ = 0 (εξ = 0), then [ξ] = 0 in group H2n−p−2(Cp,∗), p = 0, . . . , n− 3.

As a consequence of Theorem 3.2, it is easy to obtain the following theorem on separating
cycles in Stein manifolds which was proved by Tsikh.

Theorem 3.3 (see [5]). Let M be a Stein manifold of dimension n. Then the equality of groups
Hsep
n (M \ F ) = H loc

n (M \ F ) holds for any set F = {F1, . . . , Fn} of hypersurfaces in M .

Proof. As it was noted in [5], it suffices to prove the statement of the theorem under the following
assumptions: 1) H2n−1(M) ∼= 0; 2) M \ Fj , j = 1, . . . , n, are the Stein manifolds; 3) the
intersection Z = F1 ∩ . . . ∩ Fn is discrete. It remains to note that all possible intersections of
the sets Uj = M \ Fj are also Stein manifolds. Condition (16) follows from the fact that for an
arbitrary Stein manifold X the homology groups (with coefficients in the field) Hq(X) are trivial
for q > dimX.

Remark 3.3. In the case of the Stein manifold M and an arbitrary set of hypersurfaces F in
M the connecting homomorphism ϕ : H2n−1(M \ Z) → Hsep

n (M \ F ) is an isomorphism. The
injectivity follows from the fulfillment of conditions of the form (10).
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Связывающий гомоморфизм и разделяющие циклы
Роман В. Ульверт
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Аннотация. Обсуждается построение длинной полуточной последовательности Майера–
Виеториса для гомологий объединения конечного числа открытых подпространств. Эта последо-
вательность применяется для получения топологических условий, при которых интеграл от меро-
морфной дифференциальной формы в многомерном комплексном многообразии представляется в
виде суммы вычетов Гротендика. Для существования такого представления интеграла необходи-
мо, чтобы цикл интегрирования разделял семейство полярных гиперповерхностей формы. Условие
разделения в ряде случаев оказывается достаточным условием для представления интеграла в
виде суммы вычетов. Ранее при описании таких случаев (в работах А.К.Циха, А.П. Южакова,
Р.В.Ульверта и др.) ключевым оказывалось условие штейновости многообразия. Основным ре-
зультатом данной статьи является ослабление этого условия.

Ключевые слова: последовательность Майера–Виеториса, вычет Гротендика, разделяющий
цикл.
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