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We theoretically study the Talbot effect resulting from Raman-induced grating based on periodic
spatial modulation of the Raman gain and dispersion in the field of a standing pump wave. Features
of integer and fractional Talbot effect are demonstrated for 1D and 2D Raman-induced gratings.
It is shown that the intensity of diffraction images can increase due to Raman amplification in the
grating. Glass-shaped diffraction patterns are demonstrated for 2D gratings. It is also shown that
in the vicinity of the Talbot planes there are planes in which the diffraction patterns are spatially
compressed and the intensity becomes greater. The results expand the possibility of using the Talbot
effect in various applications.

PACS numbers: 42.50.Gy, 42.50.Hz, 42.65.Dr, 42.79.Dj

I. INTRODUCTION

The Talbot effect (TE) (also referred to as self-
imaging or lensless imaging) is a near-field diffraction
phenomenon. The effect arises when spatially periodic
structures (gratings) are illuminated by light wave [1, 2].
TE can give self-imaging at certain periodic planes (the
Talbot planes), where imaging of a grating is periodically
repeated with a period ZT = 2Λ2/λ (the Talbot’s length)
in the direction of light propagation (Λ is the grating pe-
riod, λ is the wavelength of the illuminating light). This
effect is also called the integer Talbot effect. At the dis-
tance Z = (p/q)ZT (p and q are positive integer, p < q),
diffractive patterns are similar to the grating but the pe-
riod of the image is different from that of the object.
This property is referred to as the fractional Talbot ef-
fect (FTE).

These phenomena are the consequences of interference
between diffraction orders, which acquire a quadratic
phase under Fresnel propagation. These effects have in-
teresting applications in many different areas, for exam-
ple, in optical imaging and computing [1], optical mi-
croscopy [3], Talbot array illumination [4, 5], and lithog-
raphy [6]. The Talbot effect has also been demon-
strated in atomic waves [7], Bose-Einstein condensates
[8], waveguide arrays [9], plasmonic Talbot effect [10],
exciton polaritons [11], and metamaterials [12]. In addi-
tion, the Talbot effect has been extended to the temporal
Talbot effect [13], nonlinear Talbot effect [14], angular
Talbot effect [15], and PT-symmetric Talbot effect [16].

In most of the existing works the grating to be im-
aged is usually material. Recently, the Talbot effect was
reported using a nonmaterial grating [17–19]. This grat-
ing is an electromagnetically induced grating (EIG) [20].
It is based on electromagnetically induced transparency
(EIT) phenomenon [21]. Such an induced grating leads
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to self-images, which are called the electromagnetically
induced Talbot effect (EITE). EITE offers a nondestruc-
tive and lensless way of imaging ultracold atoms and
molecules in the Fresnel diffraction region [17]. It pos-
sesses certain distinguishable features due to the light-
induced atomic coherence in atomic media and allows
easy control of different experimental parameters in order
to get an optimal configuration for desired applications.
An atomic imaging scheme based on the second-order
two-photon EITE is proposed in [22].

Another type of a lensless imaging scheme based on
electromagnetically induced holographic imaging is pro-
posed in [23]. In contrast to the EITE scheme [17], this
one allows both the amplitude and phase information of
the generated EIG to be imaged with the characteristic
of the arbitrarily controllable image variation in size.

In this paper, we propose another type of EITE which
is based on a Raman-induced grating (RIG) in atomic
media [24–26]. Such a grating occurs during Raman in-
teraction of the probe field with a standing-wave pump
field in atomic media. Unlike EIGs based on EIT, RIG
is based on spatial modulation of the Raman gain and
refractive index for the probe wave in a pump standing-
wave. In the paper [27], a Fraunhofer diffraction was
investigated, when the probe field propagates normal to
the standing wave, and RIG can operate as a diffraction
grating. Herein, we study the features of integer and
fractional Talbot effect from one (1D) and two (2D) di-
mensional Raman-induced gratings. These phenomena
are observed in Fresnel diffraction in the near field and
are fundamentally different from the Fraunhofer diffrac-
tion in the far field. This work may expand the variety
of applications in imaging techniques and be useful for
optical lithography as well.

II. MODEL

We consider a homogeneously broadened medium con-
sisting of an ensemble of three-level atoms in a Λ con-
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FIG. 1. (a) A three-level Λ-type atomic system for Raman
induced grating. (b) Configuration of a standing-wave pump
field.

figuration, with two metastable lower states |0〉 and |2〉
(Fig. 1a). Initially, the entire population is distributed in
the ground state |0〉. Two ground states |0〉 and |2〉 are
coupled to the excited state |1〉 via a standing-wave pump
field of angular frequency ω1 with a large detuning Ω1,
and a weak probe field of angular frequency ω2 with a de-
tuning Ω2. In the case of a 1D grating the pump field con-
sists of two fields that propagate at an angle 2Θ symmet-
rically with respect to z direction and, when intersecting
generate a standing wave within the medium along the x
direction with a spatial period Λ = λ1/[2 sin Θ], depend-
ing on the angle Θ (Fig. 1b). The probe field propagates
along the z direction normal to the standing wave. For a
2D grating the pump field is to be a combination of two
orthogonal standing-waves of the same frequency, and the
probe field propagates normal to the the x − y plane in
intersection region of the two orthogonal standing pump
waves. In the approximation of a thin grating [20], when
diffraction within the bulk of the medium can be ignored,
the probe field E2(x, y, L) at the output surface z = L is

E2(x, y, L) = E2(z = 0) exp(−k2χ
′′

2L) exp(ik2χ
′

2L), (1)

Here E2(z = 0) is the amplitude of the probe plane-wave
at the input surface, L is the medium length, k2 = ω2/c,

χ
′

2 = Reχ2, χ
′′

2 = Imχ2.
The linear macroscopic susceptibility χ2(ω2) of the sys-

tem at the probe frequency ω2 is expressed as [27]

χ2(ω2) = αr
γ12
Ω2

1

|Gp|2

(Ω20 + iγ20 + |Gp|2/Ω1)
, (2)

where Gp(x) = G1 sin(πx/Λ) is the Rabi frequency of
the pump field in the case of 1D grating and Gp(x, y) =
G1[sin(πx/Λx) + sin(πy/Λy)] for the 2D grating, where
Λx,y is the period of a standing wave along x and y
axes. αr = |d12|2N/2~γ12, Ω1,2 = ω1,2 − ω10,12 is one-
photon detuning, Ω20 = Ω1 − Ω2 is the Raman detun-
ing, ωmn, γmn and dmn are the frequency, half width,
and matrix dipole moment of transition, respectively;
~ is the Plank constant. Near the Raman resonance
(|Ω20| � |Ω1|, |Ω2|) the detuning Ω2 ≈ Ω1. Here we
assume that |Ω1| � γ10, G1 and that the probe field is
weak considering that all atoms remain in the ground
state |0〉 in the process of interaction. It can be seen
from (2) that by changing the intensity and frequency
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FIG. 2. Output profile of the probe field amplitude |T (x, L)|
(a) and the phase Φ(x, L) (b) as a function of x within a single
space period. The parameters are G1 = 2 (solid curves) and
G1 = 2.5 (dashed curves), Ω20 = 40.

of the pump field, one can effectively control the suscep-
tibility χ2(ω2). When |Gp|2/|Ω1| > γ20 the pump field
induces an ac-Stark shift of the state |1〉, which leads to a
shift of the Raman resonance by ΩS = |Gp|2/Ω1 depend-
ing on the transverse coordinates. Since the Stark shift
is proportional to |G1|2, then the amplitude of perturbed
resonance increases significantly in comparison with the
unperturbed one. From (2) and (1), it can be seen that
the Raman gain and the refractive index for the probe
field are periodically modulated in a space along the di-
rection x in the case of 1D grating or along x and y
directions for 2D grating. .

III. RESULTS AND DISCUSSION

In our calculation we used the parameters for D1 line
of sodium atoms and levels |0〉 and |2〉 correspond to the
long-lived superfine sublevels of the ground state 2S1/2.
The following atomic parameters are used: γ10/2π = 10
MHz, γ21 = γ10, γ20 = 10−3γ10. The Rabi frequency
G1 and one-photon detuning δ1 are given in γ10 units,
the Raman detuning Ω20 in the units γ20, Ω1 = −100,
the atomic media length L = 10 is given in the units
z0 = 1/k2αr, and the grating period is Λ = 20λ1.

A. 1D grating

Consider the case of a 1D grating. Let’s introduce
the complex transmission (gain) function T (x, L) =
E2(x, L)/E2(z = 0) = |T (x, L)| exp(iΦ(x, L), where

|T (x, L)| = exp(−k2χ
′′

2L) is the amplitude and Φ(x, L) =

exp(ik2χ
′

2L) is phase of the transmission function. Typ-
ical plots of |T (x, L)| and Φ(x, L) as a function of x are
shown in Fig. 2. It is clear that the probe field is ampli-
fied and the gain depends on the transverse coordinate
x and reiterates along x with a period Λ controlled by
the standing pump wave. Thus, an optical grating (non-
material) is induced on the output plane on which the
probe wave diffracts. This grating is a combination of an
amplitude (gain) and a phase (refraction) gratings, that
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FIG. 3. Normalized intensity distributions of the probe field
at various distances within a two-space period. The parame-
ters are G1 = 2 (a), G1 = 2.5 (b) and Ω20 = 40.

is hybrid one. The period of the grating Λ can be made
arbitrarily larger than the wavelength λ2 of the probe
field by varying the angle between the two pump fields
generating a standing wave. The grating profile on the x-
coordinate depends on the standing wave amplitude G1

and Raman detuning Ω20. The transmission profile rep-
resents one or two symmetrical peaks, which is due to
the ac-Stark shift of the Raman resonance induced by
the pump field (Fig. 2a). The position of the peaks cor-
responds to the perturbed Raman resonance (with the
account of the Stark shift). The solid blue line in Fig. 2a
corresponds to the case when a perturbed Raman res-
onance occurs for the pump field at the center of the
period.

With the increasing pump field, a spatial splitting of
the peak occurs (dashed red line), and the larger the
G1, the stronger the peaks shift and they are spatially
compressed. The phase of the transmission function is
also spatially modulated along the x direction (Fig. 2b).

Using the Kirchhoff diffraction integral under the Fres-
nel (paraxial) approximation [28], the output probe field
E2(X,Z) for a 1D grating at distance Z from the output

surface of the medium can be expressed as

E2(X,Z) =
1 + i√
2λ2Z

× e−ik2Z

∫ ∞
−∞

T (x, L) exp

{
− ik2

2Z
(x−X)2

}
dx, (3)

where x and X are the coordinates in the object and
observation planes, respectively.

Completing the integral in (3) with the Fourier series
expansion of T (x, L), we can obtain the Talbot effect as

E2(X,Z) =

ie−ik2Z
∑
n

Cn exp(i2πnX/Λ− i2πn2Z/ZT ), (4)

where ZT = 2Λ2/λ2 is the Talbot length, Cn – is the
Fourier coefficient (or the amplitude of the n-th har-
monic).

From equation (4), we can see the typical features
of the Talbot effect on a RIG. At a certain distance
Z = mZT , where m denotes a positive integer, the field
amplitude matches the amplitude at the output plane
of the RIG (the self-images) and all diffraction orders
are in phase. For Z = ZT /2 the field amplitude is
exactly the same as the amplitude at the output RIG
plane, but the phase is shifted by half a period. Fig-
ure 3 shows typical transverse profiles of the normalized
intensity I2 = I2(Z)/I2(z = 0) of a diffracted wave at
distances Z = (p/8)ZT (p = 0, 1, 2 . . . 8) from the grat-
ing. It can be seen that their intensity can be substan-
tially higher than the intensity of the radiation incident
on the medium. This is due to the Raman gain in the
grating. For fractional ZT , the field amplitude and the
period undergo change and the diffraction pattern is no
longer a replica (self-image) of the grating, but it is peri-
odic in nature. With fractional values of ZT , the period
changes, and the intensity distribution is no longer a RIG
self-image. Note that in Fig. 3b the number of peaks in
one period is twice the number in Fig. 3a. This is due to
splitting of the transmission function T (Fig. 2b) caused
by the Stark effect.

Figure 4a shows intensity distribution of the diffrac-
tion pattern on X and Z coordinates near the Talbot
plane Z = ZT . It can be seen that there is a plane
Z < ZT (dash-dotted curve), where the maximum in-
tensity is greater than in the Talbot plane (solid curve),
and spatial distribution on the transverse coordinate be-
comes narrower, that is, spatial compression occurs. This
behavior takes place as for integer and fractional TE
(Fig. 4b,c). Thus, near the Talbot planes there are planes
that can be called the planes of maximum intensity.

To understand this result, introduce the notation Z =
ZT − a, where a is the distance from the ZT plane to the
maximum intensity plane, and rewrite formula (4) as

E2(X, a) ∼
∑
n

Cn exp(i2πnX/Λ + i2πn2a/ZT ), (5)
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FIG. 4. (a) Normalized intensity distribution of the diffrac-
tion pattern as a function of X and Z near the Talbot plane
Z = ZT within a single-space period. The solid curve (red)
corresponds to the intensity distribution in the Talbot plane,
the dash-dotted (blue) line corresponds to the maximum in-
tensity plane. (b, c) Intensity distribution I2(X) in the planes
of maximum amplitude, at a distance of a = −10−3ZT from
the planes Z = ZT /4 (b) and Z = ZT /8 (c), (dash-dotted
blue curves). For comparison, an intensity profile is shown
in Z = ZT /4 (b) and Z = ZT /8 (c) (solid red curves). The
parameters are G1 = 2 and Ω20 = 40.

Formula (5) for E2(X,Z) in the plane Z = ZT − a dif-
fers from the field in the Talbot plane by the additional
phase 2πn2a/ZT , which can renormalize the phases of the
harmonics in such a way that spatial compression of the
diffraction patterns occurs, as can be seen from Fig. 4.

B. 2D grating

Consider now the case of a 2D grating. In this case
the pump field is formed by two standing waves that are
directed along the x and y axes (perpendicular to each
other). The probe field propagates along the z direction
perpendicular to the x− y plane. In this case, the trans-
mission function T (x, y, L) will be periodic in x and y di-
rections T (x, y, L) = T (x+ 2Λx, y, L) = T (x, y+ 2Λy, L)
with the period 2Λx,y. Figure 5 shows two typical profiles
of the transmission function |T (x, y, L)| for a 2D grat-
ing on the output face of the medium. The parameter
G1 is chosen such that there is no spatial splitting in
|T (x, y, L)|, in the former case (Fig. 5a) whereas in the
latter case, (Fig. 5b) |T (x, y, L)| splits. In the former
case, the intensity distribution has one peak structure,
and in the latter case, it is glass-shaped. It can be seen

that for the 2D grating, the period in the x and y direc-
tions has doubled compared to the 1D grating.

For a 2D grating the probe field E2 at a distance Z
from the grating is

E2(X,Y, Z) =
i

λ2Z
e−ik2Z

×
∞∫∫
−∞

T (x, y, L) exp

{
− ik2

2Z
[(x−X)2 + (y − Y )2]

}
dxdy.

Expanding T (x, y, L) in a Fourier series, yields the
diffracted amplitude E2(X,Y, Z) in the form

E2(X,Y, Z) =

e−ik2Z
∑
n,m

Cn,m exp(i2πnX/Λ1x + i2πmY/Λ1y)

exp(−iπn2λ2Z/Λ2
1x − iπm2λ2Z/Λ

2
1y). (6)

Here Λ1x,1y = 2Λx,y is the spatial period of T (x, y, L)
along directions x and y, respectively.

Note that 2D diffraction grating cannot be considered
as the superposition of two 1D gratings in contrast to
conventional material gratings. This is due to the fact
that the transmission of the RIG is a nonlinear function
of the pump field, depending on the x and y coordinates,
and therefore cannot be represented as a product of func-
tions that depend only on one coordinate.

From Eq. (6), we can see that TE is observed for two
cases. The first case is Λ1x = Λ1y = Λ1 and the sec-
ond one is Λ1x/Λ1y = a/b, where a and b are mutu-
ally prime integers. The distance at which self-imaging
is observed is called the Talbot length. In the former
case the Talbot length is ZT = 2Λ2

1/λ2. In the lat-
ter case, when Λ1x/Λ1y = a/b, the Talbot length is
ZT = 2b2Λ2

x/λ2 = 2a2Λ2
y/λ2. Under these conditions all

diffraction orders are in phase and the object function is
reproduced. From (6) it follows that

E2(X,Y, Z) '
∑
n,m

Cn,m exp(i2πnX/Λ1x+i2πmY/Λ1y)

× exp[−2iπ(b2n2 + a2m2)Z/ZT ].
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FIG. 5. Transmission function profiles for a 2D grating on
the output face of the medium |T (x, y, L)| for G1 = 1 (a),
and G1 = 1.03 (b).
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The analysis shows that the Fourier coefficients Cn,m

are nonzero only if n and m have the same parity. Then
two options are possible:

1) a and b are odd (including the case a = b = 1),
then (b2n2 + a2m2) is always even. In this case, the
field distribution in the Z = ZT and Z = ZT /2 planes
coincides with that on the output plane of the RIG, as
shown in Fig. 6a,b, (for the case of a = 5, b = 7), and
is shifted by half the period in the plane Z = ZT /4, as
shown in fig. 6c,d. Figure 6e,f shows Talbot images in

the Z = ZT /8 plane.
2) a and b have different parity, then the factor

(b2n2 + a2m2) may have different parity, and the field
distribution is similar to the 1D case, that is, for Z = ZT ,
the field distribution exactly coincides with the field dis-
tribution on the output plane of the RIG, is shifted by
half a period for Z = ZT /2, has a period of two times
smaller for Z = ZT /4. Thus, the behavior of diffraction
patterns for fractional TE in 2D gratings is fundamen-
tally different from the 1D case.

IV. CONCLUSION

In conclusion, we have studied, for the first time to
the best of our knowledge, the features of integer and
fractional Talbot effect on 1D and 2D Raman-induced
gratings in different conditions and shown how to control
the diffraction pattern in the Talbot planes. In contrast
to conventional gratings, the intensity of diffraction pat-
terns (Talbot images) under certain conditions can be
enhanced by Raman amplification in the grating. It is
shown that near the Talbot planes there are planes in
which the intensity is greater than in the Talbot planes,
and the degree of their spatial localization is greater. It
is shown that single-peak and glass-shaped Talbot im-
ages can be obtained on a two-dimensional grating. The
predicted effects are the result of the combined action of
the amplitude and phase gratings.The dependence of the
field distribution in the Talbot fractional planes for the
2D grating on the ratio of the periods along the x and y
coordinates is determined. The results obtained may be
of interest for microscopy using the Talbot effect, Talbot
array illumination, photolithography and etc.
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