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Stability control of Runge-Kutta numerical schemes is researched for increasing efficiency while integrat-
ing stiff problems. The implementation of the algorithm for determining stability polynomials coefficients
using the GMP library is given. Shape and size of the stability region of method can be preassigned using
presented algorithm. Sets of first-order methods with extended stability domains are built. The results
of electrical circuits problems simulation show increase of the efficiency of the constructed first-order
methods in comparison with methods of higher order.
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Introduction

Systems of ordinary differential equations (ODEs) describe lots of dynamic processes and
arise when solving different problems in the field of chemistry, physics, etc. One of the areas
where ODEs may be effectively applied is theory of electric circuit theory. Any changes in electric
circuit lead to transient processes where some voltage swells, electromagnetic oscillations, extra
currents which may do damage to devices are very likely to appear. At the same time transient
processes occur in electrical generators, other electric circuits where they are supposed to be. A
large class of electric circuits problems is described with stiff systems of ODEs.
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When solving initial value problems of stiff ODEs in some cases explicit methods are required
to be applied, because using of L-stable methods needs inversion of Jacobi matrix of the system
which defines overall computational costs [1–2]. At the same time explicit methods do not require
Jacobi matrix computation and they will be more preferable to use for problems which stiffness
ratio is not so high.

At present time algorithms of variable structure which include explicit and implicit methods
are built [3]. The former are used on the transition region where the integration step is restricted
by accuracy criterion and there is no requirements for the method on having large stability
interval. The latter are for the settling regions where great stability interval gives an opportunity
to pass the integration interval for "several steps". Nevertheless these algorithms do not show
high efficiency on solving high dimension systems of ODEs because of mentioned reasons.

Variable order algorithms based on explicit schemes exclusively where there is no need to use
high-order methods on the settling regions are built in [4]. High speed of computations can be
achieved by using there low-order methods with extended stability intervals which in fact play
part of implicit method from the point of view of the stability interval length.

Low-order methods with large stability interval are needed for constructing such algorithms.
In addition the more number of stages of method (and therefore the higher stability polynomial
degree m) the bigger the stability interval is. The stability polynomials of degree up to m = 13 are
constructed in [2]. The algorithm to determine the stability polynomial coefficients is developed
such that the corresponding explicit Runge-Kutta methods have a predetermined shape and size
of the stability region as shown in [7].

Here implementation of the algorithm of obtaining the stability polynomial coefficients using
library for arbitrary precision arithmetic GMP is given. Set of the first-order methods with
extended stability intervals is built. Numerical simulation of Van der Pol oscillator showed
higher efficiency of proposed algorithms in comparison to Merson method of fourth order of
accuracy.

1. Explicit Runge-Kutta Methods

We consider the Cauchy problem for the stiff system of ordinary differential equations

y′ = f(t, y), y
(
t0
)
= y0, t0 ≤ t ≤ tk, (1)

where y и f are real N -dimantional vector functions, t is an independent variable. In [2] the
authors propose to solve (1) with explicit Runge-Kutta methods

yn+1 = yn +
m∑
i=1

pmiki, ki = hf
(
tn + αih, yn +

i−1∑
j=1

βijkj

)
, (2)

where ki, 1 ≤ i ≤ m, are the stages of the method, h is an integration step, pmi, αi, βij , 1 ≤ i ≤ m,

1 ≤ j ≤ i− 1, are numerical coefficients that define stability and accuracy characteristics of the
scheme (2). For the sake of simplicity further we consider the Cauchy problem for the autonomous
system of ordinary differential equations

y′ = f(y), y
(
t0
)
= y0, t0 ≤ t ≤ tk, (3)
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For solving (3) we also may write formulas (2) in the following form:

yn,i = yn +
i∑

j=1

βi+1,jkj , 1 ≤ i ≤ m− 1, yn+1 = yn +
m∑
i=1

pmiki, (4)

where ki = hf
(
yn,i−1

)
, 1 ≤ i ≤ m, yn,0 = yn. The results given below can be used for non-

autonomous systems if in (2) we assume

α1 = 0, αi =
i−1∑
j=1

βij , 2 ≤ i ≤ m. (5)

Below we need matrix Bm with elements bij in the form [2]

b1i = 1, 1 ≤ i ≤ m, bki = 0, 2 ≤ k ≤ m, 1 ≤ i ≤ k − 1,

bki =

i−1∑
j=k−1

βijbk−1,j , 2 ≤ k ≤ m, k ≤ i ≤ m, (6)

where βij are numerical coefficients of the scheme (2) or (4).
The stability of one-step methods is usually investigated by applying a Runge–Kutta method

to a linear scalar equation known as Dahlquist’s equation

y′ = λy, y
(
0
)
= y0, t ≥ 0, (7)

with complex λ, Re
(
λ
)
< 0. The variable λ is considered as a certain eigenvalue of the Jacobi

matrix of the problem (1) or (3). Applying numerical scheme (4) to solve the Dahlquist’s equation
we get

yn+1 = Qm(z)yn, z = hλ, Qm(z) = 1 +

m∑
i=1

cmiz
i, cmi =

m∑
j=1

bijpmj , 1 ≤ i ≤ m. (8)

Denoting Cm =
(
cm1, ..., cmm

)T и Pm =
(
pm1, ..., pmm

)T
, the latter equality (8) we can rewrite

in the form
BmPm = Cm, (9)

where the elements of the matrix Bm are defined in (6). For internal numerical schemes (4) we
have

yn,k = Qk

(
z
)
yn, Qk

(
z
)
= 1 +

k∑
i=1

ckiz
i, cki =

k∑
j=1

bijβk+1,j , 1 ≤ k ≤ m− 1. (10)

Using denotions βk =
(
βk+1,1, ..., βk+1,k

)T и ck =
(
ck1, ..., ckk

)T we get that the coefficients βij

of internal schemes (4) and the coefficients of corresponding stability polynomials are connected
with formulas

Bkβk = ck, 1 ≤ k ≤ m− 1. (11)

From the comparison of (6) and (10) it follows that bki = ci−1,k−1, i.e. the elements of
(k+1)–th column of matrix Bm equal to coefficients of stability polynomial Qk

(
z
)
. Hence, if

the coefficients of the stability polynomials of the basic and intermediate numerical schemes are
defined, then the coefficients of methods (4) are unambiguously determined from linear systems
(9) and (11) with upper triangular matrices Bi, 1 ≤ i ≤ m.
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Expansions of the exact and approximate solutions in the Taylor series in powers of h have
the form

y
(
tn+1

)
= y

(
tn
)
+hf +

h2

2
f ′f +O

(
h3

)
,

yn+1 = yn+
( m∑
j=1

b1jpmj

)
hf+

( m∑
j=2

b2jpmj

)
h2f ′

nfn +O
(
h3

)
, (12)

where the elementary differentials are computed on the exact y
(
tn
)

and approximate yn solutions,
respectively. Comparison between relations (12) under assumption that y

(
tn
)
= yn shows that

numerical formula (4) has the first order of accuracy, if
m∑
j=1

b1jpmj = 1. Hence, to design m-stage

methods of the first accuracy order, it is necessary to set cm1 = 1.

2. Stability Polynomials

Let two integer number k и m, k ≤ m be given. Consider the polynomial

Qm,k(x) = 1 +
k∑

i=1

cix
i +

m∑
i=k+1

cix
i, (13)

where the coefficients ci, 1 ≤ i ≤ k, are given and ci, k+1 ≤ i ≤ m, are free. The coefficients ci,
1 ≤ i ≤ k, are usually defined from the approximation requirements. Therefore, for definiteness
we assume ci = 1/i!, 1 ≤ i ≤ k below.

Denote extremum points of (13) as x1, . . . , xm−1, where x1 > x2 > · · · > xm−1. Unknown
coefficients ci, k+1 ≤ i ≤ m, can be obtained from the condition that the polynomial (13) takes
on predefined values at extremum points xi, k ≤ i ≤ m− 1, i.e.

Qm,k

(
xi

)
= Fi, k ≤ i ≤ m− 1, (14)

where F
(
x
)

is a preassigned function, Fi = F
(
xi

)
. For this purpose consider the algebraic system

of equations in variables xi, k ≤ i ≤ m− 1, and cj , k + 1 ≤ j ≤ m,

Qm,k

(
xi

)
= Fi, Q

′
m,k

(
xi

)
= 0, k ≤ i ≤ m− 1, Q′

m,k =
m∑
i=1

icix
i−1. (15)

We rewrite (15) in the form that is convenient for computations. Let y, z, g и r denote
vectors with components

yi = xk+i−1, zi = ck+i, gi = Fk+i−1 − 1−
k∑

j=1

cjy
j
i ,

ri = −
k∑

j=1

jcjy
j−1
i , 1 ≤ i ≤ m− k, (16)

Let E1, ..., E5 denote diagonal matrices with elements on the mail diagonal in the form

eii1 = k + i, eii2 = 1/yi, e
ii
3 =

k∑
j=1

jcjy
j−1
i +

m−k∑
j=1

(k + j)zjy
k+j−1
i ,

– 322 –



Journal of Siberian Federal University. Mathematics & Physics 2009, 2(3), 319–3276

eii4 =
k∑

j=2

j(j − 1)cjy
j−2
i +

m−k∑
j=1

(k + j)(k + j − 1)zjy
k+j−2
i , (17)

eii5 = (−1)k+i−1, 1 ≤ i ≤ m− k,

Let A denote matrix aij = yk+j
i , 1 ≤ i, j ≤ m − k. The elements of vectors (16), matrices (17)

and A depend on numbers m and k, where

g = g
(
y
)
, r = r

(
y
)
, E2 = E2

(
y
)
, E3 = E3

(
y, z

)
, E4 = E4

(
y, z

)
, A = A

(
y
)
.

Then, we can rewrite the problem (15) in the form

Az − g = 0, E2AE1z − r = 0. (18)

System (18) is ill-conditioned that leads to some difficulties on applying for its solution the fixed-
point iterations. For convergence of the Newton’s method it is necessary to obtain somehow
good initial values that in this case is a separate difficult problem.

If we assume in (15) that Fi = (−1)i, k ≤ i ≤ m−1, we find the polynomial with the maximal
length of stability interval. In this case the problem of computation of initial value y0 is solved
using values of the Chebyshev polynomial at extremum points over interval [−2m2, 0], where m

is the degree of polynomial (13). That values can be computed using the formula

yi = m2[cos(iπ/m)− 1], 1 ≤ i ≤ m− 1. (19)

Substituting (19) in the system (17), we get coefficients of the Chebyshev polynomial,
for which

∣∣Qm1

(
x
)∣∣ ≤ 1 on x ∈ [−2m2, 0]. For any k (19) can be taken as the initial val-

ues and according to numerical computations there is good convergence rate in this case. If
Fi ̸= (−1)i, k ≤ i ≤ m− 1, then the choice of initial values is quite a difficult problem.

Let us describe a way to solve (18) that does not require good initial values. Apply the
relaxations for the numerical solution of (18). The main idea of the relaxations is that for
steady-state problem we run unsteady-state process which solution settles to the solution of the
initial problem. Consider the Cauchy problem

y′ = E5

(
E2AE1A

−1g − r
)
, y

(
0
)
= y0. (20)

Apparently, after the determination of stationary point of (20) the coefficients of a stability
polynomial can be computed from the system (18). Notice, that due to using matrix E5 all
the eigenvalues of the Jacobi matrix of (20) have negative real components, i.e. problem (7) is
stable. From the numerical results it follows that (20) is a stiff problem. Methods for solving such
problems use calculation of the Jacobi matrix which cause difficulties on solving (20). Therefore,
let us apply the second accuracy order method using numerical calculation and freezing the
Jacobi matrix [5–6] to solve (20).

With some work it can be shown that with m moving higher the polynomial coefficients tend
to zero. Coefficients ci, k + 1 ≤ i ≤ m, were computed using algorithm [2] up to the polynomial
degree m = 13. Moreover, algorithm of obtaining polynomial coefficients on the interval [−1, 1]

is described in [7]. In this case coefficients ci grow with slower speed and it is possible to build
polynomials of degrees m > 13.
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3. The implementation of the algorithm for obtaining stabil-
ity polynomials coefficients using the GMP library

It is not difficult to see that the coefficient cm of stability polynomial (13) tends to zero as
m increases and in particular if m = 13 and k = 1 the value of cm is about 10−26. Computation
of problem (20) where m > 13 with double precision is very hard to do because of round-off
errors. In order to compute polynomial coefficients of higher degrees m in [8] algorithm was
implemented using qd library that is described in [9].

The qd library allows to perform computations with higher accuracy. Standard data type
double which allows to perform computations with double precision is restricted by 53 bites
of binary mantissa and provides accuracy of 16 decimal digits, whereas qd data type dd_real

has 106–bit mantissa that provides accuracy of 32 decimal digits. In fact, the number of data
type dd_real is a programmed concatenation of two double numbers, where mantissa becomes
doubled, but the range of values that can be represented using new data type stays the same
(from 10−308 to 10308). Despite this restriction accuracy of representing number increases.

With the use of this library the coefficients of polynomials up to degree m = 35 were computed
in [8]. Nevertheless, the qd library has some disadvantages. Firstly, accuracy of representing
numbers is restricted because of program implementation of data types. Secondly, it can be used
only in Unix systems. Moreover, the qd library is written in the C ++ programming language.
That is why algorithms using this library could be slower than the ones realised in low-level
programming languages (for example, C).

Here we show numerical results of implementation of the algorithm of obtaining polynomial
coefficients with help of the library for arbitrary precision arithmetic GMP . This library provide
accuracy of computations that is restricted only by the random access memory size. It is cross-
platform and support operations on integer, rational and real numbers. Besides, the GMP library
is written in the C programming language, which potentially increase the speed of computations.

Using the GMP library we managed to compute the polynomial coefficients up to degree
m = 40. At higher degrees there are some difficulties that may be related to the initial conditions
choice for the problem (20).

4. Stability Regions Construction

Let us now describe the effect of the function F on the size and shape of the stability region.
If we assume Fi = (−1)i, k ≤ i ≤ m − 1, than the stability interval length is known to be∣∣γm∣∣ = 2m2. In this case, we get the maximum stability interval length along the real axis
for given m. The stability region of such methods is almost multiply connected which leads
to reducing of stability interval length because of some potential rounding errors provoking
appearing of small imaginary parts of Jacobi matrix eigenvalues. Figure 1 shows the stability
region of 5-stage method, where the stability interval length is

∣∣γm∣∣ = 50.

In order to avoid stability region reducing because of rounding errors it should be "stretched"
along the imaginary axis at the extremum points of stability polynomial. For that we can
assume Fi = (−1)iµ, 1 ≤ i ≤ m − 1, 0 < µ < 1. For example, if we choose µ = 0.95, then the
stability interval length will be reduced by only 3 − 4% in comparison with maximal possible
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Figure 1: The stability region at m = 5, k = 1, F = {−1, 1,−1, 1},
∣∣γm∣∣ = 50

length that equals 2m2 and it will be
∣∣γm∣∣ = 48.39 (fig. 2). The stability region of the 5–

stage method at µ = 0.8 is shown in figure 3. In this situation, the stability interval length
is reduced to

∣∣γm∣∣ = 43.55 with conjoined "stretching" along the imaginary axis. For better
visualization of the polynomial roots (13) in the complex plane all figures provide level lines∣∣Qm,k(x)

∣∣ = 1,
∣∣Qm,k(x)

∣∣ = 0.8,
∣∣Qm,k(x)

∣∣ = 0.6,
∣∣Qm,k(x)

∣∣ = 0.4,
∣∣Qm,k(x)

∣∣ = 0.2.

Figure 2: The stability region at m = 5, k = 1, F = {−0.95, 0.95, 0.95, 0.95},
∣∣γm∣∣ = 48.39

5. First-Order Method

For numerical solution of Cauchy problem (1) we consider the explicit five-stage Runge-Kutta
method

yn+1 = yn + p1k1 + p2k2 + p3k3 + p4k4 + p5k5,

k1 = hf
(
yn

)
, k2 = hf

(
yn + β21k1

)
,

k3 = hf
(
yn + β31k1 + β32k2

)
, (21)
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Figure 3: The stability region at m = 5, k = 1, F = {−0.8, 0.8,−0.8, 0.8},
∣∣γm∣∣ = 43.55

k4 = hf
(
yn + β41k1 + β42k2 + β43k3

)
,

k5 = hf
(
yn + β51k1 + β52k2 + β53k3 + β54k4

)
,

where y and f are real N-dimensional vector function, t is an independent vari-
able, h is the integration step, k1, k2, k3, k4 and k5 are stages of the method,
p1, p2, p3, p4, p5, β21, β31, β32, β41, β42, β43, β51, β52, β53, β54 are numerical coefficients, defining ac-
curacy and stability properties of (21). Applying the algorithm, we get stability polynomials
coefficients:

c5,1 = 0.1e1, c5,2 = 0.164341322127140896342e0, c5,3 = 0.948975952580473808808e− 2,

c5,4 = 0.223956930863224544258e− 3, c5,5 = 0.18509727522235334153e− 5

In this case the stability interval length is
∣∣γm∣∣ = 48.39. Writing and resolving (9) and (11), we

obtain the coefficients of the first-order method:

β21 = 0.0413243016210550, β31 = 0.0805823881610573,

β32 = 0.0805823881610573, β41 = 0.11916681511228434,

β42 = 0.1597820013984078, β43 = 0.0819394878966193,

β51 = 0.1570787892802991, β52 = 0.2379583021959820,

β53 = 0.1631711307360486, β54 = 0.0822916178203657,

p1 = 0.1945277188657676, p2 = 0.3151822878089125,

p3 = 0.2437005934695969, p4 = 0.1641555613805598,

p5 = 0.0824338384751631.

Without formula output we reduce formulas for accuracy control of numerical scheme, based on
local error estimation and described in [10].

As tentative assessment of local error we take the value

A′
n = [(0.5− cm2)/α2](k2 − k1). (22)
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We make the final decision on accuracy by estimating

A′′
n = (0.5− cm2)(hf

(
yn+1

)
−k1). (23)

Thus, we apply the following inequalities for accuracy control and as criterion of integration step
choice

A′
n ≤ ϵ, A′′

n ≤ ϵ. (24)

As k1 linearly depends on integration stepsize, then omission of inequality (24) leads just
to one additional computation of the right part of the problem. If the integration on step is
successful, the second inequality (24) does not lead to increase of computational costs, because
f
(
yn+1

)
is not used at the next step. At the same time if the second inequality (24) is used for

accuracy control, the backout in case of violating accuracy criterion is quite expensive, moreover
the more m the higher computational costs are. Nevertheless, in most cases tentative assessment
of A′

n allows to avoid recomputations of solution. We use the following inequality for stability
control of methods (2)

νn ≤ γm,1, (25)

where
νn =

∣∣∣α2β32

∣∣∣−1

max
1≤j≤N

∣∣∣[α2k3 + α3k2 − (α2 + α3)k1]j/[k2 − k1]j

∣∣∣, (26)

and positive constants γm,1 define the size of stability regions [10].

6. Merson Method

One of the most effective explicit fourth-order Runge-Kutta type methods is the Merson
method [8]

yn+1 = yn +
1

6
k1 +

2

3
k4 +

1

6
k5,

k1 = hf
(
yn

)
, k2 = hf

(
yn +

1

3
k1
)
,

k3 = hf
(
yn +

1

6
k1 +

1

6
k2
)
, (27)

k4 = hf
(
yn +

1

8
k1 +

3

8
k3
)
,

k5 = hf
(
yn +

1

2
k1 −

3

2
k3 + 2k4

)
.

The fifth computation of function f does not result in the fifth order of accuracy, but allows
to extend the stability interval to 3.5 and estimate truncation error δn,4 using stages ki i.e.

δn,4 = (2k1 − 9k3 + 8k4 − 2k5)/30.

We apply inequality
∥∥δn,4∥∥ ≤ 5ϵ5/4 for accuracy control. Despite the fact that the inequality

for accuracy control is obtained on a linear equation, it shows high reliability on solving non-linear
problems.

Now let us construct the inequality for stability control. Applying to k3 − k2 the first order
Taylor’s formula with the remainder term written in the Lagrangian form, we have

k3 − k2 = h[∂f
(
µn

)
/∂y](k2 − k1)/6,
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where vector µn is computed in some vicinity of solution y
(
tn
)
. Taking into account, that

k2 − k1 = h2f ′
nfn/3 +O

(
h3

)
,

the inequality

νn,4 = 6 · max
1≤j≤N

∣∣∣kj3 − kj2
kj2 − kj1

∣∣∣≤ 3.5, (28)

can be used for stability control of (27), where 3.5 is the approximate length of stability
interval. Let ϵn,4 = δn,4/5. Then inequalities ϵn,4 ≤ 5ϵ5/4 and νn,4 ≤ 3.5. can be applied
respectively for accuracy and stability control of scheme (27).

7. Numerical Results

The calculations were performed on Intel(R) Core(TM) i7-8550U CPU. However, stability
polynomial coefficients were computed with the help of the GMP library, whereas calculation of
differential problem solution was implemented with double precision. In concrete computations
the norm ∥ξn∥ from the inequalities for the accuracy control was calculated by formula∥∥ξn∥∥ = max

1≤j≤N
|ξin|/(|yin|+ r),

where i is a number of vector component, r is a positive parameter. If inequality |yin| < r holds
on the component with number i, then the absolute error r · ε is controlled, otherwise we control
the relative error ε, where ϵ is the required accuracy.

We chose the Van der Pol oscillator (29) as a test example. This problem has the stiffness
ratio approximately equal to 106:

y′1 = y2, y
′
2 =

(
(1− y21)y2 − y1

)
/10−6

0 ≤ t ≤ 1, h0 = 10−3, y1
(
0
)
= 2, y2

(
0
)
= 0, ϵ = 10−2. (29)

We compared the efficiency of two algorithms. The first one is the first order 5-stage Runge-
Kutta method described in section 5. And the second one is the traditional 5-stage Merson
method of the forth order of accuracy (27). Either of two algorithms were run in two modes:
with stability control and without it. We counted total numbers of steps, recomputations of a
solution (due to omission of the defined accuracy), and number computations of right parts of a
differential problem. When using Merson method for computing the problem the defined accuracy
ϵ = 10−2 was supported, whereas for the first-order method we needed to define ϵ = 10−5 in
order to provide 10−2 in fact. Nevertheless, under these conditions the constructed algorithm
shows better efficiency (fig. 4).

The comparison of two algorithms shows that stability control provides efficiency increasing
because of eliminating extra recomputations of solution originating from instability of numerical
scheme. In addition, the constructed first-order algorithm has less computational costs estimated
by number of right parts computations. Simulation of other test examples gives similar tendency.
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Figure 4: Numerical results of Van der Pol problem simulation

Conclusion

Implementation of the algorithm of obtaining stability polynomial coefficients using the GMP

library allowed to build stability polynomial up to degree m = 40, which made possible to build
methods with extended stability regions with respective number of stages. The more number of
stages, the larger stability interval is and therefore the higher efficiency of numerical scheme is
shown when integrating stiff problems.

When comparing two five-stage methods (the constructed first-order method and Merson
method), we see that at the same number of stages extending of stability interval gives decreasing
of overall computational costs.

It is important to say that the first-order methods with extended stability regions allow to
significantly increase the efficiency in a settling region where the step is restricted by stability.
So methods described here can be used in adaptive algorithms where number of stages may vary
from one integration step to another providing large stability interval where needed and saving
computational efforts where there is no requirement to stability characteristics of numerical
scheme.

The reported study was funded by RFBR according to the research project № 18-31-00375.
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Методы первого порядка с расширенными областями
устойчивости для расчета задач электрических цепей

Михаил В. Рыбков, Людмила В. Кнауб, Данил В. Хоров

Исследуется применение контроля устойчивости численных схем типа Рунге-Кутты для по-
вышения эффективности при интегрировании жестких задач. Приведена реализация алгоритма
определения коэффициентов полиномов устойчивости, при которых метод имеет заданную фор-
му и размер области устойчивости, с помощью библиотеки GMP. Построены наборы методов
первого порядка с расширенными областями устойчивости. Приведены результаты расчетов за-
дач из теории электрических цепей, показывающие повышение эффективности построенных ме-
тодов первого порядка точности в сравнении с методом более высокого порядка.

Ключевые слова: жесткая задача, явные методы, контроль точности, контроль устойчивости
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