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Abstract.  

One of the main cause of a droplet metastable state is found to be surface roughness. This state is 

characterized by a large contact angle hysteresis and condition when the static contact angle is 

larger than the advancing dynamic contact angle. Besides the texture, other factors can influence 

the deviation from the equilibrium state, in particular, the fluid flow rate (the growth rate of a 

droplet) affecting the contact line speed. An experimental study was done to determine the effect 

of roughness and fluid flow rate on wetting of aluminum-magnesium alloy surfaces with random 

roughness processed by abrasive polishing. Three-dimensional roughness parameters were used 

to evaluate their texture. The correlations between these parameters, static, advancing and 

receding dynamic contact angles, hysteresis, and contact line speed were obtained. The 

molecular-kinetic theory of wetting was used to interpret the dynamic contact angle data. 

Keywords: roughness; abrasive processing; three-dimensional roughness parameters; wetting; 

dynamic contact angle; contact angle hysteresis.  

1 Introduction 

Wetting and spreading are ubiquitous in processing and re-processing of materials [1-4]: jet 

printing, spray cooling, surface coating, painting and lubrication. Enhancement of wetting 

properties can provide lubrication and help to reduce wear and friction. In mentioned and similar 

processes, the technical surfaces used are not molecularly smooth; their texture is characterized 

by a chaotic arrangement of nano- and micro-cavities and asperities. Despite the fact that in 

recent decades, methods for controlling wetting and spreading by creating nano- and micro-

scaled textures (laser processing, lithography, etching, abrasive processing, and additive 

technologies) are being extensively developed, theoretical frameworks to predict changes in 

wettability and spreading have not yet been developed. To do it, it is necessary to obtain 

experimental data relating quantitative characteristics of the texture (three dimensional 

roughness parameters) with wetting properties and spreading process.  

The quantitative wetting characteristic on the molecularly smooth surfaces is an equilibrium 

contact angle defined by the Young equation [5]. This angle is dependent on the interfacial 

tensions between solid and gas sg , solid and liquid sl , and liquid and gas lg . Engineering 

surfaces differ from molecularly smooth by roughness, the contact angle here deviates from the 

equilibrium by the value of the contact angle hysteresis (CAH) [6]. The last mentioned is defined 
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as the difference between the advancing 0Aθ  and receding 0Rθ  dynamic contact angles (DCA) 

measured while the contact line (CL) pins as it moves towards the gas and liquid phases, respectively: 

0A 0R         (1) 

where 0Aθ  and 0Rθ  are the advancing and receding dynamic contact angles when the CL pins, 

respectively.  

The static contact angle Sθ  formed by a droplet and surface is suggested to lie between 0Aθ  and 

0Rθ  [7].  

The influence of the contact line speed V on the DCAs and CAH while spreading of a droplet over 

rough metal surfaces has not been studied at the level of prognostic evaluation. However, it is known 

[6] that when the CL speeds do not exceed a few micrometers per second, the advancing and receding 

DCAs are close or equal to the static one. The advancing DCA on super-hydrophobic surfaces does not 

depend on the CL speed, and the receding DCA decreases when V increases [7].  

There are theories [8-11] to describe the dependency of the dynamic contact angles on the 

speed of the liquid contact line. One of them is the molecular-kinetic theory (MKT) [8, 9] based 

on the kinetics of molecular processes occurring on the three-phase contact line [8]. The energy 

dissipation in the vicinity of the contact line is taken into account, and it moves through 

individual molecular jumps, with an equilibrium frequency 0k  and a displacement distance λ: 
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where d  is the dynamic contact angle,   is the equilibrium contact angle;   is the surface 

tension; Bk  is the Boltzmann’s constant, and T is the temperature. 

If the dynamic contact angles are close to the equilibrium, MKT equation (2) reduces to [9]: 

(cos cos ),dV


  


 (3) 

where 
0 3/Bk T k    is the friction coefficient at the contact line, Pa·s. 

Parameters  , 0k  and   in equations (2) and (3) are obtained from the experiment by curve 

fitting procedures, i.e. it is impossible to define their values before conducting an experiment. It 

was found that the MKT equation fitted satisfactorily the experimental dependencies of the DCA 

on the CL speed obtained for water and aqueous solutions spreading over polyethylene 

terephthalate surfaces (PET) [12]. However, its applicability for the case of spreading on rough 

metal surfaces has not been still established. 

There are experimental works [13-16] aimed at studying spreading and wetting properties of 

molecularly smooth surfaces [13, 16] or surfaces with an order texture [14, 15, 17]. Fewer works 

are devoted to the study of such processes on engineering surfaces of metals with random 

roughness [18, 19]. It is connected with the difficulties in quantitative assessment of the texture 

of surfaces with random roughness, in particular, when choosing roughness parameters from the 

existing standards [20]. Usually, one parameter of roughness was used: Ra [21, 22] 

characterizing the arithmetic average of the roughness profile, or Rz [23], maximum height of 

the irregularities. In [19], parameters Rmr, the relative material ratio of the roughness profile, 

and Rlo, the developed length of the roughness profile, were used to modify the Wenzel [24] and 

Cassie [25] equations and obtain the static contact angle of tested aluminum surfaces prepared by 
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abrasive polishing. However, all these parameters are two-dimensional, describe the texture 

along the profile and do not take into account the location of irregularities on the surface. 

An increase in roughness, as it is known [21-23, 26], can both reduce [22, 23] and increase 

[21, 26] the static contact angle. The decrease in Sθ  and increase in the standard deviation of 

several repeated measurements were recorded in [22] with the growth of roughness on titanium, 

aluminum and copper surfaces processed by papers of grade 600#, 1500# and 2000#. Obtained 

dependencies were explained by the state of a drop characterized by the Wenzel equation [24]. 

Exponential dependence of Sθ  on the sandpaper grain size used for processing of wood species 

was obtained in [23]. This is characterized by three regions: 1) decrease in the static contact 

angle due to an increase in adhesion; 2) reaching its minimum value; 3) a slight increase in Sθ . 

The growth of roughness of glassy carbon [26] processed by abrasive papers of grit size 1200, 

800, and 400 led to a decrease in wettability (static contact angle changed from 62.11 ° to 

92.32 °). The latter does not correlate to the Wenzel model [24] (the increase in the roughness 

factor is accompanied by a decrease in the contact angle when the surface is hydrophilic). Such a 

contradictory wetting behavior was recorded for processed aluminum and stainless steel surfaces 

[21]. Moreover, the textures obtained by two different methods (abrasive polishing and etching) 

and characterized by the same value of Ra show different wetting angles [21]. In addition to 

roughness [27], Sθ  significantly depends on the state of a drop on the surface (Cassi-Baxter or 

Wenzel) and the method of its cleaning after abrasive processing. 

Results of the present experimental studies contribute to the development of physical insights 

of wetting and droplet spreading over rough aluminum-magnesium alloy surfaces. This alloy is 

one of the most widely used metals for the manufacture of the technical surfaces. Three-

dimensional roughness parameters were used in this study for quantitative assessment of surfaces 

processed by abrasive polishing by discs with different grit size. The studies are aimed at 

establishing a correlation between the contact angle, hysteresis, and contact line speed with the 

quantitative texture characteristics (3D roughness parameters) under the conditions of varying 

fluid flow rate. The linear and classical equations of the molecular-kinetic theory of spreading 

were used to connect the dynamic contact angle with the contact line speed for the case of 

distilled water droplet spreading over rough aluminum-magnesium alloy surfaces.  

 

2 Materials and methods 

The shadow optical method was used to conduct the experimental studies of wetting and 

droplet spreading over metal surfaces (Fig. 1) [28-30].  
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Fig. 1 Schematic representation of the experimental setup: 1 – substrate; 2 – single-channel 

electronic dispensing device; 3 – syringe pump; 4 – high-speed video camera; 5 – source of 

plane-parallel light; 6 – computer with shadow image of a droplet 

 

Surface wetting was characterized by the static contact angle measured while placing a droplet 

of distilled deionized nano-filtered Milli-Q water (10 µl) on substrate 1 by single-channel 

electronic dispensing device Lenpipet Stepper (produced by Thermo Scientific) 2. Contact radius 

(r) of a droplet with a volume of 10 µl on polished surface did not exceed 1.9 mm, that was 

smaller the capillary constant of distilled water 3.8a   mm. In such a condition ( r a , where 

/ ,a g   with   is liquid density and g  is gravity acceleration) a droplet size did not affect 

the static contact angle. 

The contact line dynamics was studied by forced pumping and withdrawing of liquid on a 

surface by system consisting of high-precision electronic syringe pump (produced by Cole 

Parmer) 3 and copper channel 1 mm in diameter connecting a pump with an 0.4 mm opening in 

the substrate center (Fig. 1). The liquid was supplied and pumped out through the opening on the 

underside of the substrate (Fig. 2). In the experiments on the contact line dynamics, the volume 

of a droplet (30 µl) did not change. The liquid flow rate determining the contact line speed was 

varied by the pump in the range from 5 to 100 µl/s. The flow rates were chosen according to the 

technical capabilities of the liquid dispensing system and methods for processing the shadow 

images of droplets. The contact line speed was defined according to change in the droplet 

diameter when pumping and withdrawing of liquid.  

 

 

 
(a) (b) (c) 

Fig. 2 Schematic representation of experiment on the contact line dynamics: (a) pumping of 

liquid (formation of the advancing dynamic contact angle θA); (b) static contact angle (θS) when 

the contact line does not move; (c) withdrawing of liquid by pump (formation of the receding 

dynamic contact angle θR) 
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Photo images of droplets were obtained by the shadow method. The latter was implemented by 

high-speed video camera FastVideo 500M (produced by FastVideo) 4 with macro lens Sigma 

105 mm f/2.8G IF-ED AF-S 9 and source of plane-parallel light (Edmund Optics halogen light 

source with telecentric tube) 5. Goniometry methods were used to process experimentally 

obtained shadow images: Tangential 1 [31] – for dynamic and LB-ADSA [32] – for static 

contact angles. The static angles were averaged over the values of five measurements in different 

places of the surface; the dynamic experiments for obtaining dynamic contact angles and contact 

line speed were repeated five times in identical conditions. The random measurement error did 

not exceed 5 %.  

Four textures were created on surfaces of AMG aluminum alloy (AlMg6 alloy: Al 91.2, Mg 

6.8, Mn 0.8, Fe 0,4, Si 0.4, Zn 0.2, Ti 0.1, Cu 0.1 in wt %) by abrasive discs with different grit 

size, one (polished) – by diamond paste. AMG aluminum alloy was chosen due to its widespread 

use in aviation, shipbuilding, automotive, and space technology [33]. The average grit sizes of 

abrasive discs and diamond paste are shown in Table 1. 

 

Table 1 Abrasive grit (diamond paste and abrasive discs) 

Marking of 

material 

Paste ASM 1/0 

NVOM 

Disk 

No 2500 

Disk 

No 1000 

Disk 

No 600 

Disk 

No 400 

Average size of 

grit, µm 
less than 1 8.5 18.3 25.8 35.0 

 

Microstructure and microrelief of obtained surfaces were studied on Scanning electron 

microscope Hitachi-3000M and the Micromesure 3D Station profilometer (produced by STIL). 

Three-dimensional images of surfaces were processed in special software to obtain roughness 

parameters.  

3 Results and discussion 

3.1 Effect of abrasive processing on texture of aluminum alloy surface 

Three-dimensional roughness parameters from ISO 25178-2:2012 [20] were chosen for a 

quantitative description of the surface texture (Fig. 3). They were obtained after processing 

profilograms. Amplitude parameters: Sa (the arithmetic mean height) characterizes the absolute 

values of surface deviation from the baseline in µm; Sz (the maximum height of surface is 

defined as the average absolute value of the five highest peaks and the five deepest valleys) 

characterizes energy barriers [34] overcome by a moving contact line in µm. Hybrid parameters: 

Sdq (the root mean square gradient of surface) is a degree of surface deviation from the 

molecularly smooth (dimensionless parameter) [20]: 

22
1 ( , ) ( , )

Sdq= ,
A

z x y z x y
dxdy

A x y

    
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and Sdr (developed interfacial area ratio of surface) is an increment of surface area in 

percentages [20]: 

22
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where A is the definition area, z is the height of the scale-limited surface at position x, y. 

 

   
(a) (b) (c) 

  
(d) (e) 

Fig. 3 Photo images of surfaces х2000: (a) polished; processed by abrasive discs with an average 

grit size, µm: (b) 8.5; (c) 18.3; (d) 25.8; (e) 35.0 

 

Figure 4 shows the dependencies of the roughness parameters on the average grit size.  

 

  
(a) (b) 

Fig. 4 Roughness parameters versus average grit size: (a) amplitude (Sa, the arithmetic mean 

height; Sz, the maximum height of surface); (b) hybrid (Sdq, the root mean square gradient of 

surface; Sdr, developed interfacial area ratio of surface) 

 

It can be seen from Fig. 4 that an increase in the average grit size of the abrasive discs used 

for processing from 1 to 35 µm led to an exponentially change (regression functions, Fig. 4) of 

the amplitude (Sa, Sz) and hybrid (Sdq, Sdr) parameters. It should be noted that an increment of 

surface area after processing by the abrasive disc with the average grit size of 35 µm was no 

more than 0.6% relatively molecularly smooth surface (Fig. 4 (b), regression function of Sdr). 

While the maximum height of irregularities increased 6 times, i.e. more than 3 µm (Fig. 4 (a), 
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regression function of Sz), and the growth of Sa was 0.26 µm, which corresponds to four times 

increase.  

It can be concluded that abrasive processing with varying of the average grit size in the range 

from 1 to 35 µm creates a random texture consisting of multidirectional crossing micron-sized 

grooves on aluminum alloy surface. In such processing conditions, the surface area increases 

slightly, but local irregularities form on the surface texture, which are energy barriers that 

prevent the movement of a droplet on such surfaces. 

3.2 Wettability of abrasive processed aluminum alloy surfaces 

The effect of the texture (roughness) on wettability properties of created surfaces was 

analyzed. Figure 5 shows typical dependences of the static and dynamic contact angles on the 

amplitude (Sa, Sz) and hybrid (Sdr, Sq) roughness parameters. Presented in Fig. 5 dynamic 

angles were obtained for the flow rate of 5 μl/s. The static and dynamic contact angles are 

smaller on textures characterized by large values of the roughness parameters (Fig. 5).  

 

  
(a) (b) 

  
(c) (d) 

Fig. 5 Static and dynamic contact angles versus roughness parameters when the flow rate was 

equal to 5 μl/s: (a), (b) amplitude; (c), (d) hybrid. The horizontal bars represent the scatter of the 

experimental data 

 

The Wenzel-Derjaguin theory [35, 36] predicts that an increase in roughness of hydrophilic 

surface contributes to the enhancement of its hydrophilic properties and vice versa. According to 

the results of conducted experiments, an increase in roughness estimated by Sa, Sz and Sdr 
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parameters led to a decrease in the static contact angle, i.e. surfaces became more hydrophilic 

(Fig. 5). Since the polished aluminum alloy (close to molecularly smooth surface) shows 

hydrophilic properties, the results obtained are consistent with the Wenzel-Derjaguin theory. It 

should be noted that according to the Wenzel-Derjaguin equation [35, 36] for rough surface 

cos cosr r    the change in the contact angle is directly proportional to the roughness 

parameter r (the ratio of the real area to its projection). In the case of presented results, the 

increment of the surface area characterized by Sdr was not more than 0.6% (Fig. 4 (b)). 

Consequently, the change in the contact angle is not directly proportional (Fig. 5) to the 

increment of the surface area. It can be assumed that the wettability properties after abrasive 

processing of the aluminum alloy surface, in addition to increasing the surface area, are 

significantly influenced by the geometric parameters of the texture elements (cavities and 

asperities) which are characterized by Sa and Sz parameters. However, according to the analysis 

of Figure 5 (a), the trivial dependence of the change in the contact angle on these parameters has 

not been established. 

3.3 Metastable state of a droplet on abrasive processed aluminum alloy surfaces 

The static contact angle is known to lie in the range from the advancing to receding dynamic 

contact angles measured on the same surface [37]: 
0R S 0Аθ θ θ  . It can be seem from Fig. 5 

that the static contact angle on polished surface lies within this range. However, the static angle 

on surfaces processed by abrasive discs is greater than the advancing dynamic angle. Based on 

this, it is assumed that surface roughness is the cause of the metastable equilibrium of the “solid-

liquid-gas” system. According to the molecular-kinetic theory [8], the equilibrium state is 

established only when all kinetic energy of a droplet placed on molecularly smooth surface is 

dissipated. If the surface is rough, then the kinetic energy of the droplet after contacting the 

surface is dissipated before reaching the thermodynamically equilibrium state. The contact line 

pins on the irregularities, which leads to an increase in the static contact angle. In this case, the 

static contact angle is greater than the advancing dynamic angle. Thermodynamically 

equilibrium on a rough surface can be achieved by external influence, for example, vibration 

[37]. After its impact, the static contact angle decreases [37], the metastable state goes into the 

equilibrium; the static contact angle is in the range 
0R S 0Аθ θ θ  . It is worth noting that with an 

increase in the flow rate from 5 to 100 µl/s the deviation from the equilibrium state increases (the 

difference between the static and the advancing dynamic contact angle increases). 

3.4 Effect of liquid flow rate and texture on spreading dynamics 

Contact angle hysteresis ( ) was determined as the difference between the advancing and 

receding dynamic contact angles [6] when the contact line movement is equal to zero. The 

dependencies of the CAH on the roughness parameters are shown in Fig. 6.  
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(a) (b) 

Fig. 6 Contact angle hysteresis versus amplitude roughness parameters at different liquid flow 

rates: (a) Sa; (b) Sz 

 

When the flow rate is 100 µl/s, the CAH is less than 1° on surfaces processed by abrasive 

discs with an average grit size of less than 8.5 μm. This is no more than the measurement error. 

The dependence of   on the roughness parameters (Fig. 6) in the range from 18.3 to 35 μm 

increases. Reducing the liquid flow rate from 100 to 5 µl/s increases the CAH. This can be 

explained by the fact that after abrasive processing, chaotically located grooves are formed on 

the surface in different directions (Fig. 3). They are energy barriers that impede the movement of 

a droplet. The quantitative characteristics of these irregularities are Sa and Sz parameters. The 

first of them characterizes the average size of irregularities along the horizon in the direction the 

contact line movement, the second is the maximum size of ten irregularities in the vertical. It is 

worth noting the similar nature of the dependences of Sa and Sz on the average grit size (Fig. 4). 

When a droplet spreads over the surface, the contact line pins over irregularities (energy barriers 

preventing its movement). If the kinetic energy of droplet depending on the flow rate is sufficient 

to overcome the energy barriers, then liquid spreads smoothly without pinning, and the CAH in 

this case is minimal. The spreading of a droplet with flow rate of 100 µl/s over surfaces with Sa 

and Sz no more than 0.11 and 1.25 μm, respectively, correspond to this case in Fig 6. At the 

same flow rate an increase in the hysteresis to 5.9 ° was recorded due to roughness on surfaces 

with Sa > 0.16 μm and Sz > 2.08 μm. In this case, the kinetic energy is insufficient to overcome 

irregularities and the CL pins. With increasing the flow rate from 100 to 5 µl/s the kinetic energy 

decreases, and it is impossible to overcome the irregularities on surfaces with Sa and Sz less than 

0.11 and 1.25 µm, that causes contact line pinning and an increase in the hysteresis (Fig. 6), 

which does not contradict conclusions in [38]. Thus, it can be concluded that the contact angle 

hysteresis depends on the geometrical dimensions of the irregularities on the surface and the 

kinetic energy of the droplet.  

Figure 7 presents typical time dependencies of the contact line speed over surfaces with 

random roughness for the case when the flow rate was equal to 5 µl. For convenience, the 

positive values of the contact line speed correspond to the advancing contact line (towards the 

gas phase when the pump dispensed water), the negative ones – to the receding contact line 

(towards the liquid phase when the pump withdrew water). 
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Fig. 7 Time dependencies of the contact line speed when the flow rate is 5 µl/s 

 

Curves corresponding to surfaces processed by abrasive discs with different average grit size 

have the same nature; therefore, the surface roughness did not have a significant effect on the 

contact line speed. The dominant factor affecting the contact line speed is the flow rate (with its 

growth the CL speed increases). 

3.5 Interpretation of dynamic contact angle data by molecular-kinetic model 

Obtained experimental dependencies of the dynamic contact angle on the contact line speed 

were interpreted by the classic (2) and linear (3) molecular-kinetic equations [8] (Fig. 8). The 

hydrodynamic theory [11] was not an appropriate model and was not used as in [39] due to the 

effect of pinning and the presence of the partial slip-condition along the rough surfaces.  

The list squares method was used to compare the experimental dependences of DCAs on the 

CL speed with calculated according to eq. (2) and (3). Values of  independent parameters  , 0k , 

λ in eq. (2) and (3) were taken according to [12, 28, 40-44] in a first approximation, in 

subsequent iterations their values were adjusted to minimize the sum of squares of the deviations 

between the calculated dynamic contact angles and the experimental data. The goodness-of-fit 

coefficient R2 was used to evaluate converging between experimental and theoretical data, and 

parameters  , 0k , λ were calculated. The equilibrium contact angle   in eq. (2) and (3) was set 

as independent parameter. Advancing and receding data were fitted by eq. (2) and (3) separately 

in order to exclude the contact angle hysteresis. A large deviation of the experimental data from 

the theoretical dependences (2) and (3) was found in [28] when the contact angle hysteresis was 

5 °. Obtained CAHs on surfaces with random roughness exceed this value. Therefore, it is 

possible to assume that the deviations will be even more significant in this case. It follows that 

the values of equilibrium contact angles in the MKT eq. (2) and (3) correspond to the advancing 

0Aθ  and receding 0Rθ  dynamic contact angles when the CL pins. 
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(a) (b) 

 
(c) (d) 

 
Fig. 8 Dynamic contact angles versus contact line speed for prepared surfaces: (a), (c) receding 

movement; (b), (d) advancing movement. Symbols correspond to experimental data, lines – 

MKT [8] 

 

Calculated parameters obtained by fitting of the experimental data (5 µl/s) and theoretical 

dependencies (2) and (3) are presented in Table 2. It can be concluded that when using the 

classic MKT eq. (2), the deviation is smaller. An average displacement distance of molecules λ 

varies within 0.9 ÷ 2.1 nm, which is greater than the size of water molecules 0.28 nm. Obtained 

range is consistent with calculations presented in [12, 28, 40-44]. An equilibrium frequency 0k  

of molecular displacements changes within 0k  = 141.2 ÷ 2957.4 Hz and differs from obtained in 

[28] for advancing and receding movement of liquid over polished aluminum-magnesium alloy. 

It is connected with the higher contact line speeds due to flow rates (50-110 µl/s) which are 

larger than in the present study. This led to an increase in the equilibrium frequency varying 
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within 103-104 Hz in [28]. Such a wide range of variation 0k  = 141.2 ÷ 2957.4 Hz can be 

explained by the chaotic arrangement of the roughness elements. 

 

Table 2 Parameters obtained by fitting of the experimental data and theoretical dependencies 

Surface 

processed by 

paste/discs with 

average grit 

size 

Experimentally 

obtained 

angles

0А 0Rθ / θ , o  

Classic MKT (eq. 2) Linear MKT (eq. 3) 

θ, ° 0k , Hz λ, nm R2 θ, °  , Pa·s R2 

Advancing contact line 
Аθ ( )V  

Polished 88.9 86.4 141.2 2.1 0.99 91.1 40.0 0.63 

8.4 81.0 81.6 331.8 1.9 0.91 83.2 65.1 0.80 

18.3 81.5 80.8 1121.5 1.9 0.99 83.5 37.5 0.78 

25.8 71.7 70.7 2216.4 1.2 0.96 75.6 92.8 0.70 

35.0 65.4 69.1 2957.4 1.4 0.99 71.3 94.5 0.86 

Receding contact line 
Rθ ( )V  

Polished 81.2 83.7 542.1 0.9 0.88 71.2 626.8 0.58 

8.4 72.0 70.9 740.1 1.1 0.98 64.0 619.5 0.71 

18.3 70.9 72.7 521.2 1.0 0.83 72.4 3189.4 0.99 

25.8 60.4 63.4 771.3 1.2 0.94 57.7 486.5 0.87 

35.0 49.5 53.5 401.1 1.1 0.99 49.4 2164.9 0.94 

 

Experimental data is poorly fitted by the linear MKT eq. (3) (Fig. 8). It is connected with 

nonlinear dependence of the advancing/receding dynamic contact angle on the contact line 

speed. An exception is the fitting of the DCA data on the surface processed by the disc with the 

average grit size of 18.3 μm. In this case, due to the linear form of 
Rθ ( )f V , the eq. (3) better 

fits the experimental data compared to the eq. (2). For the classic MKT equation (2) R2 is 0.83, 

for linear eq. (3) R2 is 0.99. The friction coefficient of the contact line   in eq. (3) varies within 

37.5 ÷ 92.8 Pa·s for the advancing contact line and 486.5 ÷ 3189.4 Pa·s for the receding CL. 

When water droplet spread on PET [41], it was equal to 0.01 Pa·s. However, for liquids with 

higher viscosity, for example, silicone oil on glass [45],   reached 3580 Pa·s. The values of the 

friction coefficients can be considered as physically reasonable since surfaces with higher 

roughness compared to PET were used in these studies, that is, sufficiently large friction of the 

liquid took place, due to which pinning of the contact line occurs. 

 

4 Conclusion 

A quantitative assessment of the textures formed on aluminum-magnesium alloy by abrasive 

discs with different average grit size was conducted. Two amplitude and hybrid three-

dimensional parameters were selected as the roughness characteristics. These parameters were 

found to increase exponentially with increasing the grit size from 1 to 35 µm. Aluminum-

magnesium alloy surface area increased slightly after abrasive processing with an average grit 

size of 35 µm, and the static contact angle decreases from 88.8° to 70.7°. Since the molecularly 

smooth surface of AlMg6 alloy demonstrates hydrophilic properties, the experimental contact 

angles measured after abrasive processing are in qualitative agreement with the Wenzel-

Derjaguin theory [35, 36]. Nevertheless, a decrease in the experimental static contact angle does 

not agree quantitatively with the results of calculations by the Wenzel-Derjaguin equation [35, 

36]. As far as the elemental composition of surfaces does not change after abrasive processing as 



13 
 

opposed to nanosecond laser texturing [46], the change in wettability is supposed to be 

dependent not only on an increase in the surface area due to roughness but on the geometric 

shape of texture elements, cavities, and asperities, characterized by three-dimensional roughness 

parameters [20]. Experimentally proved usage of correction coefficients taking into account the 

geometry of texture elements in the Wenzel-Derjaguin equation [35, 36] requires to conduct 

similar experimental studies on metals demonstrating both hydrophobic and hydrophilic 

properties when their surface is molecularly smooth.  

A droplet of distilled water is found to be in the metastable state on AlMg6 alloy processed by 

abrasive discs. It is characterized by large contact angle hysteresis and inequality 
0R 0Аθ θ θS  . 

The deviation from the equilibrium state, in addition to the texture, is influenced by the liquid 

flow rate. The last mention also influences the contact angle hysteresis. To shift the metastable 

state of a droplet on the steady state is possible by applying vibration [37]. The steady state of 

droplets on the surface is important for technologies where drop dispensing is implemented, for 

example, irrigation cooling systems, and microfluidic devices.  

Obtained experimental dependencies of the dynamic contact angle on the contact line speed 

were fitted by the molecular-kinetic theory (linear and classic equations). The best fit was 

obtained with classic equation and experimental data.  
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