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Abstract. The group is called layer-finite if the set of its elements of any given order
is finite. Layer-finite groups for the first time appeared without a name in the article of
S. N. Chernikov (1945), and then in his subsequent publications received the name layer-
finite groups. Almost layer-finite groups are extensions of a layer-finite groups by finite
groups. The class of almost layer-finite groups is wider than the class of layer-finite groups,
it includes all Chernikov groups, whereas it is easy to give examples of Chernikov groups
that are not layer-finite. The author develops the direction of characterizations of known
well studied classes of groups in other classes of groups with some additional (rather weak)
finiteness conditions. In this paper almost layer-finite groups receive characterization in
the class of periodic Shunkov groups. Shunkov group is a group G in which for any of its
finite subgroup K in the factor group NG(K)/K any two conjugate elements of prime
order generate a finite subgroup. We study periodic Shunkov’s groups with the condition:
normalizer of any finite non-unit subgroup is almost layer-finite. It is proved that if in such
group the centralizers of involutions are Chernikov, then the group is almost layer-finite.

Keywords: infinite group, finitness condition, Shunkov group, Chernikov group, involu-
tion.

1. Introduction

In this paper almost layer-finite groups receive characterization in the
class of periodic Shunkov groups.

Theorem. Let G be a Shunkov periodic group, centralizers of each involu-
tion is a Chernikov one. If the normalizer of any non-trivial finite subgroup
of the group G is an almost layer-finite, then G is an almost layer-finite
group.

The author has previously proved a similar theorem for groups with the
minimality condition for non-almost layer-finite subgroups [1; 2].
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2. Proof of the Theorem

Let G be a Shunkov periodic group that is not almost layer-finite. Ad-
ditionally we assume that the centralizers of all involutions in the group G
is Chernikov and the normalizer of any non-trivial finite subgroup of the
group G is almost layer-finite.

We need the following auxiliary lemmas.

Lemma 1. In a maximal almost layer-finite group V of the group G all
involutions with infinite centralizers in V generate an Abelian subgroup of
order not greater than four.

Proof is similar to the proof of Lemma 8 from [3].

Lemma 2. In a maximal almost layer-finite subgroup V of G there is no
elementary Abelian 8th order subgroup with an almost regular involution in
V .

Lemma 2 is immediately follows from Lemma 1.

Lemma 3. In an almost layer-finite group there is only a finite number of
non-conjugate finite solvable subgroups of a given order (Lemma 10 from
[4]).

Lemma 4. Let V be a maximal almost layer-finite subgroup of G contain-
ing involutions. Then

1) all involutions with infinite centralizers in V are conjugate in V ;
2) if k is an involution of V and CV (k) is finite, then k induces an

automorphism in some Abelian normal subgroup of the finite index in V ,
which translates each element of this subgroups in reverse.

Proof of Lemma 4 is similar to the proof of Lemma 12 from [4].
If the product of all normal layer-finite subgroups of a group is layer-

finite, then it is called a layer-finite radical of the group.

Lemma 5. Let F,M be two distinct infinite maximal almost layer-finite
subgroups of the group G, R(F ) and R(M) are their layer-finite radicals.
Then R(F ) ∩R(M) = 1.

Proof of Lemma 5 is similar to the proof of Lemma 4 from [4].

Lemma 6. If some Sylow 2-subgroup of G is finite, then all Sylow 2-
subgroups in G are finite and conjugate.

The proof of the lemma is similar to the proof of Lemma 3.1 from [5].
Recall that a group is called infinitely isolated if it contains the central-

izer of any of its non-unit elements, if the intersection of this centralizer
with a subgroup is infinite.
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Lemma 7. Any maximal almost layer-finite subgroup of G is an infinitely
isolated subgroup.

Proof of Lemma 7 is similar to the proof of Lemma 6 from [6].
By S we denote some Sylow 2-subgroup of G, i be the central involution

from S or from the intersection of the center and the complete part of
S if it is infinite (if S is infinite, then it is Chernikov by Lemma 1 from
[4], by the properties of infinite Chernikov primary groups, in them the
intersection of the complete part with the center is non-trivial), H be a
maximal almost layer-finite subgroup of the group G containing the infi-
nite centralizer CG(i), which is almost layer-finite by assumption. Such a
maximal subgroup exists by Zorn’s lemma and by theorem 1 from [10]. The
centralizer CG(i) is infinite, since otherwise, by Proposition 7 of [12], the
group G would be locally finite and, by by theorem 1 from [10], is almost
layer-finite, that contradicts our assumption about the group G.

By the theorem from [7], we can assume that H is not strongly embedded
subgroup of G. Strongly embedded is called a proper subgroup containing
involutions that intersects with conjugate subgroups by subgroups without
involutions. From here, by Lemma 7 it immediately follows that H has an
almost regular involution. If S is finite, then we can choose this involution
from S due to Lemma 6, but if S is infinite, then by Theorem 2 of [4] it
contains infinitely many involutions, among which by Lemma 1 there is
an almost regular in H involution. Fix for this involution notation j. We
denote by R(H) a layer-finite radical of the group H.

Lemma 8. Suppose that for the maximal almost layer-finite subgroup H of
a group G the difference H \R(H) does not possess involutions, conjugated
with i in G. Let V be a subgroup conjugate with H in G, h be a non-trivial
p-element from D = H ∩V . If CV (h) is infinite, then CH(h) is infinite and
vice versa.

Proof of Lemma 8 is similar to the proof of Lemma 11 from [3].

Lemma 9. Let b be an element of prime order and the intersections
CG(b) ∩W , CG(b) ∩W g are infinite, where W is a maximal almost layer-
finite subgroup of the group G. Then W = W g.

Proof of Lemma 9 is similar to the proof of Lemma 6 from [4].
Let K be a subgroup of H generated by all involutions with infinite

centralizers in H.

Lemma 10. If H \R(H) does not contain involutions conjugate with i in
G, then H = CG(i) and Sylow 2-subgroups in R(H) are locally cyclic or
generalized quaternion groups.

Proof. If K = 〈i〉, then H = CG(i) and according to the definition of group
K in R(H) there is only one involution. But then by Shunkov theorem from
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[11] Sylow 2-subgroups in R(H) are locally cyclic or generalized quaternion
groups.

Let K 6= 〈i〉 and S be a finite group. By Lemma 1 K is an elementary
fourth-order Abelian subgroup. Then H has an element h of odd order,
strictly real with respect to involution t from G \ H conjugate with i in
G. The group CG(h)λ〈t〉 is almost layer-finite. In CG(h) we take the Sylow
2-subgroup Q. Since S is finite subgroup, then Q is a finite subgroup by
Lemma 6. By Frattini Lemma [13] we can assume that Q is a t-invariant,
that is, P = Qλ〈t〉. Suppose that Q has an Abelian subgroup R of fourth
order. By Lemma 6, P c ≤ S, where c is an element of G. If Rc is a Klein
group of orger 4, then by theorem from [?] there is an involution in it r
with infinite centralizer in H. Then hc ∈ CG(r) ≤ H, besides tc ∈ H. Since
involutions tc, i are conjugate in G, then by the condition of the lemma
tc ∈ K. The order of K is four and tc ∈ K � H. At the same time, from
the strict reality of h with respect to t we have tchctc = (hc)−1. But it is
impossible, since hc ∈ H. Therefore, Rc is a cyclic group and hc ∈ G \H.

We will show that this is impossible. Indeed, if Rc ∩ K 6= 1, then by
Lemma 7 H we get a contradiction with the fact that hc ∈ G \ H. Let
Rc ∩ K = 1 and v be an involution of Rc. Since K is a Klein group of
orger 4, normal in H, K < CG(v) and |CH(v)| <∞, and then we obtain a
contradiction with Lemma 2.

So in Q there are no fourth order subgroups, therefore, Q is a subgroup
of the second order. If p > 3, then K < CG(H). However, this is impossible
as we just noticed. Therefore, p = 3. Note that h 6∈ R(H), since in this
case NG(〈h〉)∩H is infinite and by Lemma 5 t ∈ NG(〈h〉) ≤ H contrary to
the choose t ∈ G \ H. By Lemma 4 all involutions of K are conjugate to
each other in H and since K is a Klein group of orger 4, then H/CG(K) =

(b)λ(v), where |b| = 3, |v| = 2 and vbv = b
−1

. Based on the properties
of almost layer-finite groups and on the representation of the factor group
H/CG(K) we get that H has a pair of elements b, v such, that b is a 3-
element, v is 2-element, v−1bv = b−1 and bCG(K) = b, vCG(K) = v.

We will prove that v is an involution. If not, then 〈v〉∩CG(K) possesses
an involution x. If x 6∈ K, then CH(x) is finite and we obtain a contradiction
with Lemma 2. So x ∈ K and x ∈ CG(b), where b is 3-element. Since K
is a Klein group of orger 4, then K < CH(b). However, the image b of the
element b is not unit in H/CG(K), therefore |v| = 2.

Now we will prove that b ∈ R(H). By Lemma 4, there is a normal
Abelian subgroup L of finite index in H, on which v acts strictly real.
Those.

v−1dv = d−1 (d ∈ L), v−1bv = b−1.

Further, b−1db ∈ L and b−1d−1b−1 = v−1(b−1db)v = bd−1b−1 or d−1 =
b−2d−1b2, and since b is an element of odd order, then b ∈ 〈b2〉) < CG(L),
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i.e. element b has a finite index centralizer in H, so the element b itself
belong to R(H).

Let A be a Sylow 3-subgroup of H containing the element h. The Sylow
3-subgroups in H are conjugate [14] and how we just showed R(H) has
a 3-element. Consequently, L = A ∩ R(H) 6= 1 and L � A. But then in
Z(A) exists third order element s. And since h ∈ A, then s ∈ CG(h). Take
in CG(h) some Sylow 3-subgroup Q containing elements h, s. As shown
above, the Sylow 2-subgroup of CG(h) can only be a group of order two.
From here and from the Brauer-Suzuki theorem [15; 16] it follows that
CG(h) = V λ〈y〉, where |y| ≤ 2. Obviously V �M = CG(h)λ〈t〉. There is an
involution t1 in NM (Q), conjugate with t in M by Frattini Lemma [13]. If
t1 ∈ H, then being conjugate with i in G involution t1 ∈ K by the condition
of the lemma, and this contradicts the equalities t−11 ht1 = h−1, |h| = 3 and
almost regularity h in H. This means t1 6∈ H.

Consider the intersection D = Q ∩ H. If Q does not lie in H, then by
properties of nilpotent groups NG(D) 6= Q. Take the element l from the
difference NG(D) \ D and consider the intersection H ∩ H l. It contains
an element of prime order s with an infinite centralizer in H. By Lemma
8 it will have an infinite centralizer in H l, but then H = H l by Lemma
9 and l ∈ H. So our the assumption is wrong and Q is contained in H.
Repeating this reasoning for the involution t1 instead of the element l and
the subgroup Q instead of D we get the inclusion t1 ∈ H in contradiction
with what was proved above. This means that K is not a Klein group of
orger 4 and H = CG(i).

Now suppose S be infinite. By Theorem 2 of [4] S is an extension of a
quasi-cyclic 2-group by a reversing automorphism. Since R is a layer-finite
group, S ∩R is a quasi-cyclic 2-group.

Lemma 11. At least one of statements is valid:
1) S is a 8th order dihedral group, and i, j are conjugate in G;
2) H = CG(i) and Sylow 2-subgroups from R(H) are locally cyclic or

generalized quaternion groups.

Proof. If H \R(H) does not possess involutions, conjugate with i in G, then
by Lemma 10 H = CG(i) and the Sylow 2-subgroups from R(H) are locally
cyclic or generalized quaternion groups. The same is true if we assume that
|K| = 2.

Let K = 〈i〉 × 〈t〉. By Lemma 2, the maximal elementary Abelian sub-
group R in S has an order 4, and since |CG(i)| = ∞, then t 6∈ R (since
t 6∈ CG(j)).

Suppose that j = g−1ig and D = H∩Hg Let V be a Sylow 2-subgroup of
D and R ≤ V, P,Q are Sylow 2-subgroups from H,Hg, respectively, and
V = P ∩Q. Obviously R ≤ Z(V ) (since i ∈ Z(V ), so we select j ∈ Z(V g)
also, V, V g are conjugate in D, hence V g = V h, ih 6= j and R is a maximal
subgroup in V ).
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Since K < P and t 6∈ CG(j), then V 6= P , similarly to V 6= Q. Hence
from the normalizer condition in nilpotent groups NG(V ) does not lie in
H. Obviously R� L = NG(V ).

If there was no element in L that induces an automorphism of 3-th order
in R, then L = CL(R)(d), where d ∈ P < H and CL(R) < CG(i) ≤ H.
Therefore, L < H, contrary to what was proved above. So in NG(V ) there
is an element that induces an automorphism of order 3 in R. If V had
element of order 4, then it could be chosen in V so that b2 = j, and since
|K| = 4,K � H, b ∈ H, then b2 = j implies t ∈ K < CG(j) contrary to
what was proved above. This contradiction means that R = V = CP (j).

Further, P is a dihedral group or a semidihedral group [17] and K � P .
Therefore, P is a dihedral group of order 8. Then, in view of the conjugacy
of Sylow subgroups in H, the same is valid for S.

Remark 1. In view of the structure of a non-Chernikov almost Abelian
almost layer-finite group B we assume that the number p chosen so that
it does not divide the index |B : L(B)|, where L(B) is a nilpotent radical
of a groups B (this index is finite, and the set π(B) is infinite by Theorem
1.1.6 from [2]).

In addition to choosing the number p, we can assume that it does not be-
longs to the set ∪π(CB(K)), where K runs through all elementary Abelian
subgroups of B having in B finite centralizers (Similar to the proof of
Lemma 11 from [4], it is shown that the set of non-conjugate elementary
Abelian subgroups of almost layer-finite group V with finite centralizers
in V is finite) in the case of Chernikov group H and in the case of non-
Chernikov H the number p 6∈ π(CH(K)) for elementary Abelian subgroup
K of H with finite centralizer in H.

We fix a notation. In the future we will talk about the element a from
B or from H of prime order chosen according to the remark.

Consider groups of the form Ln = 〈a, asn , i〉, where i ∈ Z(S), sn ∈
CG(i), a ∈ G \H is a strictly real element with respect to the involution
i (if we consider the case of the Chernikov group H, then the element
a is taken from the non-Chernikov group B and the choice of its order is
unlimited; if H is a non-Chernikov group, then the element a can be chosen
from subgroup conjugate to H and again to choose its order infinitely many
variants).

Such groups as shown by A.N. Izmailov (see, for example, [5]) are finite,
as soon as the groups 〈a, asn〉 are finite, and the last groups are finite since
G is a Shunkov group.

Denote the set of groups Ln by N.
The set N is infinite, otherwise for some sequence of the elements s1, s2, ..., sn, ...

from CG(i) as1 = as2 = ... = asn = ... and hence sns
−1
1 ∈ CG(a), n = 1, 2, ...

and CG(a) ∩ CG(i) is infinite, but then, by Lemma 7, a ∈ H contrary to
the choice of the element a.
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To prove the theorem, we still need several lemmas.

Lemma 12. The subgroups of the set N are almost all semisimple.

Proof. Suppose that Sylow 2-subgroups inG are cyclic or generalized quater-
nion groups.

Then the Sylow 2-subgroup of Ln is, by assumption, cyclic or a gen-
eralized quaternion group for any subgroup Ln of N and according to the
Brauer-Suzuki theorem [15; 16] Ln = O2′(Ln) ·CLn(i). If the element a does
not belong to O2′(Ln), then the element a = aO2′(Ln) is strictly real with
respect to the involution i = iO2′(Ln). But the involution i is contained
in the center of the factor group Ln/O2′(Ln). Contradiction means the
inclusion of the element a in O2′(Ln). Obviously the same is true for the
element asn . Then, in view of generating Ln by elements a, asn , i, it has the
structure O2′(Ln)λ〈i〉, that is, it is solvable by the Feit-Thompson theorem.

Suppose, that L1, L2, ..., Ln, ... is an infinite sequence of different sub-
groups from N, where Ln = 〈a, asn , i〉 and Ln has a non-trivial elementary
Abelian subgroup Vn, normal in Ln, n = 1, 2, ... We represent Vn as Vn =
Zn × Fn, where Zn = CG(i) ∩ Vn, and if |Fn| are odd, then Fn = 〈h ∈
Vn | hi = h−1〉.

If in the set of subgroups of the form Vn, n = 1, 2, ..., there is only a finite
set of different, it is obvious without breaking the generality of reasoning,
we can assume that

V = V1 = V2 = ... = Vn = ...

Consider the maximal almost layer-finite subgroup M in G containing
NG(V ). By assumption, M is almost layer-finite and Ln = 〈a, asn , i〉 < M .

Consider two cases:
1) CM (i) is infinite. Since M is a maximal almost layer-finite in G

subgroup, then by Lemma 7 CG(i) contained entirely in M . By Lemma
1, i is contained in a finite normal subgroup of M , and therefore, in a
layer-finite radical R(M). The element asn is a strictly real relative to i
and contained in M . From here we get

iasni = (asn)−1, (asn)−1iasn ∈ R(M).

Comparing these relations, we note: i(asn)2 ∈ R(M). Then, (asn)2 ∈
R(M) and, taking into account the oddness of the order of the elements
asn , finally asn ∈ R(M). Due to the infinity of the set {asn}, n = 1, 2, ...,
we get contradiction with the definition of a layer-finite group.

2) CM (i) is finite. In this case, by Lemma 4 there is a normal in M
subgroup U of finite index in M each whose element is strictly real with
respect to i.

The element a is also strictly real with respect to i. From here following
equality

aha−1 = ia−1iih−1iiai = ia−1h−1ai = a−1ha



8 V. I. SENASHOV

or ha2 = a2h show that a is permuted with any element of U . So it belongs
to a finite normal subgroup of the group M and belongs to its layer-finite
radical R(M). Similar we show asn ∈ R(M), but this cannot be due to the
infinity of the set {asn} and by the definition of layer-finite radical.

Thus, both cases are impossible. Therefore not breaking the generality
of reasoning, we can assume that the subgroups of the form Vn, n = 1, 2, ...,
are different.

Let Zn 6= 1 for any n. Suppose first that the set of primes p for p-
subgroups Zn is finite.

Without breaking the generality of reasoning, we can assume that all Zn

are p-groups by one prime number p. Due to the properties of almost layer-
finite groups among them only a finite number of subgroups not conjugate
in CG(i). Therefore, without breaking the generality of reasoning can be
considered that

Z = Zt1
1 = ... = Ztn

n = ...,

where tn ∈ CG(i). The set of {tn | n = 1, 2, ...} can be as finite, so and
infinite. However, the set {Ltn

n | n = 1, 2, ...} is always infinite due to the
choice of the pair (a, i).

ConsiderNG(Z). By assumption, a maximal almost layer-finite subgroup
X in G containing NG(Z) is almost layer-finite.

First, let the orders of the subgroups Vn, n = 1, 2, ..., are odd.
If CX(i) is infinite, then by Lemma 1 the involution i belongs to a finite

class of conjugate involutions in X. If there are infinitely many subgroups
F tn
n , we find the various elements

f1, f2, ..., fn, ...

such that f−1n ifn = f−1k ifk. Then from equality f−1n fk = ifnf
−1
k i = fnf

−1
k

followed f2k = f2n, but fi have odd prime orders. Contradiction.
If CX(i) is finite, then as above atn , asntn ∈ R(X), but there are infinitely

many such different elements. Contradiction with layer-finiteness of R(X).
Then, in any case, we can assume, without breaking the generality of

reasoning, that
F = F t1

1 = ... = F tn
n = ...

and that means
V = V t1

1 = ... = V tn
n = ...

By including NG(V ) in the maximal almost layer-finite subgroup W of
G, we get that i, Ltn

n < W , n = 1, 2, ...
If the involution i belongs to the layer-finite radical R(W ) of the group

W , its centralizer in W is infinite and by Lemmas 5, 7 W = H and atn

belongs to H together with the element a (tn taken from H).
If i 6∈ R(W ), then by Lemmas 1 and 4 there is in W an infinite Abelian

normal subgroup of finite index in W , consisting of strictly real elements
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with respect to i. In this case as above, we obtain in the layer-finite radical
R(W ) infinitely many elements atn , asntn of the same order.

A contradiction means that if the orders of subgroups of the form Vn are
odd, then Zn = 1 for almost all numbers n. But then for these n subgroups
Vn〈a〉λ〈i〉 are Frobenius groups with the complement 〈i〉. In this case, by
the properties of Frobenius groups, Vn〈a〉 are Abelian groups.

Without breaking the generality of reasoning, we can assume that i,
Vn < NG(〈a〉) = D, n = 1, 2, ... According to the above, all elements of Vn
are strictly real with respect to i, and by the assumption D is an almost
layer-finite group. Since there are infinitely many subgroups Vn and these
subgroups are consist of elements strictly real with respect to i, then there
is an infinite subgroup of finite index in D, which is elementwise permutable
with Vn, n = 1, 2, ... Then, having finite index centralizers in D, subgroups
Vn will be contained into the layer-finite radical R(D) of the group D, and
this cannot be due to its layer-finiteness, the infinity of the set {Vn} and
finiteness of π({Vn}).

Since Sylow 2-subgroups in G are cyclic or generalized groups quater-
nions, then Vn cannot be a 2-group n = 1, 2, .... After all, then in Ln there
would be the only involution i centralizing the element a, and we chose it
strictly real with respect to i.

Thus, we have the case: the set of prime numbers p for p-subgroups Zn is
infinite. Then there is infinitely many prime divisors of orders of subgroups
Vn.

All Zn will be contained into H, and moreover, almost all Zn lie in R(H)
since we chose them by different p, and π(H \ R(H)) is a finite set. Then
they are in view of the infinite isolation H with their centralizers tighten in
H subgroups Fn, n = 1, 2, ... Again, almost all Fn, and therefore Vn contain
into R(H). Then using Lemma 5 and the properties of layer-finite groups
we get the inclusion a ∈ H, which is impossible. If in this case Zn 6= 1 for
any n, then again as above we obtain Vn < NG(〈a〉) = D < U , where U is a
maximal almost layer-finite group containingD, Vn < NG(〈as〉) = Ds < Us,
where Us is a maximal almost layer-finite group containing Ds. Since V
has a normal Abelian subgroup of finite index consisting of strictly real
elements with respect to i, then due to the infinity of π({Vn}) for almost all
s U = Us and hence {as} < R(U) for the infinite set {as}. Contradiction.

It remains to consider the case when Vn is a 2-group.
Recall that we assume that the lemma is false and

L1, L2, ..., Ln, ...

is an infinite sequence of subgroups from N and Ln has non-trivial elemen-
tary Abelian subgroup Vn, normal in Ln, n = 1, 2, .... We represent Vn
as Vn = Zn × Fn, where Zn = CG(i) ∩ Vn. Above it is shown that without
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breaking the generality of reasoning can be considered

Z = Zt1
1 = Zt2

2 = ... = Ztn
n = ...

for some elements tn ∈ CG(i).
Let Vn be a 2-group. We show that Vn does not contain involutions

with infinite centralizers in H. Indeed, if j ∈ Vn and CH(j) is infinite,
then by Lemma 7 CG(j) < H and |NG(Vn) : CG(j)∩NG(Vn)| <∞ implies
NG(Vn) < H together with Ln, which is impossible. In this way, Vn contains
only almost regular involutions in H, and by theorem from [?] and Lemma
7 Vn ∩H is a cyclic group, that is, Vn ∩H = (j).

By Lemma 2, we have |Vn| ≤ 4. If |Vn| = 2, then Vn = Zn, n =
1, 2, ..., and this case has already been considered above and we proved its
impossibility. So |Vn| = 4 and V tn

n = 〈j〉 × 〈kn〉, where kn is an involution
for suitable elements tn. As we have shown, the set {kn} is infinite. Hence
we get the infinity of the set {ikn}.

From the structure of the group Vnλ〈i〉 we conclude that the order of
the element ikn may be equal to only 4 (it cannot be equal to 2 because of
Lemma 2).

Recall that by X we denote the maximal almost layer-finite subgroup of
G, which contains NG(Z).

If i is an almost regular involution in X, then by Lemma 4 in X there is a
normal subgroup L1 of finite index on which i acts strictly real. By Lemma
1 almost all involutions tn are almost regular in X, then we can assume
without breaking the generality of reasoning that they are all almost regular
in X. Again, by Lemma 4, using the conjugacy of tn in X (see Lemma 3),
we find the normal subgroup L2 of finite index in X on which all tn act
strictly real. Taking the intersection of L1∩L2 we get the subgroup L3 also
normal in X and of finite index in it whose centralizer contain elements
itn. But in the almost layer-finite group X this situation is impossible (all
elements itn have the same order 4) since this contradicts to Lemma 3 and
to theorem on the power of classes of conjugate elements.

If i has an infinite centralizer in X, then using of Lemma 5 we get the
inclusion X ⊆ H and, therefore, CH(j) is infinite, this is contrary to the
choice of j.

Let L be a semisimple group, that is, does not have a soluble normal
subgroup. Following [5] we denote by F (L) the socle of L, i.e. normal
subgroup of the highest order of L, which is direct product of simple groups.

Lemma 13. Subgroups from the set N have a socle, isomorphic to PSL(2, q),
where q > 3 is odd.

The statement of the lemma is proved in view of Lemma 12 in exactly
the same way as the theorem in [8].
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Lemma 14. Set A = {L ∈ C | all involutions of H ∩ L are contained in
R(H)} is finite.

Proof. Suppose that A is infinite and

L1, L2, ..., Ln, ...

is an infinite sequence of different semisimple subgroups of A. Then Hn =
Ln ∩H is a strongly embedded subgroup in Ln for any n. (If Hn were not
strongly embedded, i.e. Hn∩Hb

n would contain involutions for b ∈ Ln \Hn,
then in H ∩Hb would contain the involution k from R(H) the first, since
a so defined, secondly, k is the image of an involution from R(H) in Hb,
hence k ∈ R(Hb), and therefore H = Hb and Ln < H, which is impossible.)

Take in Hn some Sylow 2-subgroup Qn and i ∈ Z(Qn). If S were
not a dihedral group of order 8, then by Lemma 11 Qn was be a cyclic
group or generalized quaternion group. It is not difficult to see from the
infinite isolation of H and from the properties of subgroups from A that
the subgroup Qn is a Sylow group in Ln.

Then repeating the reasoning from the beginning of the proof of the
lemma when considering the case when Sylow 2-subgroups in G are cyclic or
generalized groups of quaternions, replacing the conditions imposed on the
Sylow 2-subgroups of the group G on the condition for Sylow 2-subgroups
from Ln, we get the impossibility this situation.

Consequently S is a dihedral group of order 8 and by Lemma 1 Qn is an
elementary Abelian group of order 4, moreover Qn � Hn and Q1 = Q2 =
... = Qn = ....

By Suzuki theorem [18] Ln = 〈a,Qn〉 are isomorphic to SL(2, Q), over
the field Q of characteristics 2, but this contradicts Lemma 13.

Lemma 15. Every involution in a simple non-Abelian subgroup U of the
group G is contained in a maximal elementary Abelian subgroup of order 4
of U .

Proof. Let U be a simple non-Abelian group. Then, by the Brauer-Suzuki
theorem [15; 16], any of its involutions is contained in the elementary
Abelian subgroup of order not less than four, but by Lemmas 1 and 2 the
order of this elementary Abelian subgroup cannot be greater than four.

Lemma 16. Orders of factor groups L/F (L), L ∈ N limited in aggre-
gate.

Proof. Suppose that the lemma is false. In this case there is a sequence

L1, L2, ..., Ln, ...

for which |Ln/F (Ln)| grows with the number n.
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Let Sn be a Sylow 2-subgroup of Ln and i ∈ Sn. By Lemma 2.15
from [5] Qn = Sn ∩ F (Ln) is a Sylow 2-subgroup in F (Ln) and Ln =
NLn(Qn)F (Ln), n = 1, 2, ... Because Ln = 〈a, asn , i〉, where sn ∈ CG(i), iai =
a−1, then i 6∈ F (Ln). (If i ∈ F (Ln), then a 6∈ F (Ln) otherwise the order
of the group Ln/F (Ln) did not grow. At that same time, the normality of
F (Ln) in Ln follows a−1ia = a−2i ∈ F (Ln), but a−2 6∈ F (Ln), since a is an
element of odd order and from a−2 ∈ F (Ln) would get a ∈ F (Ln), which
is impossible.)

By Lemmas 1 and 2, the lower layer Rn of the center Z(Qn) is a subgroup
of order ≤ 4. If |Rn| = 4, then by Lemma 15 all involutions of Qn are
contained in Rn � NLn(Qn). And since the orders of the factor groups
NLn(Qn) grows by virtue of the isomorphism theorem together with the
number n, then Sn is a dihedral group of order 8 and Qn = Rn, n ≥ q for
some number q. The subgroup NF (Ln)(Rn) is strongly embedded in F (Ln)
and according to Suzuki theorem [18] F (Ln) is isomorphic to SL(2, Q),
where Q is a field of characteristic 2, n ≥ q. But this contradicts Lemma
13.

If |Rn| = 2, then by Lemma 13 the Sylow 2-subgroup of F (Ln) is a dihe-
dral group of order at least eight. If the orders of these dihedral groups are
not limited in aggregate, then on the properties of linear groups unlimited
the number of prime divisors in the set π(CG(k)) for some involution k. But
then CG(k) is not Chernikov and we get a contradiction with the condition
of the theorem. So the order of the Sylow 2-subgroups of F (Ln) are bounded
in aggregate. From here according to Brouwer-Feit Theorem [19], the orders
F (Ln) are also limited in aggregate. But due to the semisimplicity of Ln,
this implies that the index |Ln : F (Ln)| is bounded.

Thus, we obtain the boundedness of orders of factor groups of the
form Ln/F (Ln), n = 1, 2, ... Therefore, the orders of the factor groups
L/F (L), L ∈ C, are bounded in aggregate.

Let, for the involution t Rt = 〈t〉×〈k〉 be a Klein group of orger 4 and At

be a maximal almost layer-finite subgroup of the group G containing CG(t).
Obviously Rt < At and t belongs to the layer-finite radical R(At) of the
group At. If CAt(k) is finite, then Rt is called highlighted. If the involution
t is unique in R(At), then t ∈ CAt(R(At)).

Lemma 17. The highlighted subgroup is a Chernikov one.

Proof. Let t be an involution, At be a maximal almost layer-finite subgroup
of G containing CG(t) (recall that, by the condition of the theorem, involu-
tions centralizers in G are Chernikov). As shown earlier, CG(t) is an infinite
group, then At has a non-trivial normal in At subgroup K generated by all
involutions with centralizers that are infinite in At. Since K is a finite group,
the index |NAt(K) : CAt(K)| is finite. By the inclusion CAt(t) ≤ CAt(K)
we see that the index |NAt(K) : CAt(t) ∩ NAt(K)| is finite. Then At is a
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Chernikov group as a finite extension of the Chernikov group (see Lemma
2.3 from [5]).

Let
L1, L2, ..., Ln, ...

be an infinite sequence of different subgroups from N (semisimple groups
and Ln ∩R(H) by Lemma 13 have almost regular involution jn of CH(i).

There is an infinite set of elements {c1, c2, ..., cn, ...} in R(H) such that
{M1,M2, ...Mn, ...}, where Mn = Lcn

n , n = 1, 2, ... consists of various
subgroups and in ∩Mn contains the same highlighted subgroup Ri.

Lemma 18. If Rt is a highlighted subgroup of V = ∩Mn, n = 1, 2, ...,
then

1) the set Bt = {CMn(x) | x ∈ Rt \ 1, n = 1, 2, ...} is finite;
2) the orders of subgroups of the set N are bounded in aggregate.

Proof. First we prove 1). Let {CMn(t) | n = 1, 2, ...} be infinite. Let us prove
that in this case the orders of the subgroups Mn ∩R(At) are not bounded
in aggregate.

Suppose that the orders of the subgroups R(At) ∩Mn are bounded in
aggregate. From here and from the inclusion 〈t〉 < CAt(R(At)) obviously
follows boundedness in aggregate of orders |CMn(t)|, n = 1, 2, ..., and since
Rt < CG(t) < At and Rt is a highlighted subgroup, then some involution
u of Rt induces in a normal subgroup Bt of finite index in R(At) automor-
phism, which translates any element from Bt to the inverse (Lemma 4). We
representAt = BtQ, whereQ is a finite subgroup fromAt andRt < Q. From
here due to the boundedness of the orders |CMn(t)|, n = 1, 2, ..., infinity
of {CMn(t) | n = 1, 2, ...}, layer-finiteness of R(At) and the finiteness of
the index |R(At) : Bt| implies the existence of such the numbers q such
that CMq(t) has an element d representable as d = br, where b ∈ Bt,

r ∈ Q, |b2|Q|| > |CMq(t)| and bu = b−1.
Based on such a representation of the element d, we write dud−1 =

b−1rur−1b−1. Obviously, rur−1 ∈ CAt(Bt) and b−1 ∈ R(At), r ∈ Q, u ∈
Rt < Q, and therefore dud−1 = b−2rur−1 ∈ CMq(t) and rur−1 ∈ Q ∩
CAt(Bt). But then (dud−1)|Q| = b−2|Q| ∈ CMq(t), which is impossible.

Hence |R(At)∩Mn| is not limited in aggregate. Choose in R(At) Abelian
normal subgroup Ct of finite index, moreover, t ∈ Ct (such a subgroup exists
by Lemma 4). It is obvious that |Ct ∩Mn| is also not limited in aggregate.

Since At by Lemma 17 is a Chernikov group, then Ct satisfies the
minimal condition and {Mn} has an infinite subset C1, and At has such
a subgroup X1, that for any subgroup L ∈ C1 X1 coincides with the
subgroup from Ct∩L generated by all elements of prime order from Ct∩L.
For the same reasons C1 has such an infinite subset C2, and Ct such a
subgroup X2 > X1, that for any subgroup L ∈ C2 the factor group X2/X1
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coincides with the subgroup generated by all elements of prime orders from
(Ct ∩ L)/X1. Thus we build a chain

C1 ≥ C2 ≥ ...
and accordingly a chain

X1 < X2 < ...

Let k be an involution from Rt\〈t〉. By the condition Ak 6= At and t is an
almost regular inAk. Then, by Lemma 4, t induces in some normal subgroup
Ck of finite index from Ak an automorphism, translates all elements into
inverse (we can assume that Ck is chosen from R(Ak)).

Let’s assume that the set {CL(k) | L ∈ Cn} is infinite for any n. Then
the orders of the subgroups Ck ∩ L as we showed in the case of t and Bt

not limited in aggregate. Since Ak is Chernikov there is a finite subgroup
in Ct of odd order W 6= 1, which starting with some number q is contained
in a certain subgroup from Cn for any n. Obviously the subgroup T =
(X,Rt,W ) is locally finite.

In particular, we have tct = t−1 for any element c ∈ W < Ck. Since
〈X,Rt〉 < At ∩ T , then by Lemma 5 T < At and, hence W < At. Since
any element t from W has an odd order and is strictly real with respect to
t, then taking into account the normality of the layer-finite radical R(At)
of the group At and the uniqueness of the involution t in R(At) we get
for any element a from R(At): c

−1ac = t−1ctac = t−1cac−1t or c−2ac =
a, which implies since the order of the element c is odd, its hit in the
centralizer of the layer-finite radical R(At), and it means, into the layer-
finite radical itself. Then W < R(At) ∩ R(Ak) and by Lemma 5 we get
At = Ak. Contradiction means that for an involution k starting from some
number q set {CL(k) | L ∈ Cn, n ≥ q} is finite.

Let E1 be some subgroup from Cq, E2 be some subgroup from Cq+1 etc.
such that Xn < En. By the above, {CEn(x) | x ∈ Rt \ 〈t〉, n = 1, 2, ...} is
finite. It can be considered without breaking the generality of reasoning,
that En = Mn, i.e. B = {CMn(x) | x ∈ Rt\〈t〉} is finite, moreover Rt < Mn

by assumption, Xt < Mn by the construction of the chain {Mn}.
Let F (Mn) be a socle of Mn. By Lemma 13 all F (Mn) contain invo-

lutions. In addition, F (Mn) ∩ Rt 6= 1. If not, and if there is a q such
that F (Mq) ∩ Rt = 1, then due to the properties of primary groups and
normality of F (Mq) in Mq, the subgroup F (Mq) is non-trivial intersects
with the center of a Sylow 2-subgroup that contains Rt, in particular, there
is an involution z centralizing Rt. But then Rt < CG(z), r 6∈ Rt means
that in CG(z) there is an elementary Abelian subgroup of order 8, one of
the involutions of which is almost regular in a maximal almost layer-finite
subgroup in G, containing CG(z) (Rt is chosen so), and this contradicts
Lemma 2.

Thus, F (Mn) ∩ Rt 6= 1. Since F (Mn) is simple and the orders of the
factor groups Mn/F (Mn) are limited in aggregate (Lemmas 13, 16), then
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we can assume that Xn < F (Mn) and |F (Mn)| grow with n. If the set
{F (Mn) | M ∈ C, t 6∈ F (M)} is infinite, then F (M) ∩ Rt 6= 1 implies
unboundedness in the aggregate of orders of subgroups of the set

Bk = {F (M) | M ∈ N, t 6∈ F (M), k ∈ F (M)},

where k is an involution from Rt \ 〈t〉. And since B is a finite set, then
|CF (M)(k)| (F (M) ∈ Bk) limited in aggregate. But then |F (M)| is also
limited in aggregate by Brouwer-Fowler Theorem [17] and by Lemma 13.
Contradiction. Therefore, without breaking the generality of reasoning, we
can assume that t ∈ F (Mn), and the rest involutions of Rt are not contained
in F (Mn).

Let Qn be a k-invariant Sylow 2-subgroup of F (Mn) containing t (this
can be found due to conjugacy of primary Sylow subgroups in Mn and
Frattini argument [13]). In the center Qnλ(k) obviously there is an invo-
lution. It cannot be different from t, since this would contradict Lemma
2. Consequently, t ∈ Z(Qn). At the same time, in view of Lemma 15, t
contains in Pn = 〈t〉 × 〈vn〉 < Qn, where vn is an involution, n = 1, 2, ....
If in {Pn} exists infinitely many non-highlighted subgroups, it would be
possible to consider that Pn is non-highlighted for any n. Then, by Lemma
11, the Sylow 2-subgroups from Mn are a dihedral groups of order 8 and
Qn = Pn, moreover, the subgroups NF (Mn)(Pn) are strongly embedded
respectively in F (Mn). Hence by Suzuki theorem [18] we obtain a contra-
diction with Lemma 13. We assume that Pn is a highlighted subgroup for
any n. Since vn ∈ CG(t) ≤ At, then by Lemma 3 we will assume that

v = vb11 = ... = vbnn = ..., where bn ∈ Ct < CG(t). However, Xn < Ct,
which means Xn < M bn

n = Un. By the sequence {Mn}, the orders of these
subgroups grow infinitely. Therefore the sequence

U1, U2, ..., Un, ... (2.1)

consists of various subgroups and their intersection contains a highlighted
subgroup P = 〈v〉 × 〈t〉.

Repeat for P and for the sequence {Un} the same reasoning with respect
to Rt and to the set N. Based on this reasoning, let us prove the existence
in the sequence 2.1 of an infinite subset K such that the set {CU (v) | U ∈ K}
is finite. And since v ∈ F (U), and F (U) is a simple group by Lemma 13,
then, by Brouwer-Fowler Theorem [17] and Lemma 16, the orders of the
subgroups from K are bounded in aggregate. But then, given the equalities
|Un| = |Mn|, n = 1, 2, ..., we obtain a contradiction with unboundedness
in aggregate of orders of subgroups from the set {Mn}. This contradiction
means that the set {CMn(x) | x ∈ Rt \ {1}, n = 1, 2, ...} is finite and
assertion 1 is proved.

Let us prove 2. Let the orders of subgroups from Mn be unbounded in
aggregate. As elements of the set L we choose subgroups of N for whose
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orders the equality holds

|M1| < |M2| < ...

and the intersection ∩Mn has the highlighted subgroup R = 〈i〉 × 〈j〉.
By 1 Bi = {CMn(x) | x ∈ Rt \ {1}, n = 1, 2, ...} is finite and, as shown

above, FMn∩R 6= 1, n = 1, 2, ... But then without breaking the generality
of reasoning, we will assume that in all Mn the same involution k from R
lies. Since Bi is a finite set, then by Brouwer-Fowler Theorem [17] and
Lemma 16 imply limitation of orders of subgroups from N contrary to the
choice of the set L from N. Thus 2 is proved.

Proof of the theorem. We first prove that the set N has so infinite subset
L such that V = ∩M, M ∈ L, is a strongly embedded subgroup in each
subgroup of L.

Let A1 be an arbitrary infinite subset of N, V1 = ∩B1, T1 =
NB1(V1), B1 ∈ A1, Q1 be a Sylow 2-subgroup of V1 containing R =
〈i〉 × 〈j〉. By Lemma 2, the intersection R ∩ Z(Q1) has the involution
t1. Let A1 be a maximal almost layer-finite subgroup of G containing
CG(t1), Y1 = A1 ∩ B1, B1 ∈ A1, P1 = (t1)× (z1) is a subgroup of order 4
from Q1. Since R is a highlighted subgroup by Lemma 18 the set

{CB1(x) | x ∈ R \ (1), B1 ∈ A1} (2.2)

is finite. Based on Lemmas 4, 11 it is easy to get an idea to represent
the subgroup A1 in the following form A1 = CA1(t1)CA1(k), where k is an
involution from R\(t1). From here and from finiteness of the set 2.2 implies
the finiteness of the set

{Y1 | B1 ∈ A1}. (2.3)

If P1 is a non-highlighted subgroup, then by Lemma 11 CB1 ≤ Y1, x ∈
P1 \ (1). If P1 is a highlighted subgroup, then, by Lemma 18, the set
{CB1(x) | x ∈ P1 \ (1), B1 ∈ A1} is finite. From here and from the
finiteness of the set 2.3 it follows finiteness of a set

{CB1(x) | x ∈ P1 \ (1), B1 ∈ A1} (2.4)

for any subgroup of the form P1 from Q1. On the Frattini argument T1 =
NT1(Q1)V1, and since R ≤ Q1, then by Lemma 14 NG(Q1) is finite. Hence
the set

{NB1(Q1), TB1 | B1 ∈ A1}. (2.5)

is finite.
If at least one of the subgroups belonging to finite sets 2.2–2.5 not

contained in any subgroup of some infinite subset of A1, then obviously
in A1 exists such an infinite subset of A2 that

V2 = ∩B2 6= V1, B2 ∈ A2, V1 < V2.
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Let T2 = NB2(V2), B2 ∈ A2, Q2 be a Sylow 2-subgroup of V2 and
Q1 ≤ Q2. According to Lemmas 1, 2 the intersection of R ∩ Z(Q2) has
an involution t2. Let also A2 be a maximal almost layer-finite subgroup of
G, containing CG(t2), Y2 = A2 ∩ B2, B2 ∈ A2, P2 = (t2) × (z2) is a
subgroup of order 4 from Q2. Using the same arguments used in justifying
of the finiteness of sets 2.2–2.5, we prove the finiteness of the sets

{CB2(x) | x ∈ R \ (1), B2 ∈ A2} (2.6)

{Y2 | B2 ∈ A2} (2.7)

{CB2(x) | x ∈ P2 \ (1), B2 ∈ A2} (2.8)

{NB2(Q2), TB2 | B2 ∈ A2} (2.9)

Regarding the set of A2 and subsets 2.6–2.9 reason like the previous case,
etc. As a result, we get in G strictly increasing chain of subgroups V1 <
V2 < ... < Vr < ... and, accordingly, the chain Q1 ≤ Q2 ≤ ... ≤ Qr ≤ ...

Since, by Lemma 18, the orders of subgroups from N are bounded in
aggregate then the specified chains will terminate at the finite number
r, that is, the set Ar is the last member of a strictly decreasing series
A1 ⊃ A2 ⊃ ... ⊃ Ar has such an infinite subset of L, for subgroups whose
claims are true:

1) V = ∩M, M ∈ L and NM (V ) = V, M ∈ L;
2) if Q is a Sylow 2-subgroup of V , then NV (Q) = NM (Q), M ∈ L;
3) if P is a Klein subgroup of orger 4 from V , in particular, P = R, then

CV (x) = CM (x), x ∈ P \ {1}, M ∈ L.
Now, based on assertions 1–3, we prove that V is a strongly embedded

subgroup in any subgroup of L. Let E be some subgroup from L. By
assertion 1 NE(V ) = V and assume that for some element g of E \V the in-
tersection of V ∩V g has an involution z. Let Q be a Sylow 2-subgroup of V g

and z ∈ Q. As Chernikov p-group is ZA-group and satisfies normalization
condition [20] by assertion 3 it is easy to prove the inclusion Q < V ∩ V g.
Since by the Sylow’s theorem [9] Sylow 2-subgroups are conjugate in V ,
then in V there exists the element h such that Qhg = Q, and, therefore,
hg ∈ NE(Q). But on to assertion 2 hg ∈ NE(Q) = NV (Q) ≤ V and g ∈ V
contrary to the assumption g ∈ E \V . Therefore, V is a strongly embedded
subgroup in any subgroup of L and existence of the sets L is proved.

Let the set L consist of subgroups C1, C2, ..., Cn, ... such that Cn =
〈atn , arn , i〉, tn, rn ∈ CG(i).

By the definition of the set N, we can assume that all at1 , ..., atn , ... are
different. As in a group G with H its strongly embedded subgroup and
some involution i from H with the condition 〈i, ig〉, g ∈ G \ H is finite
any element g of G \H has a representation g = hj, where h ∈ H, j is an
involution of G \H [21], atn = hnin, where hn ∈ V, in, n = 1, 2, ... are
involutions from Cn\V, Dn = V ∩V in is a group of odd order. Since V is a
finite group, then we assume that h = h1 = h2 = ..., D = D1 = D2 = ....
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Consider the group U = NG(D). As proven above, in ∈ U and the set
{in | n = 1, 2, ...} is infinite. By the conditions of the theorem the group U
is almost layer-finite. Involutions i1, i2, ..., in, ... in view of Lemma 1 can be
considered not belonging to R(U). Further, R(U) has a finite index in U ,
and the set {in | n = 1, 2, ...} is infinite, then we can assume that all this
set is selected from one adjacent class R(U)i1. Then from i1 = rnin follows
i1in = rninin = rn ∈ R(U). This means in view of the layer-finiteness
R(U) unboundedness in aggregate of the orders of the elements i1in. Then
the orders of the elements a−t11 atnn = i1h

−1hin = i1in is also unlimited in
aggregate. Hence the orders of the groups 〈at1 , atn , i〉 is also unbounded
in aggregate contrary Lemma 18. The obtained contradiction proves the
theorem. The theorem is proved.
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О периодических группах Шункова с черниковским цен-
трализатором инволюции

В. И. Сенашов

Сибирский федеральный университет, Российская федерация; Ин-
ститут вычислительного моделирования СО РАН, Российская феде-
рация

Аннотация. Группа называется слойно конечной, если множество ее элементов
любого заданного порядка конечно. Слойно конечные группы впервые появились без
названия в статье С. Н. Черникова (1945), а затем в его последующих публикациях
получили название слойно конечных групп. Почти слойно конечные группы являют-
ся расширениями слойно конечных групп при помощи конечных групп. Класс почти
слойно конечных групп шире, чем класс слойно конечных групп, он включает в себя
все группы Черникова, в то время как легко привести примеры групп Черникова,
которые не являются слойно конечно. Автор развивает направление характеризации
известных хорошо изученных классов групп в других классах групп с некоторыми
дополнительными (довольно слабыми) условиями конечности. В данной работе по-
чти слойно конечные группы получают характеризацию в классе периодических
групп Шункова. Группа Шункова - это группа G, в которой для любой ее конечной
подгруппы K в фактор-группе NG(K)/K любые два сопряженных элемента про-
стого порядка порождают конечную подгруппу. Мы изучаем периодические группы
Шункова с условием: нормализатор любой конечной неединичной подгруппы почти
слойно-конечен. Доказано, что если в такой группе централизаторами инволюций
являются черниковскими, то группа почти слойно конечна.

Ключевые слова: Бесконечная группа, условие конечности, группа Шункова,
группа Черникова, инволюция.
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