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Abstract. The group is called layer-finite if the set of its elements of any given order
is finite. Layer-finite groups for the first time appeared without a name in the article of
S. N. Chernikov (1945), and then in his subsequent publications received the name layer-
finite groups. Almost layer-finite groups are extensions of a layer-finite groups by finite
groups. The class of almost layer-finite groups is wider than the class of layer-finite groups,
it includes all Chernikov groups, whereas it is easy to give examples of Chernikov groups
that are not layer-finite. The author develops the direction of characterizations of known
well studied classes of groups in other classes of groups with some additional (rather weak)
finiteness conditions. In this paper almost layer-finite groups receive characterization in
the class of periodic Shunkov groups. Shunkov group is a group G in which for any of its
finite subgroup K in the factor group N¢(K)/K any two conjugate elements of prime
order generate a finite subgroup. We study periodic Shunkov’s groups with the condition:
normalizer of any finite non-unit subgroup is almost layer-finite. It is proved that if in such
group the centralizers of involutions are Chernikov, then the group is almost layer-finite.

Keywords: infinite group, finitness condition, Shunkov group, Chernikov group, involu-
tion.

1. Introduction

In this paper almost layer-finite groups receive characterization in the
class of periodic Shunkov groups.

Theorem. Let G be a Shunkov periodic group, centralizers of each involu-
tion is a Chernikov one. If the normalizer of any non-trivial finite subgroup
of the group G is an almost layer-finite, then G is an almost layer-finite

group.

The author has previously proved a similar theorem for groups with the
minimality condition for non-almost layer-finite subgroups [1; 2].
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2. Proof of the Theorem

Let G be a Shunkov periodic group that is not almost layer-finite. Ad-
ditionally we assume that the centralizers of all involutions in the group G
is Chernikov and the normalizer of any non-trivial finite subgroup of the
group G is almost layer-finite.

We need the following auxiliary lemmas.

Lemma 1. In a mazimal almost layer-finite group V' of the group G all
involutions with infinite centralizers in 'V generate an Abelian subgroup of
order not greater than four.

Proof is similar to the proof of Lemma 8 from [3].

Lemma 2. In a mazximal almost layer-finite subgroup V of G there is no
elementary Abelian 8th order subgroup with an almost regular involution in
V.

Lemma 2 is immediately follows from Lemma 1.

Lemma 3. In an almost layer-finite group there is only a finite number of
non-conjugate finite solvable subgroups of a given order (Lemma 10 from

[4])-

Lemma 4. Let V be a mazimal almost layer-finite subgroup of G contain-
ing involutions. Then

1) all involutions with infinite centralizers in V' are conjugate in V' ;

2) if k is an involution of V and Cy (k) is finite, then k induces an
automorphism in some Abelian normal subgroup of the finite index in 'V,
which translates each element of this subgroups in reverse.

Proof of Lemma 4 is similar to the proof of Lemma 12 from [4].
If the product of all normal layer-finite subgroups of a group is layer-
finite, then it is called a layer-finite radical of the group.

Lemma 5. Let F, M be two distinct infinite mazimal almost layer-finite
subgroups of the group G, R(F) and R(M) are their layer-finite radicals.
Then R(F)NR(M) = 1.

Proof of Lemma 5 is similar to the proof of Lemma 4 from [4].

Lemma 6. If some Sylow 2-subgroup of G is finite, then all Sylow 2-
subgroups in G are finite and conjugate.

The proof of the lemma is similar to the proof of Lemma 3.1 from [5].

Recall that a group is called infinitely isolated if it contains the central-
izer of any of its non-unit elements, if the intersection of this centralizer
with a subgroup is infinite.
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20—. T. —. Cepus «Maremarukas. C. 1-19



ON PERIODIC GROUPS OF SHUNKOV 3

Lemma 7. Any mazximal almost layer-finite subgroup of G is an infinitely
1solated subgroup.

Proof of Lemma 7 is similar to the proof of Lemma 6 from [6].

By S we denote some Sylow 2-subgroup of GG, ¢ be the central involution
from S or from the intersection of the center and the complete part of
S if it is infinite (if S is infinite, then it is Chernikov by Lemma 1 from
[4], by the properties of infinite Chernikov primary groups, in them the
intersection of the complete part with the center is non-trivial), H be a
maximal almost layer-finite subgroup of the group G containing the infi-
nite centralizer C(i), which is almost layer-finite by assumption. Such a
maximal subgroup exists by Zorn’s lemma and by theorem 1 from [10]. The
centralizer C(7) is infinite, since otherwise, by Proposition 7 of [12], the
group G would be locally finite and, by by theorem 1 from [10], is almost
layer-finite, that contradicts our assumption about the group G.

By the theorem from [7], we can assume that H is not strongly embedded
subgroup of G. Strongly embedded is called a proper subgroup containing
involutions that intersects with conjugate subgroups by subgroups without
involutions. From here, by Lemma 7 it immediately follows that H has an
almost regular involution. If S is finite, then we can choose this involution
from S due to Lemma 6, but if S is infinite, then by Theorem 2 of [4] it
contains infinitely many involutions, among which by Lemma 1 there is
an almost regular in H involution. Fix for this involution notation j. We
denote by R(H) a layer-finite radical of the group H.

Lemma 8. Suppose that for the mazimal almost layer-finite subgroup H of
a group G the difference H\ R(H) does not possess involutions, conjugated
with i in G. Let V' be a subgroup conjugate with H in G, h be a non-trivial
p-element from D = HNV. If Cy(h) is infinite, then Cg(h) is infinite and
vice versa.

Proof of Lemma 8 is similar to the proof of Lemma 11 from [3].

Lemma 9. Let b be an element of prime order and the intersections
Ca(b) "W, Cq(b) N WY are infinite, where W is a mazimal almost layer-
finite subgroup of the group G. Then W = W¥Y.

Proof of Lemma 9 is similar to the proof of Lemma 6 from [4].
Let K be a subgroup of H generated by all involutions with infinite
centralizers in H.

Lemma 10. If H\ R(H) does not contain involutions conjugate with i in
G, then H = Cg(i) and Sylow 2-subgroups in R(H) are locally cyclic or
generalized quaternion groups.

Proof. If K = (i), then H = C¢(i) and according to the definition of group
K in R(H) there is only one involution. But then by Shunkov theorem from
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[11] Sylow 2-subgroups in R(H) are locally cyclic or generalized quaternion
groups.

Let K # (i) and S be a finite group. By Lemma 1 K is an elementary
fourth-order Abelian subgroup. Then H has an element h of odd order,
strictly real with respect to involution ¢ from G\ H conjugate with i in
G. The group Cg(h)A(t) is almost layer-finite. In C(h) we take the Sylow
2-subgroup Q. Since S is finite subgroup, then @ is a finite subgroup by
Lemma 6. By Frattini Lemma [13] we can assume that @ is a t-invariant,
that is, P = QA(t). Suppose that @ has an Abelian subgroup R of fourth
order. By Lemma 6, P¢ < S, where c is an element of G. If R¢ is a Klein
group of orger 4, then by theorem from [?] there is an involution in it r
with infinite centralizer in H. Then h¢ € Cg(r) < H, besides t¢ € H. Since
involutions t¢ ¢ are conjugate in G, then by the condition of the lemma
t¢ € K. The order of K is four and t¢ € K < H. At the same time, from
the strict reality of h with respect to ¢t we have t°h°t° = (h¢)~1. But it is
impossible, since h® € H. Therefore, R€ is a cyclic group and h¢ € G\ H.

We will show that this is impossible. Indeed, if RN K # 1, then by
Lemma 7 H we get a contradiction with the fact that h® € G\ H. Let
RN K =1 and v be an involution of R°. Since K is a Klein group of
orger 4, normal in H, K < Cg(v) and |Cy(v)| < oo, and then we obtain a
contradiction with Lemma 2.

So in @ there are no fourth order subgroups, therefore, () is a subgroup
of the second order. If p > 3, then K < C¢(H). However, this is impossible
as we just noticed. Therefore, p = 3. Note that h ¢ R(H), since in this
case Ng((h)) N H is infinite and by Lemma 5 t € Ng((h)) < H contrary to
the choose t € G\ H. By Lemma 4 all involutions of K are conjugate to
each other in H and since K is a Klein group of orger 4, then H/Cg(K) =
(b)A(v), where |b] = 3, [v] = 2 and Dby = b '. Based on the properties
of almost layer-finite groups and on the representation of the factor group
H/Cq(K) we get that H has a pair of elements b,v such, that b is a 3-
element, v is 2-element, v~'bv = b~ and bCq(K) = b, vCq(K) = v.

We will prove that v is an involution. If not, then (v) N Cg(K) possesses
an involution z. If z ¢ K, then Cy(x) is finite and we obtain a contradiction
with Lemma 2. So x € K and = € Cg(b), where b is 3-element. Since K
is a Klein group of orger 4, then K < Cg(b). However, the image b of the
element b is not unit in H/Cg(K), therefore |v| = 2.

Now we will prove that b € R(H). By Lemma 4, there is a normal
Abelian subgroup L of finite index in H, on which v acts strictly real.
Those.

vidv=d' (del), viw=0b"

Further, b='db € L and b='d='b~! = v=1(b~ db)v = bd~'b~! or d~! =
b=2d~'b?, and since b is an element of odd order, then b € (b?)) < Cg(L),
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i.e. element b has a finite index centralizer in H, so the element b itself
belong to R(H).

Let A be a Sylow 3-subgroup of H containing the element h. The Sylow
3-subgroups in H are conjugate [14] and how we just showed R(H) has
a 3-element. Consequently, L = AN R(H) # 1 and L < A. But then in
Z(A) exists third order element s. And since h € A, then s € Cg(h). Take
in Cg(h) some Sylow 3-subgroup ) containing elements h,s. As shown
above, the Sylow 2-subgroup of Cg(h) can only be a group of order two.
From here and from the Brauer-Suzuki theorem [15; 16] it follows that
Ca(h) = VX (y), where |y| < 2. Obviously V<M = Cq(h)\(t). There is an
involution t; in N/ (@), conjugate with ¢ in M by Frattini Lemma [13]. If
t1 € H, then being conjugate with ¢ in G involution ¢; € K by the condition
of the lemma, and this contradicts the equalities t; *ht; = h~1, |h| = 3 and
almost regularity A in H. This means t; ¢ H.

Consider the intersection D = Q N H. If @ does not lie in H, then by
properties of nilpotent groups Ng(D) # Q. Take the element [ from the
difference Ng(D) \ D and consider the intersection H N H'. Tt contains
an element of prime order s with an infinite centralizer in H. By Lemma
8 it will have an infinite centralizer in H'!, but then H = H' by Lemma
9 and [ € H. So our the assumption is wrong and () is contained in H.
Repeating this reasoning for the involution #; instead of the element | and
the subgroup @ instead of D we get the inclusion t; € H in contradiction
with what was proved above. This means that K is not a Klein group of
orger 4 and H = Cg(7).

Now suppose S be infinite. By Theorem 2 of [4] S is an extension of a
quasi-cyclic 2-group by a reversing automorphism. Since R is a layer-finite
group, S N R is a quasi-cyclic 2-group. ]

Lemma 11. At least one of statements is valid:

1) S is a 8th order dihedral group, and i,j are conjugate in G;

2) H = Cg(i) and Sylow 2-subgroups from R(H) are locally cyclic or
generalized quaternion groups.

Proof. If H\ R(H) does not possess involutions, conjugate with ¢ in G, then
by Lemma 10 H = C¢(7) and the Sylow 2-subgroups from R(H ) are locally
cyclic or generalized quaternion groups. The same is true if we assume that
|K| = 2.

Let K = (i) x (t). By Lemma 2, the maximal elementary Abelian sub-
group R in S has an order 4, and since |Cg(i)| = oo, then ¢ ¢ R (since
t ¢ Ca(j))-

Suppose that j = g~ 'ig and D = HNHY Let V be a Sylow 2-subgroup of
D and R<V, P,Q are Sylow 2-subgroups from H, H9, respectively, and
V = PNQ. Obviously R < Z(V) (since i € Z(V'), so we select j € Z(VY)
also, V, V9 are conjugate in D, hence V9 = V" i" % j and R is a maximal
subgroup in V).
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Since K < P and t € Cg(j), then V' # P, similarly to V # Q. Hence
from the normalizer condition in nilpotent groups Ng (V') does not lie in
H. Obviously R < L = Ng(V).

If there was no element in L that induces an automorphism of 3-th order
in R, then L = Cr(R)(d), where d € P < H and CL(R) < Cg(i) < H.
Therefore, L < H, contrary to what was proved above. So in Ng(V') there
is an element that induces an automorphism of order 3 in R. If V' had
element of order 4, then it could be chosen in V so that b? = j, and since
|K| = 4,K < H,b € H, then b> = j implies t € K < Cg(j) contrary to
what was proved above. This contradiction means that R =V = Cp(j).

Further, P is a dihedral group or a semidihedral group [17] and K < P.
Therefore, P is a dihedral group of order 8. Then, in view of the conjugacy
of Sylow subgroups in H, the same is valid for S. O

Remark 1. In view of the structure of a non-Chernikov almost Abelian
almost layer-finite group B we assume that the number p chosen so that
it does not divide the index |B : L(B)|, where L(B) is a nilpotent radical
of a groups B (this index is finite, and the set m(B) is infinite by Theorem
1.1.6 from [2]).

In addition to choosing the number p, we can assume that it does not be-
longs to the set Ur(Cp(K)), where K runs through all elementary Abelian
subgroups of B having in B finite centralizers (Similar to the proof of
Lemma 11 from [4], it is shown that the set of non-conjugate elementary
Abelian subgroups of almost layer-finite group V with finite centralizers
in V is finite) in the case of Chernikov group H and in the case of non-
Chernikov H the number p € 7(Cy(K)) for elementary Abelian subgroup
K of H with finite centralizer in H.

We fix a notation. In the future we will talk about the element a from
B or from H of prime order chosen according to the remark.

Consider groups of the form L, = (a,a®,i), where i € Z(S), s, €
Ca(i), a€ G\ H is a strictly real element with respect to the involution
i (if we consider the case of the Chernikov group H, then the element
a is taken from the non-Chernikov group B and the choice of its order is
unlimited; if H is a non-Chernikov group, then the element a can be chosen
from subgroup conjugate to H and again to choose its order infinitely many
variants).

Such groups as shown by A.N. Izmailov (see, for example, [5]) are finite,
as soon as the groups (a, a®) are finite, and the last groups are finite since
G is a Shunkov group.

Denote the set of groups L,, by 1.

The set 91 is infinite, otherwise for some sequence of the elements s1, s9, ..., Sp, ...

from Cg(i) a® = a®2 = ... = ¢®* = ... and hence s,5;"' € Cg(a),n = 1,2, ...
and Cg(a) N Cg(7) is infinite, but then, by Lemma 7, a € H contrary to
the choice of the element a.

UssecTnst VIpKyTCKOrO rocy1apCTBEHHOTO YHUBEPCHTETA.
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To prove the theorem, we still need several lemmas.
Lemma 12. The subgroups of the set N are almost all semisimple.

Proof. Suppose that Sylow 2-subgroups in G are cyclic or generalized quater-
nion groups.

Then the Sylow 2-subgroup of L, is, by assumption, cyclic or a gen-
eralized quaternion group for any subgroup L, of 91 and according to the
Brauer-Suzuki theorem [15; 16] L,, = Oy/(Ly,)-Cr,, (7). If the element a does
not belong to O (Ly,), then the element @ = a0y (Ly,) is strictly real with
respect to the involution i = Oy (L,). But the involution i is contained
in the center of the factor group L, /O« (L;,). Contradiction means the
inclusion of the element a in Oy (L,). Obviously the same is true for the
element a®*. Then, in view of generating L,, by elements a, a®", 7, it has the
structure Oy (L, )A(i), that is, it is solvable by the Feit-Thompson theorem.

Suppose, that L, Lo, ..., Ly, ... is an infinite sequence of different sub-
groups from M, where L,, = (a,a®",7) and L,, has a non-trivial elementary
Abelian subgroup V,,, normal in L,, n =1,2,... We represent V,, as V,, =
Zy, X Fy, where Z, = Cg(i) NV, and if |F,| are odd, then F, = (h €
Vi | P = h7h).

If in the set of subgroups of the form V,;, n = 1,2, ..., there is only a finite
set of different, it is obvious without breaking the generality of reasoning,
we can assume that

V=Vi=Vh=..=V,=..

Consider the maximal almost layer-finite subgroup M in G containing
N¢g (V). By assumption, M is almost layer-finite and L,, = (a,a®",i) < M.

Consider two cases:

1) Cp(4) is infinite. Since M is a maximal almost layer-finite in G
subgroup, then by Lemma 7 Cg(i) contained entirely in M. By Lemma
1, ¢ is contained in a finite normal subgroup of M, and therefore, in a
layer-finite radical R(M). The element a®* is a strictly real relative to i
and contained in M. From here we get

ia*i = (a*)7L, (a®) " Yia* € R(M).

Comparing these relations, we note: i(a**)? € R(M). Then, (a*)? €
R(M) and, taking into account the oddness of the order of the elements
a’", finally a®» € R(M). Due to the infinity of the set {a*"}, n = 1,2, ...,
we get contradiction with the definition of a layer-finite group.

2) Cp(i) is finite. In this case, by Lemma 4 there is a normal in M
subgroup U of finite index in M each whose element is strictly real with
respect to 1.

The element a is also strictly real with respect to ¢. From here following
equality )

aha™ ' =ia Yiih Yiai = ia " 'h'ai = a tha
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or ha®? = a®h show that a is permuted with any element of U. So it belongs
to a finite normal subgroup of the group M and belongs to its layer-finite
radical R(M ). Similar we show a®* € R(M), but this cannot be due to the
infinity of the set {a**} and by the definition of layer-finite radical.

Thus, both cases are impossible. Therefore not breaking the generality
of reasoning, we can assume that the subgroups of the form V,,, n =1,2, ...,
are different.

Let Z, # 1 for any n. Suppose first that the set of primes p for p-
subgroups Z, is finite.

Without breaking the generality of reasoning, we can assume that all Z,
are p-groups by one prime number p. Due to the properties of almost layer-
finite groups among them only a finite number of subgroups not conjugate
in Cg(i). Therefore, without breaking the generality of reasoning can be
considered that

Z=7"=.=7Zm=.

)

where ¢, € Cg(i). The set of {¢, | n = 1,2,...} can be as finite, so and
infinite. However, the set {L!» | n = 1,2,...} is always infinite due to the
choice of the pair (a,1).

Consider Ng(Z). By assumption, a maximal almost layer-finite subgroup
X in G containing Ng(Z) is almost layer-finite.

First, let the orders of the subgroups V,,, n = 1,2, ..., are odd.

If C'x (4) is infinite, then by Lemma 1 the involution ¢ belongs to a finite
class of conjugate involutions in X. If there are infinitely many subgroups
Fin we find the various elements

fis fay s [y oo

such that f,lif, = fk_lifk. Then from equality f, 1 fx = z'fnfk_li = fnfk_1
followed f? = f2, but f; have odd prime orders. Contradiction.
If Cx (i) is finite, then as above a'", a*"'» € R(X), but there are infinitely
many such different elements. Contradiction with layer-finiteness of R(X).
Then, in any case, we can assume, without breaking the generality of
reasoning, that
F=F'=..=Fr=..

and that means
V=Vl=.=Vr=_

By including Ng(V') in the maximal almost layer-finite subgroup W of
G, we get that i, LI < W, n=1,2,...

If the involution 7 belongs to the layer-finite radical R(W) of the group
W, its centralizer in W is infinite and by Lemmas 5, 7 W = H and a'»
belongs to H together with the element a (¢, taken from H).

If i ¢ R(W), then by Lemmas 1 and 4 there is in W an infinite Abelian
normal subgroup of finite index in W, consisting of strictly real elements

UssecTnst VIpKyTCKOro roCcy1apCTBEHHOTO YHUBEPCHTETA.
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with respect to 4. In this case as above, we obtain in the layer-finite radical
R(W) infinitely many elements a'", a*"» of the same order.

A contradiction means that if the orders of subgroups of the form V;, are
odd, then Z,, = 1 for almost all numbers n. But then for these n subgroups
Vi (a)X(i) are Frobenius groups with the complement (7). In this case, by
the properties of Frobenius groups, V,,(a) are Abelian groups.

Without breaking the generality of reasoning, we can assume that 1,
Vi < Ng({a)) = D, n = 1,2, ... According to the above, all elements of V,,
are strictly real with respect to ¢, and by the assumption D is an almost
layer-finite group. Since there are infinitely many subgroups V;, and these
subgroups are consist of elements strictly real with respect to i, then there
is an infinite subgroup of finite index in D, which is elementwise permutable
with V,, n = 1,2, ... Then, having finite index centralizers in D, subgroups
V,, will be contained into the layer-finite radical R(D) of the group D, and
this cannot be due to its layer-finiteness, the infinity of the set {V,} and
finiteness of 7({V,,}).

Since Sylow 2-subgroups in G are cyclic or generalized groups quater-
nions, then V,, cannot be a 2-group n = 1,2, .... After all, then in L,, there
would be the only involution ¢ centralizing the element a, and we chose it
strictly real with respect to 1.

Thus, we have the case: the set of prime numbers p for p-subgroups 7, is
infinite. Then there is infinitely many prime divisors of orders of subgroups
Vi

All Z,, will be contained into H, and moreover, almost all Z,, lie in R(H)
since we chose them by different p, and w(H \ R(H)) is a finite set. Then
they are in view of the infinite isolation H with their centralizers tighten in
H subgroups F,,, n = 1,2, ... Again, almost all F;,, and therefore V,, contain
into R(H). Then using Lemma 5 and the properties of layer-finite groups
we get the inclusion a € H, which is impossible. If in this case Z,, # 1 for
any n, then again as above we obtain V;, < Ng({a)) = D < U, where U is a
maximal almost layer-finite group containing D, V,, < Ng({a®)) = Ds < Us,
where U is a maximal almost layer-finite group containing D,. Since V
has a normal Abelian subgroup of finite index consisting of strictly real
elements with respect to 7, then due to the infinity of 7({V},}) for almost all
s U = Us and hence {a®*} < R(U) for the infinite set {a®}. Contradiction.

It remains to consider the case when V,, is a 2-group.

Recall that we assume that the lemma is false and

Li,Loy Ly, ...

is an infinite sequence of subgroups from 91 and L,, has non-trivial elemen-
tary Abelian subgroup V,,, normal in L,, n = 1,2,.... We represent V,,
as V,, = Z, x F,, where Z, = Cg(i) N V,,. Above it is shown that without
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breaking the generality of reasoning can be considered
Z=70=7=..=27"=_

for some elements t,, € Cg(1).

Let V,, be a 2-group. We show that V,, does not contain involutions
with infinite centralizers in H. Indeed, if j € V,, and Cg(j) is infinite,
then by Lemma 7 Cg(j) < H and |Ng(Vy,) : Ca(5) N Ng(Vy)| < oo implies
N¢ (Vi) < H together with L,,, which is impossible. In this way, V,, contains
only almost regular involutions in H, and by theorem from [?] and Lemma
7 Vo, N H is a cyclic group, that is, V,, N H = (j).

By Lemma 2, we have |V,,| < 4. If |V,,| = 2, then V,, = Z,,, n =
1,2, ..., and this case has already been considered above and we proved its
impossibility. So |V;,| = 4 and V,i» = (j) x (k,), where k;, is an involution
for suitable elements t,,. As we have shown, the set {k,} is infinite. Hence
we get the infinity of the set {ik,}.

From the structure of the group V,A(i) we conclude that the order of
the element ik, may be equal to only 4 (it cannot be equal to 2 because of
Lemma 2).

Recall that by X we denote the maximal almost layer-finite subgroup of
G, which contains Ng(Z).

If 7 is an almost regular involution in X, then by Lemma 4 in X there is a
normal subgroup L; of finite index on which ¢ acts strictly real. By Lemma
1 almost all involutions ¢, are almost regular in X, then we can assume
without breaking the generality of reasoning that they are all almost regular
in X. Again, by Lemma 4, using the conjugacy of t,, in X (see Lemma 3),
we find the normal subgroup Lo of finite index in X on which all ¢, act
strictly real. Taking the intersection of L N Ly we get the subgroup L3 also
normal in X and of finite index in it whose centralizer contain elements
ity. But in the almost layer-finite group X this situation is impossible (all
elements it,, have the same order 4) since this contradicts to Lemma 3 and
to theorem on the power of classes of conjugate elements.

If ¢ has an infinite centralizer in X, then using of Lemma 5 we get the
inclusion X C H and, therefore, Cp(j) is infinite, this is contrary to the
choice of j. O

Let L be a semisimple group, that is, does not have a soluble normal
subgroup. Following [5] we denote by F(L) the socle of L, i.e. normal
subgroup of the highest order of L, which is direct product of simple groups.

Lemma 13. Subgroups from the set N have a socle, isomorphic to PSL(2, q),
where ¢ > 3 is odd.

The statement of the lemma is proved in view of Lemma 12 in exactly
the same way as the theorem in [8].

Ussectnst VIpKyTCKOrO rocy1apCTBEHHOTO YHUBEPCHTETA.
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Lemma 14. Set A = {L € € | all involutions of H N L are contained in
R(H)} is finite.

Proof. Suppose that 2 is infinite and
Li,Lo,...;Ly, ...

is an infinite sequence of different semisimple subgroups of 2. Then H,, =
L, N H is a strongly embedded subgroup in L,, for any n. (If H,, were not
strongly embedded, i.e. H, N H? would contain involutions for b € L, \ H,,,
then in H N H® would contain the involution k& from R(H) the first, since
a so defined, secondly, k is the image of an involution from R(H) in H?,
hence k € R(H?), and therefore H = H® and L,, < H, which is impossible.)

Take in H, some Sylow 2-subgroup @, and i € Z(Q,). If S were
not a dihedral group of order 8, then by Lemma 11 @), was be a cyclic
group or generalized quaternion group. It is not difficult to see from the
infinite isolation of H and from the properties of subgroups from 2 that
the subgroup @, is a Sylow group in L.

Then repeating the reasoning from the beginning of the proof of the
lemma when considering the case when Sylow 2-subgroups in G are cyclic or
generalized groups of quaternions, replacing the conditions imposed on the
Sylow 2-subgroups of the group G on the condition for Sylow 2-subgroups
from L,,, we get the impossibility this situation.

Consequently S is a dihedral group of order 8 and by Lemma 1 @), is an
elementary Abelian group of order 4, moreover @), << H, and Q1 = Q)2 =
e =Qp=....

By Suzuki theorem [18] L,, = (a, Q) are isomorphic to SL(2,Q), over
the field @ of characteristics 2, but this contradicts Lemma 13. O

Lemma 15. Every involution in a simple non-Abelian subgroup U of the

group G is contained in a mazimal elementary Abelian subgroup of order 4
of U.

Proof. Let U be a simple non-Abelian group. Then, by the Brauer-Suzuki
theorem [15; 16], any of its involutions is contained in the elementary
Abelian subgroup of order not less than four, but by Lemmas 1 and 2 the
order of this elementary Abelian subgroup cannot be greater than four. [

Lemma 16. Orders of factor groups L/F(L), L € 2N limited in aggre-
gate.

Proof. Suppose that the lemma is false. In this case there is a sequence
Ly, Loy .cc; Ly, ...

for which |L,,/F(L,)| grows with the number n.
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Let S,, be a Sylow 2-subgroup of L, and ¢ € S,. By Lemma 2.15
from [5] Q, = S, N F(L,) is a Sylow 2-subgroup in F(L,) and L, =
Np, (Qn)F(Ly), mn=1,2,...Because L, = (a,a’",i), where s,, € Cq(i), iai=
a~!, then i ¢ F(L,). (If i € F(Ly,), then a ¢ F(L,) otherwise the order
of the group L, /F(L,) did not grow. At that same time, the normality of
F(L,) in Ly, follows a~Yia = a=2i € F(Ly,), but a=2 & F(L,), since a is an
element of odd order and from a2 € F(L,) would get a € F(L,), which
is impossible.)

By Lemmas 1 and 2, the lower layer R,, of the center Z(Q,,) is a subgroup
of order < 4. If |R,| = 4, then by Lemma 15 all involutions of @,, are
contained in R, < Nr,(Qy). And since the orders of the factor groups
Ni,,, (@) grows by virtue of the isomorphism theorem together with the
number n, then .S, is a dihedral group of order 8 and @, = R,, n > g for
some number g. The subgroup Np(z,,)(R;) is strongly embedded in F'(Ly,)
and according to Suzuki theorem [18] F(L,) is isomorphic to SL(2,Q),
where @ is a field of characteristic 2, n > ¢. But this contradicts Lemma
13.

If |R,,| = 2, then by Lemma 13 the Sylow 2-subgroup of F'(L,,) is a dihe-
dral group of order at least eight. If the orders of these dihedral groups are
not limited in aggregate, then on the properties of linear groups unlimited
the number of prime divisors in the set 7(Cg(k)) for some involution k. But
then Cg(k) is not Chernikov and we get a contradiction with the condition
of the theorem. So the order of the Sylow 2-subgroups of F'(L,,) are bounded
in aggregate. From here according to Brouwer-Feit Theorem [19], the orders
F(L,,) are also limited in aggregate. But due to the semisimplicity of L,
this implies that the index |L,, : F'(Ly)| is bounded.

Thus, we obtain the boundedness of orders of factor groups of the
form L,/F(Ly), n = 1,2,... Therefore, the orders of the factor groups
L/F(L), L € €, are bounded in aggregate. O

Let, for the involution ¢t R; = (t) x (k) be a Klein group of orger 4 and A,
be a maximal almost layer-finite subgroup of the group G containing C(t).
Obviously R; < A; and t belongs to the layer-finite radical R(A;) of the
group Ay. If Cy, (k) is finite, then Ry is called highlighted. If the involution
t is unique in R(Ay), then t € Cy, (R(Ay)).

Lemma 17. The highlighted subgroup is a Chernikov one.

Proof. Let t be an involution, A; be a maximal almost layer-finite subgroup
of G containing C¢(t) (recall that, by the condition of the theorem, involu-
tions centralizers in G are Chernikov). As shown earlier, Cz(t) is an infinite
group, then A; has a non-trivial normal in A; subgroup K generated by all
involutions with centralizers that are infinite in A;. Since K is a finite group,
the index |Ng,(K) : Cy4,(K)| is finite. By the inclusion Cy,(t) < Ca,(K)
we see that the index |Ny,(K) : Cya,(t) N Na,(K)| is finite. Then A; is a

UssecTnst VIpKyTCKOrO rocy1apCTBEHHOTO YHUBEPCHTETA.
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Chernikov group as a finite extension of the Chernikov group (see Lemma
2.3 from [5]). O

Let
Li,Lo,....Ly, ...

be an infinite sequence of different subgroups from 91 (semisimple groups
and L, N R(H) by Lemma 13 have almost regular involution j, of Cp(i).
There is an infinite set of elements {ci, ¢, ..., ¢p, ...} in R(H) such that
{M1, My, ..My, ...}, where M, = L¢, n = 1,2,... consists of various
subgroups and in NM,, contains the same highlighted subgroup R;.

Lemma 18. If R; is a highlighted subgroup of V.= NM,, n =1,2,...,
then

1) the set By = {Cu,(x) | z € Ry \1, n=1,2,..} is finite;

2) the orders of subgroups of the set M are bounded in aggregate.

Proof. First we prove 1). Let {Cyy, (t) | n = 1,2, ...} be infinite. Let us prove
that in this case the orders of the subgroups M, N R(A;) are not bounded
in aggregate.

Suppose that the orders of the subgroups R(A;) N M,, are bounded in
aggregate. From here and from the inclusion (¢) < Cy,(R(A¢)) obviously
follows boundedness in aggregate of orders |Cyy, (t)|,n = 1,2, ..., and since
Ry < Cg(t) < Ay and Ry is a highlighted subgroup, then some involution
u of Ry induces in a normal subgroup B, of finite index in R(A4;) automor-
phism, which translates any element from B, to the inverse (Lemma 4). We
represent A; = B;(Q, where @ is a finite subgroup from A; and R; < Q. From
here due to the boundedness of the orders |Cyy, (t)|,n = 1,2,..., infinity
of {Cp,,(t) | n = 1,2,...}, layer-finiteness of R(A;) and the finiteness of
the index |R(A;) : By| implies the existence of such the numbers ¢ such
that Cyy, (t) has an element d representable as d = br, where b € By,
r € Q,|b4Cl > |Cy, ()] and b* = b1

Based on such a representation of the element d, we write d%d~! =
b= lrr=tp=1. Obviously, r“r—! € Cy,(B;) and b~! € R(A:),r € Q,u €
Ry < Q, and therefore d“d™' = b=%r"r~! € Cp,(t) and rr~t € QN
Ca,(Bt). But then (d*d—1)I%l = =29l € Oy, (¢), which is impossible.

Hence |R(A;)NM,| is not limited in aggregate. Choose in R(A;) Abelian
normal subgroup C; of finite index, moreover, t € Cy (such a subgroup exists
by Lemma 4). It is obvious that |Cy N M,,| is also not limited in aggregate.

Since A; by Lemma 17 is a Chernikov group, then C} satisfies the
minimal condition and {M,} has an infinite subset €;, and A; has such
a subgroup Xi, that for any subgroup L € €; X; coincides with the
subgroup from C;N L generated by all elements of prime order from CyN L.
For the same reasons €; has such an infinite subset €5, and C; such a
subgroup Xy > X, that for any subgroup L € €5 the factor group Xs/X;
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coincides with the subgroup generated by all elements of prime orders from
(Cy N L)/X;. Thus we build a chain

C1>C > ..

and accordingly a chain
X< X9 < ...

Let k be an involution from R\ (t). By the condition Ay # A; and ¢ is an
almost regular in Ay. Then, by Lemma 4, ¢ induces in some normal subgroup
C}, of finite index from Aj an automorphism, translates all elements into
inverse (we can assume that Cj is chosen from R(Ayg)).

Let’s assume that the set {CL(k) | L € €,} is infinite for any n. Then
the orders of the subgroups Cx N L as we showed in the case of ¢ and By
not limited in aggregate. Since Ay is Chernikov there is a finite subgroup
in Cy of odd order W # 1, which starting with some number ¢ is contained
in a certain subgroup from €, for any n. Obviously the subgroup T =
(X, Ry, W) is locally finite.

In particular, we have tet = t~! for any element ¢ € W < C}. Since
(X,Ry) < AyNT, then by Lemma 5 T" < A; and, hence W < A;. Since
any element ¢ from W has an odd order and is strictly real with respect to
t, then taking into account the normality of the layer-finite radical R(A;)
of the group A; and the uniqueness of the involution t in R(A;) we get
for any element a from R(A;): ¢ tac = t~lctac = t~tcac™'t or ¢ 2ac =
a, which implies since the order of the element ¢ is odd, its hit in the
centralizer of the layer-finite radical R(A;), and it means, into the layer-
finite radical itself. Then W < R(A:) N R(Ax) and by Lemma 5 we get
A = Ag. Contradiction means that for an involution k starting from some
number ¢ set {CL(k) | L € &,, n > ¢} is finite.

Let Eq be some subgroup from €, E> be some subgroup from €, etc.
such that X,, < E,,. By the above, {Cg,(z) | x € R\ (t),n = 1,2,...} is
finite. It can be considered without breaking the generality of reasoning,
that E, = My, i.e. B = {Ch, (z) | x € R\ (t)} is finite, moreover Ry < M,
by assumption, X; < M, by the construction of the chain {M,}.

Let F'(M,) be a socle of M,. By Lemma 13 all F(M,) contain invo-
lutions. In addition, F(M,) N R; # 1. If not, and if there is a ¢ such
that F'(M,) N Ry = 1, then due to the properties of primary groups and
normality of F(M,) in M,, the subgroup F(M,) is non-trivial intersects
with the center of a Sylow 2-subgroup that contains Ry, in particular, there
is an involution z centralizing R;. But then R; < Cg(z), r ¢ R; means
that in Cg(z) there is an elementary Abelian subgroup of order 8, one of
the involutions of which is almost regular in a maximal almost layer-finite
subgroup in G, containing Cg(z) (Ry is chosen so), and this contradicts
Lemma 2.

Thus, F(M,) N Ry # 1. Since F(M,,) is simple and the orders of the
factor groups M, /F(M,) are limited in aggregate (Lemmas 13, 16), then
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we can assume that X,, < F(M,) and |F(M,)| grow with n. If the set
{F(M,) | M € ¢t & F(M)} is infinite, then F(M) N R; # 1 implies
unboundedness in the aggregate of orders of subgroups of the set

B, = {F(M)| MeN, t¢gFM), keF(M)y},

where k is an involution from R; \ (f). And since B is a finite set, then
|ICran (k)| (F(M) € B) limited in aggregate. But then [F'(M)] is also
limited in aggregate by Brouwer-Fowler Theorem [17] and by Lemma 13.
Contradiction. Therefore, without breaking the generality of reasoning, we
can assume that t € F'(M,), and the rest involutions of R; are not contained
in F(M,).

Let @, be a k-invariant Sylow 2-subgroup of F(M,,) containing ¢ (this
can be found due to conjugacy of primary Sylow subgroups in M, and
Frattini argument [13]). In the center @, A(k) obviously there is an invo-
lution. It cannot be different from ¢, since this would contradict Lemma
2. Consequently, t € Z(Q,). At the same time, in view of Lemma 15, ¢
contains in P, = (t) X (v,) < Qn, where v, is an involution, n = 1,2, ....
If in {P,} exists infinitely many non-highlighted subgroups, it would be
possible to consider that P, is non-highlighted for any n. Then, by Lemma
11, the Sylow 2-subgroups from M, are a dihedral groups of order 8 and
Qn = Py, moreover, the subgroups N Mn)(Pn) are strongly embedded
respectively in F'(M,,). Hence by Suzuki theorem [18] we obtain a contra-
diction with Lemma 13. We assume that P, is a highlighted subgroup for
any n. Since v, € Cg(t) < A;, then by Lemma 3 we will assume that
v o= vlfl = .. = UZ" = ..., where b, € C; < Cg(t). However, X,, < CY,
which means X,, < Mﬁ" = U,. By the sequence {M,}, the orders of these
subgroups grow infinitely. Therefore the sequence

Uy, Us,y oy U, ... (2.1)

consists of various subgroups and their intersection contains a highlighted
subgroup P = (v) X (t).

Repeat for P and for the sequence {U,,} the same reasoning with respect
to R; and to the set 1. Based on this reasoning, let us prove the existence
in the sequence 2.1 of an infinite subset & such that the set {Cy(v) | U € R}
is finite. And since v € F(U), and F(U) is a simple group by Lemma 13,
then, by Brouwer-Fowler Theorem [17] and Lemma 16, the orders of the
subgroups from K are bounded in aggregate. But then, given the equalities
|Un| = |Myn|, n=1,2,..., we obtain a contradiction with unboundedness
in aggregate of orders of subgroups from the set {M,,}. This contradiction
means that the set {Cys, () | z € R\ {1}, n = 1,2,...} is finite and
assertion 1 is proved.

Let us prove 2. Let the orders of subgroups from 9, be unbounded in
aggregate. As elements of the set £ we choose subgroups of 91 for whose
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orders the equality holds
|M1‘ < ’M2| < ...

and the intersection NM,, has the highlighted subgroup R = (i) x (j).

By 198, ={Cuy,(z) | v € R\ {1}, n=1,2,...} is finite and, as shown
above, Fiy, "R # 1, n =1,2,... But then without breaking the generality
of reasoning, we will assume that in all M,, the same involution k£ from R
lies. Since B; is a finite set, then by Brouwer-Fowler Theorem [17] and
Lemma 16 imply limitation of orders of subgroups from 91 contrary to the
choice of the set £ from 9. Thus 2 is proved. O

Proof of the theorem. We first prove that the set 91 has so infinite subset
£ such that V =nNM, M € £, is a strongly embedded subgroup in each
subgroup of £.

Let 2(; be an arbitrary infinite subset of %1, Vi = NB;, 11 =
Np,(V1), Bj € 21, Q1 be a Sylow 2-subgroup of Vj containing R =
(1) x (j). By Lemma 2, the intersection R N Z(Q1) has the involution
t;. Let A; be a maximal almost layer-finite subgroup of G containing
Ca(t1), Y1 =A1NBy,B; €A1, P = (t1) X (1) is a subgroup of order 4
from Q. Since R is a highlighted subgroup by Lemma 18 the set

{CBl(.%') ‘ T € R\ (1), B, € Qll} (2.2)

is finite. Based on Lemmas 4, 11 it is easy to get an idea to represent
the subgroup A; in the following form A; = Cy, (t1)Ca, (k), where k is an
involution from R\ (¢1). From here and from finiteness of the set 2.2 implies
the finiteness of the set

{YI ’ By € Q[l}. (2.3)

If P, is a non-highlighted subgroup, then by Lemma 11 Cp, <Y;, =z €
P\ (1). If P, is a highlighted subgroup, then, by Lemma 18, the set
{Cgy(z) | x € PP\ (1), By € i} is finite. From here and from the
finiteness of the set 2.3 it follows finiteness of a set

{C,(z) [z e P\ (1), BieA} (2.4)

for any subgroup of the form P; from @);. On the Frattini argument 77 =
Nr,(Q1)Vi, and since R < @1, then by Lemma 14 N¢(Q1) is finite. Hence
the set

{NB,(Q1), T, | B1 € 21} (25)
is finite.
If at least one of the subgroups belonging to finite sets 2.2-2.5 not
contained in any subgroup of some infinite subset of 2, then obviously
in %, exists such an infinite subset of 2y that

Vo=NBy # Vi, B e, Vi <V
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Let Ty = Np,(Va), Bz € 23, Q2 be a Sylow 2-subgroup of V5 and
@1 < Q2. According to Lemmas 1, 2 the intersection of R N Z(Q2) has
an involution to. Let also A2 be a maximal almost layer-finite subgroup of
G, containing Cg(t3), Yo = AaN By, DBs € As, Po = (t2) X (22) is a
subgroup of order 4 from )2. Using the same arguments used in justifying
of the finiteness of sets 2.2-2.5, we prove the finiteness of the sets

{Ch,(z) |z € R\ (1), Bz €A}
{Ya | By € A2}
{CBy(7) |z € P\ (1), B2e€®s}
{NB,(Q2),TB, | B2 € Aa}

Regarding the set of 2s and subsets 2.6-2.9 reason like the previous case,
etc. As a result, we get in G strictly increasing chain of subgroups Vi <
Vo < ... <V, < ... and, accordingly, the chain Q; < @2 < ... < Q, < ..

Since, by Lemma 18, the orders of subgroups from 91 are bounded in
aggregate then the specified chains will terminate at the finite number
r, that is, the set 2, is the last member of a strictly decreasing series
Ay D Ao D ... D A, has such an infinite subset of £, for subgroups whose
claims are true:

HV=nM, MecLand Ny(V)=V, MekL;

2) if @ is a Sylow 2-subgroup of V, then Ny (Q) = Ny (Q), M € &

3) if P is a Klein subgroup of orger 4 from V, in particular, P = R, then
Cy(z)=Cn(z), xze€P\{1l}, MekL

Now, based on assertions 1-3, we prove that V is a strongly embedded
subgroup in any subgroup of £. Let E be some subgroup from £. By
assertion 1 Ng (V') =V and assume that for some element g of E\ V the in-
tersection of V'NV9 has an involution z. Let @) be a Sylow 2-subgroup of V9
and z € ). As Chernikov p-group is ZA-group and satisfies normalization
condition [20] by assertion 3 it is easy to prove the inclusion Q@ < V N V9.
Since by the Sylow’s theorem [9] Sylow 2-subgroups are conjugate in V,
then in V there exists the element h such that Q" = Q, and, therefore,
hg € Ng(Q). But on to assertion 2 hg € Ng(Q) = Ny(Q) <V and g€V
contrary to the assumption g € E'\ V. Therefore, V is a strongly embedded
subgroup in any subgroup of £ and existence of the sets £ is proved.

Let the set £ consist of subgroups Ci,Cs,...,Cy, ... such that C), =
{al a™ ), tp,rn € Cg(d).

By the definition of the set 91, we can assume that all a’t,...,al", ... are
different. As in a group G with H its strongly embedded subgroup and
some involution ¢ from H with the condition (i,49), ¢ € G\ H is finite
any element g of G\ H has a representation g = hj, where h € H, jis an
involution of G\ H [21], a'* = hyi,, where h, € V, i,, n=1,2,... are
involutions from C,\V, D,, = VNV is a group of odd order. Since V is a
finite group, then we assume that h =hy =ho=..., D=D;=Dy=....

NN NN
© 0 N O
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Consider the group U = Ng(D). As proven above, i, € U and the set
{in, | n=1,2,...} is infinite. By the conditions of the theorem the group U
is almost layer-finite. Involutions i1, i, ..., iy, ... in view of Lemma 1 can be
considered not belonging to R(U). Further, R(U) has a finite index in U,
and the set {i,, | n = 1,2,...} is infinite, then we can assume that all this
set is selected from one adjacent class R(U)iy. Then from i1 = ryi, follows
i1y, = Tninip, = rn € R(U). This means in view of the layer-finiteness
R(U) unboundedness in aggregate of the orders of the elements i14,. Then
the orders of the elements aftla%" = {1h " hi, = i1i, is also unlimited in
aggregate. Hence the orders of the groups (a't,a’~,i) is also unbounded
in aggregate contrary Lemma 18. The obtained contradiction proves the
theorem. The theorem is proved.
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O nepuoanydeckux rpynnax lllyHkoBa ¢ 4epHUKOBCKUM I€H-
TPAJIU3aTOPOM MHBOJIIOIN

B. 1. Cenamos

Cubupckutl dedeparvroti ynusepcumem, Poccutickas ¢edepavus; Hn-
cmumym svivucaumensvtozo modeauposarus CO PAH, Poccutickas ¢ghede-
PaYUA

Amnvoranus. ['pynmna Ha3blBaeTCs CJIORHO KOHEYHOMN, €CJIM MHOYKECTBO €€ JIEMEHTOB
J1060ro 3a]aHHOTO MOPsijiKa KoHeuHo. CJI0HHO KOHEYHbIE IPYIIIIbLI BIIEPBbIE HOSBUIUCH 63
Hazpanus B crarbe C. H. Yepnukosa (1945), a 3aTeM B ero moCIeayOmuX LyOIKAIUSIX
MIOJTy YU/ HA3BaHUE CJIOMHO KOHEYHBIX I'Pyil. [louTn cj10iHO KOHEYHbIE ITPYIIIBI SIBJISIOT-
CsI PACIINPEHUSIME CJIOHO KOHEUHBIX TPYIII IIPH IIOMOIM KOHedHbIX rpymi. Kitace nourn
CJIOITHO KOHEYHBIX T'PYIII IIUPE, YeM KJIACC CJIOHO KOHEYHBIX IPYIII, OH BKJIIOYAET B cebs
BCe Ipymnmbl UepHUKOBa, B TO BpeMs KaK JIETKO MPUBECTH MPUMEPHI TPy 1epHUKOBA,
KOTOPBIE He SIBJISIIOTCs CJIOHHO KOHEYHO. ABTOD pa3BUBAET HAIPABJIEHUE XapAKTEPU3AIUN
M3BECTHBIX XOPOIITO M3YYEeHHBIX KJIACCOB TPYII B APYTHUX KJIACCAX TPYII C HEKOTOPBIMHU
JIOTIOJIHUTEILHBIMY (JOBOJILHO CJIAOBIME) YCJIOBUSIMM KOHEYHOCTH. B namHOo# pabore mo-
9TU CJIOHO KOHEUYHBIE TPYIIbI MOJYYAIOT XapPAKTEPUBAIMIO B KJIACCE MEPUOINIECKUX
rpyun lyukosa. I'pynna [Ilynkosa - aTo rpynmna (G, B KOTOpO# jist 11000 ee KOHEYHOI
noarpynnsl K B daxrop-rpynne Ng(K)/K  m06ble qBa CONPSIKEHHBIX JIEMEHTA MPO-
CTOr0 IOPSIKa IOPOKIAIOT KOHEYHYIO IoArpymiry. Mel u3ydaeM nepuogudecKue IPyIbL
IITynkoBa ¢ ycjaoBueM: HOPMAIU3ATOP JIO00H KOHEYHOM HESTUHUIHON TOATPYIIIIBI IOYTH
cJIOHO-KOHeYeH. JloKa3aHo, 9TO e€Cc/iM B TaKO# IpyIIile IEeHTPAIN3aTOPAMUA WHBOJIIOIUN
ABJISAIOTCS Y€PHUKOBCKUMU, TO IPYIIIA OYTH CJIOHHO KOHEUHA.

Kuarouessie ciaoBa: Beckoneunasi rpymnma, yciaoBue KoHeuHOCTH, rpynma [llyHnkoBa,
rpymnmna YepHUKOBa, WHBOJIIOIHS.
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