
1 
 

Ecophysics reload – exploring applications of theoretical physics in 1 

macroecology 2 

Sidney F. Gouveiaa,1, Juan G. Rubalcabab, Vladislav Soukhovolskyc,d, Olga Tarasovad, A. 3 

MárciaBarbosae, Raimundo Realf 4 

a Department of Ecology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil 5 
b Division of Biological Sciences, University of Montana, Missoula, USA. 6 
c V.N.Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia 7 
d Siberian Federal University, Krasnoyarsk, Russia 8 
eResearch Center in Biodiversity and Genetic Resources, University Évora (CIBIO/InBIO-UE), 9 

Évora, Portugal 10 
fBiogeography, Diversity and Conservation Research Team, Department of Animal Biology, 11 

Faculty of Sciences, University of Malaga, Malaga, Spain 12 
1Corresponding author. E-mail: sgouveia@ufs.br 13 

 14 

Abstract 15 

Physics and ecology focus on different domains of nature and have developed under distinct 16 

scientific paradigms. Still, both share critical features, such as dealing with systems of 17 

irreducible complexity and inherent uncertainty at a fundamental level. Physics has embraced 18 

such complexity earlier and has devised robustanalytical approaches todescribe general 19 

principles of its systems, a path that ecosystem ecology has tracked, but organism-based ecology 20 

has only started to.Here, we outlineapproaches from physics – from classical to quantum 21 

mechanics – to address ecological questions that deal with emergent patterns of biodiversity, 22 

such as species’ distribution, niche, and trait variation, whichare of particular interest 23 

tocommunity ecology, biogeography, and macroecology. These approaches can be further 24 

extended, which would providethese fields with a rationale common to other 25 

scientificfieldswithin and outside ecology. 26 
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1. Introduction 29 

Physics and ecology deal with different subsets of natural systems. Ecological systems gather 30 

information from the environment and evolve, thus requiring the integration of historical 31 

contingencies and evolutionary laws that are expendable in physics (Hopfield, 1994).However, 32 

physics and ecology share several commonalities. Both disciplines deal with systems of 33 

interacting components that can behave probabilistically in some relevant scale, and thatgive rise 34 

to complex outcomes(Solé and Bascompte, 2006).Physics has though a longer, ubiquitous,and 35 

successful history ofdevelopment ofanalytical approaches and models to describe suchsystems.  36 

Conversely, the strategies of ecology for explaining its subjects arevaried.Ecology emerged 37 

from the combination of different lines of investigation, including plant physiology, plant 38 

geography,animal biology, natural history, pest control,and others (McIntosh, 1985). From the 39 

1960s onwards, a‘modern ecology’ was already recognisable, but it comprised two 40 

dominantparadigmsthat persisted ever since:an ecosystem-based and an organism-based ecology. 41 

Ecosystem ecology, which McIntosh (1985)referred to as “management-oriented ecological 42 

engineering”,developed upon physical grounds, notably allowing for the laws of 43 

thermodynamics (Odum and Pinkerton, 1955; Odum, 1969). Ecosystemswereincreasingly 44 

described in terms of storage and transfer of energy and mass, efficiency, stability, and entropy 45 

(Odum, 1971; Gallucci, 1973), thus theory in ecosystem ecology has been closer to the 46 

physics’rationale and formalism (Solé and Bascompte, 2006; Rodríguez et al. 2019 and 47 

references therein). 48 

On the other hand, organism-based ecology –including population and community ecology 49 

– has beenprimarily committedto explaining patternsof biodiversity, with emphasis on its 50 

measurements,drivers, and evolutionary basis(MacArthur, 1965; Magurran, 1988; Lawton 1999). 51 

Explanationsin organism-based ecology have been far from homogeneous; they include 52 

historical explanations, verbal descriptions, phenomenological models, mechanistic models, and 53 

law-like mathematical models (see Pickett et al., 2010).Although organism-based ecology 54 
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follows on pursuing general principles(Lawton, 1999),its dominant thinking has praisedthe 55 

description of variability over the regularity of ecological phenomena (Mayr, 1996; Hansson, 56 

2003). This rationale differs from that adopted in physics, mainly statistical mechanics, and in 57 

ecosystem ecology, which accepts an inherently haphazard behaviour of individual entities that 58 

in turn convey to intelligible and predictable outcomes.Organism-based ecology delayed in 59 

perceiving and describing this probabilistic nature of biodiversity patterns (Hubbell, 2001).  60 

Still, physics’ rationale is neither absent nor new tosome organism-based fields of 61 

ecology.For instance, Porter and Gates (1969) established the physical foundations of exchange 62 

of energy between animals and the environment.Subsequently, North American physicist James 63 

P. Wesley proposed some physical applications to selected problems in ecology, including 64 

ecosystems, populations and behaviour (Wesley, 1974). In his book, he coined the term 65 

‘ecophysics’. Later, Brown and Maurer (1989) introducedmacroecology, a research programthat 66 

could address general principles of biodiversity through adoptinga probabilistic perspective of 67 

biodiversity patterns, analogous to what statistical mechanics did in physics (Marquet, 2017). 68 

Macroecologyfostered ideas that include, for example, a critical role of scaling in ecological 69 

patterns (Brown and West, 2000),ametabolic basis for several ecological patterns (Brown et al., 70 

2004; Burger et al., 2019), and the description of statistical distributions of organisms in terms of 71 

maximum information entropy (Harte, 2011).Despite all these applications andclaims for a 72 

further approximation between biodiversity research and physics (see Marquet et al., 2014; 73 

Marquet, 2017; Currie, 2019),the universe of approaches to address biodiversity patterns through 74 

probabilistic models inspired in physics has only been scratched. 75 

The present paper is a synopsis of what we discussed in the symposium ‘Applications of 76 

Theoretical Physics in Ecology’, during the International Society for Ecological 77 

ModellingConference, at Salzburg, Austria, in October 2019. Here, we showcasea few 78 

approaches and models brought in from different branches of physics – from classical- to 79 

quantum mechanics – that can aid organism-based ecology, especially community ecology, 80 
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biogeography and macroecology,in pursuing generalisations about emergent patterns of 81 

biodiversity. These approaches deal with biodiversity patterns that emerge from complex 82 

organismal dynamics, to which a thoroughly reductionist approach appears to be ineffective.In 83 

doing so, we intend to encouragethe expansion of these approaches andthe development of 84 

others, and to fuel further debate about the integration of organism-based ecology and physics.  85 

 86 

2. Macroscopic approximation of biophysical forcing 87 

Like macroecology, classical physics provides a coarse but often satisfactory description of 88 

complex dynamics, provided that they are analysed at the appropriate scale. In classical 89 

mechanics, fields such as fluid dynamics treat the matter as continuous quantities despite their 90 

discrete, atomic nature. Under some force, although individual particles move haphazardly, the 91 

entire fluid assumes an average trajectory that can be deduced by general principles. This 92 

macroscopic approximation suffices to characterise the behaviour of these systems at the scale of 93 

typical objects. This behaviour is mainly expressed by differential equations that relate the 94 

change of a quantity relative to some dimension of reference (e.g., time or position). In formal 95 

physical description through differential equation, the variation of the focal quantity can be 96 

assessed relative to the reference dimension or other variables of the equation through its partial 97 

derivatives (Hutter and Jöhnk, 2004). 98 

If we think of a particular trait of a species (e.g., body size) as a macroscopic state subject 99 

to an external force such as an environmental constraint, we could also view the geographic 100 

variation – or the evolution – of this trait as a response to that constrant similar to how physics 101 

treats the change of a quantity along a reference dimension.This reasoning was recently applied 102 

to the variation of body size of anurans as a response to potential evapotranspiration (Gouveia et 103 

al., 2019). The authors derived a set of partial differential equations for the change (i.e., thought 104 

as sensitivity) of evaporative water loss relative to two features that control the water loss: body 105 

size and total resistance (a physiological attribute related to the anurans’ skin). These functions 106 
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followed from a well-known equation that describes the loss of water out of the animal’s body – 107 

equivalent to Darcy’s law of diffusion (Porter and Gates, 1969) – and they provide testable 108 

predictions about the variation of size and resistance across environmental gradients at the 109 

macroscale. 110 

In addition to finding empirical support, Gouveia et al. (2019) provided a theoretical 111 

benchmark for analysing water balance and body size variation among anurans at the 112 

macroscale. A critical point of this approach is that it requires a first principle – such as the 113 

diffusion equation – from which to derive the theoretical predictions of the macroecological 114 

pattern. It is also critical that these predictions are taken as theoretical expectations of particular 115 

processes, which may or may not find empirical support. Because ecological and evolutionary 116 

patterns are multifactorial, the observed patterns will always be subject to multiple competing 117 

forces. However, as we become capable of formulating clear-cut hypotheses from underlying 118 

principles, we will be able to balance the conflicting evidence – which abounds in ecology – 119 

given the theory, not irrespective of it. 120 

 121 

3.  The maximum entropy formalism to scale up individual-microclimate interactions 122 

Ecologists are increasingly challenged to predict the responses of organisms to environmental 123 

change. This task requires models to predict the value of key traits involved in organismal 124 

sensitivity and theirpotential to cope with changes in climatic conditions (Huey et al., 2012; 125 

Urban et al., 2016). Advances in biophysical modelling now enable predictions of key traits such 126 

as body temperature, water balance, and metabolic rate of individuals from microclimatic 127 

information (Kearney and Porter, 2017). These predictions are critical to model the repertoire of 128 

microclimates that many organisms exploit to maintain homeostasis under changing conditions. 129 

However, animal behaviour has many degrees of freedom, which poses a fundamental 130 

obstacle to mechanistic modelling. For example, the animals’potential to explore the thermal 131 

heterogeneity of their habitat results from multiple deterministic (e.g., selection of 132 
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microclimates) and stochastic processes (e.g., predator avoidance). Capturing these rules with 133 

mechanistic models is difficult, especially when dealing with large ensembles of organisms such 134 

as populations or communities, to which the range of responses increases exponentially with the 135 

number of individuals.  136 

A promising alternative is to study statistical tendencies of these ensembles and identify 137 

regularities that provide macroscopic indicators of their response to environmental changes. The 138 

maximum entropy formalism is a powerful inferential method that provides the most probable 139 

representation of a system composed of multiple entities (for other applications in ecology, see 140 

Harte, 2011; Phillips et al., 2006; Pueyo et al., 2007). If we think of organisms living in 141 

heterogeneous landscapes as one such system, the maximum entropyapproach allows 142 

transcending the individual physiology and behaviour into statistical tendencies of a population.  143 

Rubalcaba et al. (2019) applied this approach to model the influence of microclimatic 144 

heterogeneity on populations of thermoregulating lizards. By simulating populations as large 145 

systems of particles moving in a heterogeneous thermal landscape, they derived the most 146 

probable distribution of individuals among microenvironments and the probability distribution of 147 

body temperatures that characterises the population at any time. Under the maximum entropy 148 

principle, the most probable distribution is the one that maximises Shannon’s information 149 

entropy while satisfying a set of constraints such as average values of some moment functions. 150 

Rubalcaba et al. (2019) propose that, in a population of thermoregulating ectotherms, the mean 151 

of the distribution of body temperatures approaches their preferred body temperature. Deviations 152 

from the mean may occur because individuals move away from their preferred 153 

microenvironment, e.g., for foraging, breeding or evading predators. Their work predicted 154 

daytime distributions of body temperature of desert lizards accurately and, more critically, it 155 

provided a macroscopic indicator of the constraint imposed by the thermal environment on 156 

animal activity. Although this representation does not capture the full complexity of the system’s 157 

mechanisms, it integrates and scales up information into macroscopic behaviours, which 158 
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constitutes a fundamental step to reliably project the impacts of climate change across broad 159 

spatiotemporal scales. 160 

 161 

4. Seeing the forest for the quantum trees 162 

Describing community patterns has proven a formidable task, especially if one tries to combine 163 

the several deterministic (e.g., competition, ammensalism, commensalism) and stochastic (e.g., 164 

dispersal, ecological drift and random extinction) processes involved (Chesson, 2000). An 165 

example of such complex patterns is the size distribution of trees (height – H, and diameter at 166 

breast height – DBH) in a forest stand. Without interactions among trees (neutralism) and with 167 

their growth resulting from homogeneous external factors (e.g., climate) plus random noise, the 168 

density distribution function of their H and DBH would be described by a Gaussian function. 169 

However, neither Gaussian nor beta, gamma, lognormal, Weibull or Johnson’s functions 170 

describe these patterns always well (Cao, 2004; Gorgoso-Varela et al., 2016; Fonseca et al., 171 

2009; Pretzsch, 2009). 172 

An analogous problem in physics is to describe the energy levels of the atomic nuclei of 173 

heavy atoms, which results from a large number of interactions between their 174 

components.Attempts to write down – let alone to solve – Schrödinger’s equations for such 175 

systems have failed. Alternatively, Wigner (1951) proposed to consider the eigenvalues of 176 

random matrices consisting of 0 and 1 to describe the energy levels of such nuclei. The density 177 

distribution function of the eigenvalues of a random matrix can be described by Wigner's 178 

Semicircle Law (Dyson, 1962; Mehta, 2004): 179 

    Equation 1. 180 

where s is a distance between energy levels, and A and B are constants. By introducing y = 1/H 181 

and z = 1/DBH as ecological analogues of the energy s for trees of different ages with different 182 

values of H and DBH, and introducing normalised indices (where w = y, z), then the H and DBH 183 
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density distribution functions for sample plots can be described with high accuracy by equation 184 

(1) (Fig. 1). 185 

186 
 Fig. 1. Density distribution function for 1/height of an inventory with more than 5000 187 

trees of different species (pine, birch, larch) and various ages (from 20 to 90 years) at Eastern 188 

Siberia (Valley of the Angara River). The dashed line (2) stands for data and 1 for the model. 189 

  190 

The agreement of the density distribution function for s with the distribution of the 191 

eigenvalues of random matrices may suggest, for the forest ecosystem, i) an analogous of the 192 

Hamiltonian system of physics, which describes the interaction of multiple moving objects; and 193 

ii) the application of an extreme principle to the description of ecosystems; not the principle of 194 

minimum energy, but the principle of minimum probability of mortality of the ecosystems’ 195 

components. All density distribution functions of forest stands have long tails by normalised 196 

inventory indicators, suggesting the presence of younger (i.e., smaller) trees of different species 197 

and ages that accounts for 5 to 10% of the community. A possible explanation for this effect may 198 

parallel a model of weakly non-ideal condensed Bose gas (Bogolyubov, 2007), with the 199 

community consisting of a two-level system: establishedtrees and growing trees. In a condensed 200 

ideal Bose gas, all bosons must be at the lower energy level according to the principle of 201 

minimum energy in a stationary state. However, the total interaction energy of all particles in the 202 



9 
 

system will be less when a small proportion of the bosons are at the upper energy level, rather 203 

than when all bosons are at a lower level (Bogolyubov, 2007). 204 

Considering trees as analogues of bosons, the interaction functions of trees may 205 

characterise their mortality risks, and the total risk function, in turn, should be minimal in steady-206 

state forest stands. If the proportion of growing (i.e., high-energy) trees in the stand is small, and 207 

they do not interact with each other (as the bosons at the upper level in the Bogolyubov model), 208 

it can be shown that the total risk function in the stand with younger trees is less than in stands 209 

without them (see Muller-Landau et al. 2006). Therefore, the existence of growing, younger trees 210 

(e.g., due to weak disturbances) in the ecosystem reduces the total risk of tree mortality in the 211 

community.  212 

 213 

5. Quantum theory and the intrinsic uncertainty in species distributions 214 

On a macroecological and biogeographic perspective, a species’ geographical distribution is 215 

typically depicted as a set of localities or regions where the species has been observed to occur. 216 

However, such distribution is merely a collection of “snapshots” of the places where some 217 

individuals were observed at particular moments. Species move (at varying rates), so their 218 

distributions change constantly, and it is impossible to know where all individuals are or will be 219 

at a specific time. While ecologists tend to classify “occurrence” localities as such, an occurrence 220 

cantake a range of values: within each locality, a species can occur regularly or occasionally, 221 

year-round or seasonally, throughout or at a corner. So, a species is neither present nor absent: it 222 

is present to a certain degree in each place. What we observe may be either presence or absence 223 

each time we visit each place, but the full distribution behind those observations is actually a 224 

continuous state, which can only be determined by repeatedly visiting those places. 225 

This reasoning leads us to set an analogy with quantum physics (Real et al., 2017), in 226 

which it is impossible to know the exact position of a particle except when we observe it. We can 227 

only know how probable it is to find a particle at each location, and that probability is obtained 228 
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by repeating the observation many times.The complete information about a particle’s spatial 229 

distribution is not the set of its observed positions, but a wavefunction that describes all of its 230 

possible positions and the probability of each one (Merali, 2012).The same applies to species 231 

distributions: a species is everywhere to varying degrees, it is not possible to pinpoint where each 232 

individual will be at any given moment, and the distribution is better described by a function 233 

describing how likely the species is to be found at each place (Real et al., 2017). 234 

Although living beings do not behave like quantum particles, they also show a degree of 235 

intrinsic unpredictability which makes their momentary distributions not precisely predictable. 236 

With inert macroscopic objects such as planets or bullets, if the initial positions and the forces 237 

involved are known, we can determine with certainty where they will be at a given point in time. 238 

With quantum particles, knowing their exact positions is physically impossible. Living 239 

organisms are somewhere in the middle of this spectrum: We can determine the drivers of their 240 

distributions and predict their most likely – but not their exact – locations, as they have some 241 

degree of freedom from external forces, and they can respond to the same conditions in different 242 

ways. Real et al. (2017) thus argued that the response of living beings to the environment is not 243 

entirely deterministic.  244 

This is not to say that species distributions are utterly unpredictable – on the contrary, and 245 

here the quantum analogy is also useful. According to Hawking &Mlodinow (2010), quantum 246 

physics does not undermine the idea that nature is governed by laws, but brings about a new 247 

form of determinism instead: “Given the state of a system at some time, the laws of nature 248 

determine the probabilities of various futures and pasts rather than determining the future and 249 

past with certainty”. Likewise, species distributions are not random, though they are not 250 

categorical either: they are probabilistic. Hawking &Mlodinow (2010) also pointed out that, 251 

despite the probabilistic nature of quantum mechanics, it provides quantitative predictions that 252 

can be rigorously tested. This testable aspect of probabilistic predictions also applies to species 253 

distributions (e.g. Areias-Guerreiro et al., 2016). Probabilistic species distributions provide 254 
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significant advantages (Karger et al., 2016), and they can be directly analysed even with indices 255 

originally designed to work with categorical presences (Barbosa, 2015). 256 

 257 

6. Dark matter and relativity theory applied to macroecological patterns 258 

For Turnbull (2014), ecologists are often frustrated that their universe is “fuzzy and 259 

unpredictable” because of strange entities, such as the niche. She also highlighted that physicists 260 

have their strange entities, such as dark matter, but they seem to live with them much better than 261 

ecologists do. Because galaxies and their clusters move with such speed that the gravity 262 

generated by their observable matter could not keep them together, physicists were led to reason 263 

that something invisible is at play, which they called dark matter. Although dark matter is 264 

thought to constitute most of the universal matter, it can be detected only from its gravitational 265 

effects (Caldwell and Kamionkowski, 2009). Turnbull (2014) suggested that niches are 266 

ecology’s dark matter. Ecologists do not know what they exactly are, but their presence is 267 

universally felt. Ecological communities without niches, like galaxies without dark matter, would 268 

collapse. 269 

However, to take the analogy between niche and dark matter further, we need a definition 270 

of the niche more in line with the concepts used in physics. The most famous definition of niche 271 

is Hutchinson’s (1957) n-dimensional hypervolume of environmental conditions in which a 272 

population can persist. This niche is a space defined by its position, boundaries, size, shape and 273 

overlap, but it is too static to fit the dark matter analogy. By describing the “internal structure” of 274 

Hutchinson’s niche, Maguire (1973) considered niches as response functions of species to habitat 275 

conditions, thus treating the niche as an interaction. Maguire (1973) even generalised that every 276 

physical, biological, and social system has a response function to each possible combination of 277 

conditions of its environment, offering a unified framework for living beings and inert physical 278 

objects. 279 
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Real et al. (2006) proposed to use favourability functions to quantify how a species 280 

responds to the environmental conditions in each location, irrespective of its overall prevalence 281 

over a broader region. Favourability functions may then stand as species response functions that 282 

encapsulate Maguire’s (1973) notion of the niche as an interaction. What, then, if we look at 283 

species’ responses to the environment in the same spatio-temporal context as physicists do in the 284 

general relativity theory, the space-time? Olivero et al. (2017) did so by showing that a function 285 

of space and time described the trends in the distribution of Ebola outbreaks in Africa, which 286 

was partially explained by deforestation events. The analogy between the attraction in space-time 287 

of matter on other matter (gravity) and the attraction in space-time of environmental conditions 288 

on living beings (niche) is tantalising and gives support to other approaches (see Ma, 2019). 289 

The ecological niche, if defined as an interaction, plays for living beings the same role as 290 

matter does in the general relativity theory, being an attractor of species, and thus playing a 291 

significant role in biodiversity patterns. The response function enables us to detect areas with 292 

favourable conditions where the species has not been observed, which yields an analogue of dark 293 

matter: dark biodiversity. This notion fits, for instance, the ideas behind metapopulation theory 294 

(Levins, 1969), in which populations occur across a set of suitable patches, some of which are 295 

occupied and some are not. When applied to community ecology, this unobserved species pool 296 

may entail the dark diversity of the community (Partel et al., 2011), i.e., the species that have 297 

favourable conditions for occurring in a location but that, for diverse reasons, are absent there. 298 

This seemingly abstract idea of dark diversity can actually have important practical applications, 299 

such as informing on biodiversity potential for current and future networks of natural reserves 300 

(Estrada et al., 2018). 301 

 302 

7. Conclusions 303 

Many approximations and models from theoretical physics in ecology already exist, especially in 304 

ecosystem ecology (reviewedin Solé and Bascompte, 2006; Rodríguez et al. 2019), but also, and 305 
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to a lesser extent, in organism-based ecology (e.g., Porter and Gates, 1969; Wesley, 1974; Brown 306 

et al., 2004, Burger et al. 2019). Fewer studies are committed to describing biodiversity patterns 307 

through embracing their probabilistic nature (e.g., Hubbell, 2001; Harte, 2011; Karger et al., 308 

2016). Here, we summarise some recent approaches, largely inspiredby these, todeal with 309 

biodiversity patterns that emerge from complex organismal dynamics. We show that these 310 

approaches derived from physics can provide accurate descriptions of biodiversity patterns on a 311 

macroecological scale, despite theuncertain, probabilistic behaviour of the individual entities that 312 

make up these systems.  313 

Physicists have for long struggled to describe complex, inherently uncertainphenomena 314 

that are beyond humans’ observational capacity, having devised an ample analytical toolbox for 315 

such purpose. If properly deployed, provided that limitations and assumptions are acknowledged, 316 

these macroscopic approaches from physics can provide ecology, particularly macroecology, 317 

with a diversity of opportunities to improve its explanatory and inferential capacity. This 318 

endeavour can also help to accelerate the integration between organism-based ecology and 319 

ecosystem ecology under common perspectives (Loreau et al., 2010), and ultimately to align 320 

ecology withother sciences. 321 
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