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Abstract. The conjugate initial-boundary inverse problem of unidirectional motion of two immiscible liquids in a vertical tube
with cylindrical solid wall is investigated. The fluids form cylindrical interface. The gravity acceleration acts on the fluids. The
stationary solution of problem is found. It is shown that if the temperature on the solid tube wall uniformly tends to a stationary
value with increasing time, then the solutions of the non-stationary problem with increasing time tend to a steady state.

INTRODUCTION

The problems about the convection formation in a liquid are great practical interest. It is known that motion occurs in a
non-uniformly heated fluid, and it often happens in two or more liquid media that interact along interfaces. Currently,
interest in the models of multiphase flows, taking into account the differences in physical and chemical factors, arises
in the designing of cooling systems and power plants, the growth of crystals and films, and the aerospace industry
[1]. The study of such problems is associated with great mathematical difficulties: the nonlinearity of equations
and boundary conditions on the interfaces, the unknown fields of solutions definition. In an experimental study, the
difficulties are mainly caused in the conditions reconstruction in which there is a specific phenomenon. Therefore,
the mathematical modeling methods are now considered to be an important alternative for studying an extremely
wide range of convective flow problems. It is also important to choose a correct mathematical model for studying a
particular phenomenon. In this way, it is possible to determine in advance those problem parameters where particular
processes prevail. For instance, the Oberbeck-Boussinesq model, which is often used to study natural convection
problems, becomes inapplicable under microgravity conditions or in microscopic-scale problems. But these equations
admit a solutions where the temperature and pressure are linear functions of one Cartesian coordinate, while all three
components of velocity are independent of this coordinate. These solutions are interpreted as flows in infinitely-long
tubes with an arbitrary cross section. They generalize the known Birikh’s solution of a plane problem of convection
in a horizontal band [2].

The liquid that undergoes nonlinear Marangoni instability in a circular cylinder is considered [3]. In the paper
[4] a cylinder of finite dimensions in the gravity field was considered. The free boundary was also assumed to be
undeformable. The authors considered two cases, namely, that in which the lateral wall of the vessel was adiabatically
thermally-insulated and that in which temperature disturbances vanish on this wall. In paper [5] the authors considered
the linear stability of an incompressible axisymmetric flow of a thermocapillary fluid in a cylinder of finite size, which
is heated on top by a heat flux having a parabolic radial profile. For the Oberbeck-Boussinesq model, the layer stability
with a linear dependence of the Rayleigh number on the Marangoni number was studied, for example, in the paper [6]

In this paper the problem about unidirectional motion of two immiscible heat-conducting fluids with a cylindrical
interface is considered. This problem was first formulated by V. V. Pukhnachev in 2012 [7]. The author assumed
that one of the pressure gradients is a known quantity, and the second was determined from the dynamic condition
specified on the interface. In this paper, the pressure gradients are the sought quantities together with the functions of
speed and temperature. Thus the problem is the inverse. Therefore, for complete definiteness of the problem, either
the flow rate of the first fluid or the total fluids flow rate is given.

PROBLEM STATEMENT

Consider the unidirectional convective motion of two immiscible liquids in a vertical tube of radius R2 with cylindrical
solid wall. Fluids form a cylindrical interface Figure 1. The liquid 1 moves in the cylinder 0 6 r 6 R1 and the liquid
2 moves in the annular layer R1 6 r 6 R2. The gravity acceleration g = (0,0,−g) acts on the fluids.
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FIGURE 1. Scheme of flow field

The solution of the Oberbeck-Boussinesq equations is sought in the form

u j = (0,0,w j(r, t)), θ j =−A j(r, t)z+Tj(r, t),

p j =−B j(r, t)z+q j(r, t), j = 1,2.
(1)

where j denotes number of liquids, u j is velocity vector, θ j is temperature, p j is pressure. Substituting the form of
solution (1) into the Oberbeck-Boussinesq system leads to equations for the functions w j, A j, Tj:

w jt =ν j

(
w jrr +

1
r

w jr

)
+gβ j

r∫
R1

sA j(s, t)ds− 1
ρ j

Fj(t), (2)

A jt =χ j

(
A jrr +

1
r

A jr

)
, (3)

Tjt =χ j

(
Tjrr +

1
r

Tjr

)
+A jw j, (4)

where t > 0 and j = 1 on interval 0 < r < R1 and j = 2 on interval R1 < r < R2; ρ j, ν j, χ j are positive constant
density, kinematic viscosity and thermal diffusivity, respectively, β j is fluid thermal expansion coefficient.

Functions B j(r, t) and q j(r, t) can be found using quadratures based on known functions A j(r, t) and Tj(r, t)

B j = ρ jgβ j

r∫
R1

sA j(s, t)ds−Fj(t), q j = ρ jgβ j

r∫
R1

sTj(s, t)ds+C j(t). (5)

The initial conditions are posed for unknown functions w j(r, t), A j(r, t), Tj(r, t)

w1(r,0) = w01(r), A1(r,0) = A01(r), T1(r,0) = T01(r) at 0 6 r 6 R1; (6)
w2(r,0) = w02(r), A2(r,0) = A02(r), T2(r,0) = T02(r) at R1 6 r 6 R2. (7)

Also the conditions are posed on the lateral surface of the cylinder

w2(R2, t) = 0, A2(R2, t) = γ(t), T2(R2, t) = δ (t) at t > 0 (8)

with given functions γ(t), δ (t).
On the axis of the inner cylinder the functions w1(r, t), A1(r, t) and T1(r, t) should be limited

|w1(0, t)|< ∞, |A1(0, t)|< ∞, |T1(0, t)|< ∞. (9)

The following conditions are fulfilled on the interface

w1(R1, t) = w2(R1, t), A1(R1, t) = A2(R1, t), T1(R1, t) = T2(R1, t),
k1A1r(R1, t) = k2A2r(R1, t), k1T1r(R1, t) = k2T2r(R1, t),

ρ1ν1w1r−ρ2ν2w2r = æA1(R1, t).
(10)
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Here the last condition is the balance condition of shear stresses and thermo-capillary forces. The parameter æ > 0
is coefficient of linear dependence of surface tension on temperature (σ(θ1) = σ0−æ(θ1(R1, t)−θ0) with constant
σ0 > 0, θ0 > 0). In connection with this fact and in that the dynamic conditions (p1(R1,z, t)− p2(R1,z, t) = σ(θ1)/R1)
are fulfilled on interface, we obtain

F1(t) = F2(t)+
æA1(R1, t)

R1
, (11)

K1(t) = K2(t)+
σ0−æ(T1(R1, t)−θ0)

R1
. (12)

For smooth solutions, the matching conditions must be fulfilled

w01(R1) = w02(R1), w02(R2) = 0,

A01(R1) = A02(R1), T01(R1) = T02(R1),

k1
∂A01(R1)

∂ r
= k2

∂A02(R1)

∂ r
, k1

∂T01(R1)

∂ r
= k2

∂T02(R1)

∂ r
,

ρ1ν1
∂w01(R1)

∂ r
−ρ2ν2

∂w02(R1)

∂ r
= æA01(R1).

(13)

If the function F2(t) (or F1(t)) is pose then the problem statement is completed. The equality (11) means that the
pressure in one of the liquids is up to an arbitrary time function. This problem was first formulated by Professor
V. V. Pukhnachev, see [7, p. 371–373].

In this paper, we are interested in the case when F1(t) is sought together with the functions w j(r, t), A j(r, t), Tj(r, t).
To do this, we pose the flow rate of the first fluid.

R1∫
0

rw1(r, t)dr =
Q(t)
2π

. (14)

In some applications, the total volume flow rate of liquids is known

R1∫
0

rw1(r, t)dr+

R2∫
R1

rw2(r, t)dr =
Q(t)
2π

. (15)

Remark 1. The obtained problems are conjugate and inverse because the pressure gradients (Fj(t)) are also sought.
Remark 2. The initial-boundary value problem for functions w j(r, t), A j(r, t), Fj(t) is closed subsystem. The

problem for the function Tj(r, t) is separated. This functions do not affect the velocity behavior.

STEADY STATE

Suppose that γ(t)= γ0 = const, δ (t)= δ0 = const, K j(t)= const, Q(t)=Q0 = const. Then we can look for a stationary
solutions ws

j(r), As
j(r), Fs

j = const. To begin with, dimensionless variables are introduced. The scales of length, time,
speed, temperature, pressure gradient are as follows:

R1,
R2

1
χ1

,
χ1

R1
, γ0R1,

ρ1ν1χ1

R3
1

at 0 6 r 6 R1;

R2−R1,
R2

1
χ1

,
χ2

R2−R1
, γ0(R2−R1),

ρ2ν2χ2

(R2−R1)3 at R1 6 r 6 R2.

For the case when the temperature on the side surface of the cylinder and the flow rate condition (14) are posed, we
obtain, taking into account conditions (9)

As
1 = As

2 = 1,
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W s
1 =− 1

32
Ra1

(
ξ 4

4
−ξ

2
)
+

1
4

Fs
1 ξ

2 +C1, 0 6ξ 6 1, (16)

W s
2 =− 1

32
Ra2

(
η4

4
− 4ε2

(1− ε)2 η
2
)
+

1
4

Fs
2 η

2 +C2 ln
(

1− ε

ε
η

)
+C3,

ε

1− ε
6η 6

1
1− ε

, (17)

where Ra1 = gβ1γ0R4
1/ν1χ1 and Ra2 = gβ2γ0(R2−R1)

4/ν2χ2 are Rayleigh numbers, ε = R1/R2. The constants Cm,
m = 1, ..3 are determined from conditions (8), (10). Taking into account conditions of the flow rate of the first fluid
(14) and condition (11) the pressure gradients are determined as

Fs
1 =

1
ρνχ

ε3

(1− ε)3 Fs
2 +Ma, (18)

Fs
2 =

8ρνχ(1− ε)3

ε(2ρν(ε2−1)− ε2)

(
Q̄
π
+

1
8

Ma+
1
24

Ra1−
1

32
ε(3ε4−4ε2 +1)

χ(1− ε)5 Ra2−
ε ln(ε)

χ(1− ε)
C2

)
. (19)

Here ρ = ρ1/ρ2, ν = ν1/ν2, β = β1/β2, χ = χ1/χ2, Ma = æγ0R2
1/ρ1ν1χ1 is Marangoni number. If the total volume

fluids flow rate (15) is posed then Fs
2 = Y/X where

X =
2ρν(ε3− ε(χ +1)−χ)− ε3

ρνχ(1− ε)3 +
1− ε4

(1− ε)4 , (20)

Y =
8Q̄
π

+
1
3

Ra1 +Ma+8
(

ε2(2ln(ε)−1)+1
2(1− ε)2 − ε ln(ε)

χ(1− ε)

)
C2

+
1

12
χ
(
5ε4 +10ε3 +3ε2−4ε−2

)
+3ε

(
ε +1)(3ε2−1

)
χ(1− ε)4 Ra2. (21)

Further for calculation the {“glycerin”, “silicone oil”} system are chosen. This fluids have the following parameters

ρ = {1.25,0.935} kg/cm3, ν = {1.44,0.1} cm2/c,

χ = {0.0009,0.00096} cm2/c, β = {0.00061,0.00108} K−1,

k = {28000,13400}W/(cm·K), æ = 0.0598 N/(cm·K)

Also the following parameters are posed

ε = 0.9, R2 = 0.1 cm, g = 981 cm/c2.

Let be the total volume fluids flow rate (15) is posed.
We consider the dependence of the stationary velocity profile on the radial coordinate for different values of problem

parameters. On the below figures taking into account the replacement of η = ξ−(1−2ε)/(1−ε) the velocity profiles
χ(1−ε)W s

1 (ξ )/ε and W s
2 (η) are shown respectively on intervals 0 < ξ < 1 and 1 < ξ < 2. It is established that with

increasing parameter value Q the velocity value grows (Figure 2). At increasing values of the temperature gradient γ0
given on the side surface of the cylinder at the beginning the velocity value decreases and then it grows (Figure 3).
Also it is established that the changes of the gravity acceleration does not almost influence on the velocity value.

It is worth noting that if we pose condition of first fluid flow rate (14) then we obtain the similar figures but the
velocity value will be higher.

SOLUTION OF THE PROBLEM BY THE LAPLACE TRANSFORMATION

For finding the solution of the conjugate initial-boundary problem (2), (3), (6)-(11), (13)-(15) the separation method
of variables is not applicable. We use the Laplace transformation [8]. Let

û(r,s) =
∞∫

0

u(r, t)e−stdt
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FIGURE 2. The dependence of the stationary velocity profile on the radial coordinate for different values of the volume liquids
flow rate

FIGURE 3. The dependence of the stationary velocity profile on the radial coordinate for different values of the temperature
gradient given on the side surface of the cylinder.

be Laplace transformation of function u(r, t). Then the problem mentioned above is reduced to the boundary value
problem for the ODE system

Â1ξ ξ +
1
ξ

Â1ξ − s Â1 =−A01(ξ ),

Â2ηη +
1
η

Â2η −
χ(1− ε)2

ε2 s Â2 =−
χ(1− ε)2

ε2 A02(η),

(22)

Ŵ1ξ ξ +
1
ξ

Ŵ1ξ −
s

Pr1
Ŵ1 =−

1
Pr1

W01−Ra1

ξ∫
1

zÂ1dz+ F̂1(s),

Ŵ2ηη +
1
η

Ŵ1η −
sχ

Pr2

(1− ε)2

ε2 Ŵ2 =−
χ

Pr2

(1− ε)2

ε2 W02−Ra2

η∫
ε/(1−ε)

zÂ2dz+ F̂2(s),

(23)

where 0 < ξ < 1 and ε/(1− ε)< η < 1/(1− ε); Pr j = ν j/χ j are Prandtl numbers.
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The functions Ŵ1(ξ ,s), Â1(ξ ,s) are limited at ξ = 0. Further

Ŵ2

(
1

1− ε
,s
)
= 0, Â2

(
1

1− ε
,s
)
= γ̂(s),

Ŵ1(1,s) =
1
χ

ε

1− ε
Ŵ2

(
ε

1− ε
,s
)
, Â1(1,s) = Â2

(
ε

1− ε
,s
)
,

Â1ξ (1,s) =
1
k

ε

1− ε
Â2η

(
ε

1− ε
,s
)
,

Ŵ1ξ (1,s)−
1

ρνχ

ε2

(1− ε)2 Ŵ2η

(
ε

1− ε
,s
)
= Ma Â1(1,s),

(24)

F̂1(s) =
1

ρνχ

ε3

(1− ε)3 F̂2(s)+Ma Â1(1,s) , (25)

1∫
0

ξŴ1(ξ ,s)dξ =
ˆ̄Q(s)
2π

or
1∫

0

ξŴ1(ξ ,s)dξ +
1− ε

χε

1/(1−ε)∫
ε/(1−ε)

ηŴ2(η ,s)dη =
ˆ̄Q(s)
2π

. (26)

Remark 3. If one of the functions γ(t), Q(t) is defined only on a finite time interval [0, t1] then then to apply the
Laplace transform it can be continued with zero t > t1 [8].

The boundary problem (22) for the functions Â j has a solution

Â1(ξ ,s) =C1 I0(a1ξ )+

ξ∫
1

x [K0(a1ξ )I0(a1x)− I0(a1ξ )K0(a1x)]A01dx,

Â2(η ,s) =C2 I0((1− ε)d1η)+C3 K0((1− ε)d1η) (27)

+

η∫
ε/(1−ε)

x [K0((1− ε)d1η)I0((1− ε)d1x)− I0((1− ε)d1η)K0((1− ε)d1x)]A02dx.

Here I0(x), K0(x) are modified Bessel functions of the first and second kind and

a1 =
√

s, d1 =

√
sχ

ε
.

The constants C1, C2, C3 are determined from boundary conditions (24).
Assuming that in the right sides of the equations (23) the functions Â j are already known the boundary problem

(23) for the functions Ŵj has a solution

Ŵ1(ξ ,s) = D1 I0(a2ξ )+

ξ∫
1

x [K0(a2ξ )I0(a2x)− I0(a2ξ )K0(a2x)]h1(x,s)dx− 1
a2

2
F̂1,

Ŵ2(η ,s) = D2 I0((1− ε)d2η)+D3 K0((1− ε)d2η) (28)

+

η∫
ε/(1−ε)

x [K0((1− ε)d2η)I0((1− ε)d2x)− I0((1− ε)d2η)K0((1− ε)d2x)]h2(x,s)dx− 1
(1− ε)2d2

2
F̂2,

where

h1(ξ ,s) = Ra1

ξ∫
1

xÂ1(x,s)dz+
1

Pr1
W01,

h2(η ,s) = Ra2

η∫
ε/(1−ε)

xÂ2(x,s)dz+
1

Pr2

(1− ε)2

ε2 W02, (29)

a2 =

√
s

Pr1
, d2 =

1
ε

√
sχ

Pr2
.
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The constants D1, D2, D3 are determined from boundary conditions (24).

FIGURE 4. The dependence of the velocity profile on the radial coordinate at different values of the parameter τ when
γ(τ) = 1+10000sin(0.1τ)

FIGURE 5. The dependence of the velocity profile on the radial coordinate at different values of the parameter τ when
γ(τ) = 1−20000exp(−0.05τ)sin(0.5τ)

Lemma. If finite limits for functions γ(τ) and Q(τ) at τ → ∞ exist in that

lim
τ→∞

γ(τ) = γ0, lim
τ→∞

Q(τ) = Q0. (30)

and the Laplace transformation is applicable to the derivatives of these functions then

lim
s→0

sγ̂(s) = lim
τ→∞

γ(τ) = γ0, lim
s→0

sQ̂(s) = lim
τ→∞

Q(τ) = Q0, (31)

Theorem. If conditions (30) and (31) are fulfilled then the solution constructed in the Laplace images (27), (28)
tends to a steady regime (16), (17) with increasing time.

Again we consider the liquids system {“glycerin”, “silicone oil”}. If the parameter Q= 1 and the temperature gradi-
ent (γ(τ)) given on the side surface of the cylinder is not fulfilled the lemma condition then the velocity profile does not
tend to a steady regime (Figure 4). If the function γ(τ) has the following form γ(τ)= 1−20000exp(−0.05τ)sin(0.5τ)
then we can observe convergence of velocity profile to a steady regime (Figure 5). The similar results we obtain when
γ = 1 and the function of fluid flow rate Q(τ) satisfies (Figure 6) and does not satisfy (Figure 7) the conditions of
lemma.
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FIGURE 6. The dependence of the velocity profile on the radial coordinate at different values of the parameter τ when
Q̄(τ) = 1+10000sin(0.1τ)

FIGURE 7. The dependence of the velocity profile on the radial coordinate at different values of the parameter τ when
Q̄(τ) = 1−20000exp(−0.05τ)sin(0.5τ)

CONCLUSION

Thus the inverse problem about the two immiscible fluids motion with a cylindrical interface is investigated. The
following results are obtained:

1. The stationary solutions for two types of volume flow specification are found.
2. In Laplace images, the solutions to non-stationary problems are obtained in quadratures, which contains Bessel

functions.
3. It is shown that if the temperature on the solid tube wall uniformly tends to a stationary value with increasing

time, then the solutions of the non-stationary problem with increasing time tend to a steady state.
4. On base of the Laplace transformation the numerical inversion the calculations results of the velocity and

temperatures evolution are given. It has been established that due to the change in the temperature gradient on the
tube wall, it is possible to control convective movement in the layer and cylinder.
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