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Magnetism in spin crossover systems: Short-range order and effects beyond the Heisenberg model
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To study non-Heisenberg effects in the vicinity of spin crossover in strongly correlated electron systems we
derive an effective low-energy Hamiltonian for the two-band Kanamori model. It contains a Heisenberg high-
spin term proportional to exchange constant as well as a low-spin term proportional to spin gap parameter εs.
Using cluster mean field theory we obtain several non-Heisenberg effects. Near the critical value of spin gap
εc

s there is a magnetic phase transition of first order. In the vicinity of εc
s in the paramagnetic phase we observe

nontrivial behavior of the Curie constant in the paramagnetic susceptibility in the wide range of temperature.
Reentrant temperature behavior of nearest-neighbor spin-spin correlations is observed at εs > εc

s . Finally, the
pressure-temperature magnetic phase diagram for ferroperriclase is obtained using the effective Hamiltonian.

DOI: 10.1103/PhysRevB.100.144429

I. INTRODUCTION

Spin crossover (SCO) is a phenomenon which takes place
when the metal ion changes its spin state between low spin
(LS) and high spin (HS) configuration under the effect of
external perturbation such as pressure, magnetic field, tem-
perature, or light irradiation. The SCO can be observed in
transition metal compounds (often in the 3d-metal oxides
with d4-d7 electronic configurations) [1–4] or in transition
metal complexes, like metal-organic molecules or molecular
assemblies [5]. Free inertial molecular switches to store and
process information in fast computational devices were the
primary interest for SCO. In the nanotechnology certain prop-
erties of the SCO are of interest for quantum transport and
a new generation of sensors and displays [6]. The SCO in
Fe-containing oxides is also important for the understanding
of the physical properties of the Earth’s mantle [7–11].

At first glance the SCO is a problem of an individual ion
and results from the competition of the Hund intra-atomic
exchange interaction and the crystal field value determined
by surrounding ions. Nevertheless, the effective interaction
between magnetic ions due to electron-phonon, exchange, and
quadrupole couplings results in cooperative effects, which
provide different hysteresis phenomena and play an important
role in practical applications and understanding the origin of
the SCO. There are many papers where the cooperative effects
have been treated within the Ising model [6,12–17]. In all
these studies the effective exchange interaction is postulated
phenomenologically within the Ising or Heisenberg model
with empirical exchange parameters. In the last decade the
cooperative effects in SCO have been studied by the den-
sity functional theory [18], molecular dynamics [19,20], and
Monte Carlo simulations [21,22]. The interplay of electron
hopping between neighboring ions with the orbital struc-
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ture of different spin multiplets also results in spin-orbital
cooperative effects in strongly correlated transition metal
oxides [23].

In conventional magnetic insulators only the ground term
E0 of magnetic cation in the multielectron configuration dn

with some spin value S0 is involved in the formation of the
Heisenberg Hamiltonian as the effective low-energy model.
The important difference of the magnetism in SCO systems
is that at least two different terms, usually HS and LS, are
involved in the formation of the effective low energy model.
This is a reason for the non-Heisenberg model effects that
will be discussed in this paper. Recently we have developed
a general approach to construct the effective exchange inter-
action model that takes into account the contribution of the
excited terms of the magnetic cation [24] and found that the
interatomic exchange interaction results in the SCO to be
the first order phase transition [25]. For arbitrary dn configu-
ration we cannot write down analytically the parameters of the
effective Hamiltonian that contains the interatomic exchange
as well as the interatomic hopping of excitons, the excitations
between HS and LS terms.

In this paper we study a more simple toy model with
two electronic orbitals and the Coulomb interaction in the
Kanamori approach [26]. Within the generalized tight binding
(GTB) method [27,28] to the electronic structure of strongly
correlated systems we provide the exact diagonalization of
the local intra-atomic part of the Hamiltonian, construct the
Hubbard operators using a set of the exact local eigenstates,
and write down the total Hamiltonian as the multiorbital
Hubbard model. This model describes a magnetic insulator
with the energy gap Eg between the occupied valence and
empty conductivity bands. Two electrons per site form the HS
triplet and LS singlets with the SCO at increasing the crystal
field splitting between two orbitals (for example, by external
pressure). We should mention that similar models under dif-
ferent names (the two-band Hubbard model or the extended
Falicov-Kimball model) have been intensively discussed in
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the literature, see the review paper [29]. We write down
explicitly the matrix elements of the exchange and exciton
hopping contributions, which are beyond the conventional
Heisenberg model. The other non-Heisenberg model effect is
related to a structure of the local Hilbert space, which contains
for our model three magnetic eigenstates for HS with S = 1
and three singlets with S = 0. Within the two-band Hubbard
model a similar strong coupling approach [30–32] has also
revealed two terms with S = 1 and S = 0 for electronic con-
centration ne = 2 and the intersite interaction matrix elements
(see also Refs. [33–35]). The main object of all these papers
is the possible excitonic condensation in systems of strongly
correlated electrons. In our paper we restrict our interest to
the SCO systems and possible non-Heisenberg effects. The
presence of the additional LS states does not allow introducing
the Brillouin function in the mean field (MF) approximation.
A small number of electrons in our toy model (ne = 2 per
site) allows us to study the model’s phase diagram applying a
cluster mean field (CMF) approach in order to go beyond the
standard MF. In this way we can obtain qualitative informa-
tion about the model’s phase diagram and explore the validity
of approximation by considering different cluster sizes as well
as discuss the short-order effects, which are also different
from the conventional Heisenberg model, in the vicinity of
the first order transition from the HS antiferromagnetic phase
into the LS nonmagnetic phase due to local nature of SCO.

The paper is organized as follows. In Sec. II we describe
the two-orbital Kanamori model, the effective low energy
Hamiltonian containing HS and LS states, and interatomic
exchange interaction and exciton hopping. In Sec. III we
briefly remind the CMF theory. The non-Heisenberg model
and short-order effects in the vicinity of spin crossover are
discussed in Sec. IV. In Sec. V we discuss the main results.

II. TWO-BAND KANAMORI MODEL

The multielectron states for the dn configuration in the
cubic crystal field can be obtained from the Tanabe-Sugano
diagrams [36,37], which demonstrate stability of the HS terms
for a small value of the crystal field 10Dq, and that the
crossover of the HS and LS terms takes place for d4-d7 elec-
tronic configurations with increasing the crystal field value
stabilizing the LS state. Beyond the crystal field theory, the
SCO may also happen due to increasing the cation-anion
p-d hybridization [38]. The minimal multielectron model
to discuss SCO is the two-orbital tight-binding model that
includes two single electron levels ε1 and ε2 with interatomic
hopping ti, j and the local Coulomb interaction for electron
concentration ne = 2. Its Hamiltonian is given by

H = Ht + HCoulomb. (1)

The interatomic term

Ht = ε1

∑
i,σ

a†
i1σ ai1σ + ε2

∑
i,σ

a†
i2σ ai2σ

+ t1
∑

〈i, j〉,σ
a†

i1σ a j1σ + t2
∑

〈i, j〉,σ
a†

i2σ a j2σ

+ t12

∑
〈i, j〉,σ

(a†
i2σ a j1σ + a†

i1σ a j2σ ) (2)

describes the intraband t1 and t2 hoppings and the interband
hopping t12 of electrons between the nearest neighbor sites
with the single electron energies ε1 and ε2 = ε1 + �, where �

is the crystal field value. The local Coulomb interaction within
the Kanamori approach contains different matrix elements,
the intraorbital U and interorbital V , as well as the Hund
coupling J and the interband coupling J ′:

HCoulomb

= U
∑
i,λ

a†
iλ↑a†

iλ↓aiλ↑aiλ↓ + V
∑

i,λ �=λ′
a†

iλ↑a†
iλ′↓aiλ↑aiλ′↓

+V
∑

i,λ>λ′
a†

iλσ a†
iλ′σ aiλσ aiλ′σ + J

∑
i,λ>λ′,σ

a†
iλσ a†

iλ′σ aiλ′σ aiλσ

+ J
∑

i,λ �=λ′
a†

iλ↑a†
iλ′↓aiλ′↑aiλ↓ + J ′ ∑

i,λ �=λ′
a†

iλ↑a†
iλ↓aiλ′↑aiλ′↓.

(3)

In the limit � = 0 and for one electron per site this model
transforms in the Kugel-Khomskii model for charge ordering
[39]. In this paper we will consider this model only for
homopolar case ne = 2. As we have mentioned in the intro-
duction, similar models have been studied recently to find the
excitonic insulator phase.

For zero interatomic hopping there are six exact two-
electron states. The triplet (S = 1)

|σ 〉 =

⎧⎪⎪⎨
⎪⎪⎩

a†
1↑a†

2↑|0〉, σ = +1

1√
2
(a†

1↑a†
2↓ + a†

1↓a†
2↑)|0〉, σ = 0

a†
1↓a†

2↓|0〉, σ = −1

(4)

triply degenerate HS-term |σ 〉 with the energy EHS = 2ε1 +
� + V − J is the ground state for the crystal field (Fig. 1, red

FIG. 1. The crystal field dependence of the two-electron local
eigenstates. The red dashed line shows the ground HS term for
� < �c, the green dotted line indicates the ground LS term for
� > �c, black solid lines correspond to the high-energy singlets.
Calculation has been carried out for the following parameters: U =
3 eV, V = 1 eV, J = 0.7 eV, and J = 0.7 eV.
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dashed line), for � > �c the singlet (S = 0) LS state

|S〉 = C1(�)a†
1↑a†

1↓|0〉 −
√

1 − C2
1 (�)a†

2↑a†
2↓|0〉, (5)

where C1(�) = J ′/
√

J ′2 − (2ε1 + U − ELS)2, with the
energy ELS = 2ε1 + (� + U ) −

√
�2 − J ′2 becomes the

ground state (Fig. 1, green dotted line). The crossover occurs
at � = �c =

√
(U − V + J )2 − J ′2. There are two more

singlets,

|S1〉 = 1√
2

(a†
1↑a†

2↓ − a†
1↓a†

2↑)|0〉 (6)

with the energy ES1 = 2ε1 + � + V + J and

|S2〉 = (√
1 − C2

1 (�)a†
1↑a†

1↓ + C1(�)a†
2↑a†

2↓
)|0〉 (7)

with the energy ES2 = 2ε1 + (� + U ) +
√

�2 − J ′2, which
are excited for all parameters; they are shown by the solid
black lines in Fig. 1.

To treat the intersite electron hopping we use the GTB
approach [27,28,40], which is a version of cluster perturbation
theory. We introduce the Hubbard X operators X pq = |p〉〈q|,
where |p〉 and |q〉 are the eigenstates of the Hamiltonian (1)
at tλλ′ = 0 with different numbers of electrons ne = 1, 2, 3. A
single electron creation/annihilation operator at site i with an
orbital index λ as well as any other local operator is given by
a linear combination of the Hubbard operators [41]:

aiλσ =
∑

pq

|p〉〈p〉aiλσ |q〉〈q| =
∑

pq

γλσ (pq)X pq
i . (8)

The number of different quasiparticles (pq) is
finite; one can numerate them by the number m,
which is the quasiparticle band index, then aiλσ =∑
m

γλσ (m)X m
i (a†

iλσ = ∑
m

γ ∗
λσ (m)X m

i
†).

In the X -operator representation the Hamiltonian (1) can
be written exactly as

H =
∑
i,p

EpX pp
i +

∑
〈i, j〉

∑
mn

tmnX m
i

†X n
j . (9)

Here Ep is the energy of the term |p〉, and tmn =∑
σ,λ,λ′

tλλ′γ ∗
λσ (m)γλ′σ (n) is the intersite hopping matrix element.

We would like to emphasize that the Hamiltonian (9) is
the general multielectron Hamiltonian that is valid for any
complete and orthonormalized set of local eigenstates; all
microscopic details are given by the structure of local eigen-
states.

For a number of electrons ne = 2 the Hamiltonian (9)
results in the Mott-Hubbard insulator ground state with the
insulator band gap Eg. The localized magnetic moment at
each site is HS for � < �c and LS for � > �c. To obtain
the interatomic exchange interaction we apply the method
developed for the Hubbard model [42] and generalized for
an arbitrary set of local eigenstates in Ref. [24] (see also
Refs. [29,32]). The idea is to construct the effective Hamil-
tonian excluding the interband interatomic hopping. Contrary
to the general case, in our toy model we can write down the
exchange interaction analytically. The effective Hamiltonian

is equal to

Heff = Hs + Hex. (10)

Here the first term is the spin Heisenberg-type Hamiltonian,
while the second term describes the non-Heisenberg intersite
hopping of the local excitons. This Hamiltonian acts within
the Hilbert space that contains four states: Three S = 1 triplet
states |−〉, |0〉, |+〉 and the singlet state |s〉. The spin part is
given by

Hs = J

2

∑
〈i, j〉

(
SiS j − 1

4
nin j

)
− εs

∑
i

X ss
i , (11)

where the superexchange parameter is

J = 4
(
t2
11 + 2t2

12 + t2
22

)
/Eg, (12)

Si is the S = 1 spin operator, in the Hubbard operators given
by S+

i = √
2(X +0

i + X 0−
i ), S−

i = √
2(X 0+

i + X −0
i ), Sz

i =√
2(X ++

i − X −−
i ), and ni = qe(X ++

i + X −−
i + X 00

i + X ss
i ) is

the number of electrons operator, and qe = 2 is the number of
electrons per site; in our homopolar case the completeness of
our two-electron exact set of eigenvectors looks like

X ++
i + X −−

i + X 00
i + X ss

i = 1, (13)

so ni = 2. The last term in the Hamiltonian Hs (11) is the
non-Heisenberg contribution of the nonmagnetic LS state with
the spin gap value εs = EHS − ELS. This is the local exciton
energy. Below we will assume the linear dependence of the
crystal field parameter on the external pressure: � = �(0) +
aP due to the linear decrease of crystal volume under the
pressure.

The creation/annihilation of the local excitons is given by
the Hubbard operators X σ s

i (from the initial LS state |s〉 in the
final HS state |σ 〉) and X sσ

i (corresponds to the reverse excita-
tion). These excitons describe the fluctuations of multiplicity,
the term used many years ago in the paper [43]. We consi
der this term is the appropriate one in the spin crossover
physics; the term spin fluctuations in magnetism usually
means the change of a spin projection for the same value of
the spin. The second part of the effective Hamiltonian (10)
describes the intersite exciton hopping

Hex = Jex

2

∑
〈i, j〉,σ

[
X σ s

i X sσ
j + X sσ

i X σ s
j

− (−1)|σ |(X σ s
i X σ̄ s

j + X sσ
i X sσ̄

j

)]
, (14)

where the exciton hopping parameter is

Jex = 4
(
t2
12 − t11t22

)/
Eg. (15)

One can note that due to the orthogonality of the HS and
LS terms they do not mix locally, but the exciton hopping
mixes them nonlocally. The first line in Eq. (14) describes the
intersite single particle exciton hopping, while the second line
corresponds to the creation and annihilation of the biexciton
pair. We can compare the exciton hopping parameter Jex

with similar terms in the effective low-energy models in the
literature. In Ref. [35] the biexciton excitation is possible
only due to the interband cross-hopping matrix element t12.
In Ref. [32] the cross hopping is not considered, nevertheless
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the biexciton hopping is possible due to the product t1t2. As
we can see from Eq. (15), we have both contributions.

Let us compare two nonlocal parameters of the effective
Hamiltonian (10), the values of the exchange J (12) and
exciton hopping Jex (15). We consider four different sets of
the electron hopping parameters:

(A) in the limit � = ∞, t12 = t22 = 0, we get J = 4t2
11/Eg

and Jex = 0 as in the single-band Hubbard model [44],
(B) symmetrical hopping parameters t11 = t22 = t12 = t ,

then the exchange value J = 16t2/Eg is proportional to the
superexchange parameter from the Hubbard model, while the
exciton hopping Jex = 0,

(C) t12 = 0, then J = 4(t2
11 + t2

22)/Eg and Jex =
−4t11t22/Eg, they have opposite signs,

(D) t2
12 � t11t22, then J = 8t2

12/Eg and Jex = 4t2
12/Eg, they

are of the same order in magnitude.
These examples and the general expression for the superex-

change parameter J demonstrate that antiferromagnetic type
of superexchange takes place in our model for all electron
hopping parameters, while the hopping of excitons may be
positive, negative, and zero.

In the rest of the paper the unimportant term nin j = 4 for
our homopolar case will be omitted from the Hamiltonian.
Due to the qualitative aim of our paper we will study the
effects of the non-Heisenberg contributions and short-order
fluctuations given by the spin part (11) of the effective
Hamiltonian (10) with antiferromagnetic exchange parameter,
neglecting the exciton dispersion given by the hopping term
(14). We will restrict ourselves by the symmetrical set B of the
hopping parameters, so the exciton hopping parameter 15 will
be zero. Nevertheless, basic exciton processes are still taken
into account due to LS term −εs

∑
i X ss

i in the Hamiltonian
(11), which introduces some new non-Heisenberg model ef-
fects. Let us illustrate this statement using a simple example.
Within MF approximation the Hamiltonian is given by

HMF =
1∑

m=−1

EmσX mm − εsX
ss, (16)

where m = −1, 0, 1 are triplet states, z is the number of
nearest neighbors, Em = Jzσm, so the three triplet energy
levels Em are Jzσ , 0, −Jzσ , and σ is the positive sublattice
magnetization. Thus, the MF magnetization is

σ = exp(βJzσ ) − exp(−βJzσ )∑1
m=−1 exp(−βJzσm) + exp(βεs)

, (17)

which deviates from the Brillouin function due to the LS term.
On the other hand, let us consider the exciton Green functions

Gm
i j = 〈〈

X sm
i |X ms

j

〉〉
, (18)

which describe three types of excitons. After writing down
the equations of motion and decoupling them using Tyablikov
approximation, we have obtained

Gm(E + iδ) = (E − εs + Em + iδ)−1. (19)

Thus, the three excitons with spin projection m = +1, 0,−1
will have the energies Eex(m) = Em − Es. This way, at finite
temperature the occupation numbers of our HS sublevels can

be found from the equation

nm = (ns − nm) fB(Eex(m)), (20)

where fB(E ) is the Bose-Einstein distribution function. To-
gether with the completeness condition (13) we have the full
set of MF equations exactly the same as we obtain from
Eq. (17). This way, we see that in the simplest approximation
the exciton processes are present in the system and give con-
sistent values for the occupation numbers. Below, instead of
MF we will use its cluster generalization, in which all possible
positions of singlets within the cluster are taken into account.

III. CLUSTER MEAN FIELD THEORY

Due to the LS term, the problem given by the Hamiltonian
(10) cannot be straightforwardly treated by the approaches
that work well for the Heisenberg model, like Tyablikov
approximation [45–48], or more sophisticated Green’s func-
tion approaches [49–52]. The simplest approach is to use
a MF theory given by Eq. (17). However, the Heisenberg
term contains spin fluctuations, which are neglected within
the standard MF consideration. To go beyond MF we use
its cluster generalization, the self-consistent CMF, which has
been applied to various quantum spin models [53–63]. We
believe that CMF method is suitable for a qualitative study of
the toy model we consider at a wide range of temperatures
and pressure and it is better anyhow than the single site
MF. The approach captures short-range effects, which will
be discussed in the next section, and allows treating HS
and LS terms equally within a cluster. We note that at high
temperature close to the second-order phase transition the
approach can be considered as only qualitative since it does
not capture long-range fluctuations. At zero temperature, as
will be presented below, CMF provides results which fall into
reasonable agreement with more rigorous approaches.

Within the CMF approach the lattice is covered by transla-
tions of a cluster to treat the intracluster interactions by exact
diagonalization, whereas the interactions between spins f and
f ′ belonging to different clusters are approximated within MF
as S f S′

f ≈ Sz
f 〈S′z

f 〉 + 〈Sz
f 〉S′z

f − 〈Sz
f 〉〈S′z

f 〉. Thus, after applying
the translational invariance the problem reduces to a single
cluster in a MF determined by parameters 〈Sz

i 〉, which are
determined self-consistently by iterative diagonalizations (i
runs over boundary sites of a cluster). In our calculations
we suppose the mean fields to be in Neel antiferromagnetic
ordering, since there are no competing exchange parameters,
but there is competition between the exchange and the spin
gap εs, which may be rescaled to pressure. In the main part
of the paper we take J as an energy unit and explore the εs-T
phase diagram, where T is temperature. For each value of εs

and T we compare the free energies of the system in magnetic
and nonmagnetic phases to decide, which of them is realized.
A tolerance factor for convergence of 〈Sz

i 〉 was set 10−5. We
use full diagonalization at finite temperatures and Lanczos at
T = 0. Since we are dealing with a basis consisting of three
HS and one LS states, computationaly reasonable sizes of a
cluster are Nc � 10, where Nc is the number of sites in the
former case and Nc � 20 in the latter. So, we mostly use a
2 × 2 cluster to illustrate the main physics, but also compare
the results using 3 × 2, 4 × 2, and 2 × 2 × 2 clusters to study
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the finite-size effects of our calculations at finite temperature
and clusters 4 × 3 and 4 × 4 at zero temperature.

IV. NON-HEISENBERG BEHAVIOR AND SHORT ORDER
EFFECTS IN THE VICINITY OF SPIN CROSSOVER

In the main part of this chapter we will discuss the results
of our CMF calculations with the spin Hamiltonian (11) in the
most interesting regime εs ∼ J . To compare staggered magne-
tization obtained with different clusters we will consider the
magnetization m on a bulk site, which we define as located as
close as possible to the center of a cluster. As known, Fe-based
SCO compounds in ambient conditions are 3D magnets. In
our cluster calculations it is more numerically practical to
consider the 2D case, since in 3D only 2 × 2 × 2 cluster is
available. We can use small 2 × 2 cluster for the main results
as well as compare 2 × 2 CMF with larger clusters. Although
in 2D the Mermin-Wagner theorem prohibits an ordered state
for the spherically symmetric Hamiltonian (11), in the case of
MF-based approach the results for 2D and 3D are qualitatively
identical.

An important quantity characterizing SCO is a HS (LS)
concentration. It is accessible in experiments on x-ray emis-
sion [64] and Mössbauer spectroscopy [65]. We show in Fig. 2
the LS concentration nLS dependence on spin gap and temper-
ature obtained by 2 × 2 exact diagonalization. It is qualita-
tively similar to the obtained experimentally in Ref. [64] and
calculated within MF approaches [65,66] and first-principle
studies [67]. SCO takes place at εs = 1.5 instead of ε = 0
since intracluster exchange interaction stabilizes the HS state
and larger crystal field (pressure) is required to reach SCO.
Another effect of correlations is the curvature of the isolines
of nLS at low temperatures as shown by colors in Fig. 2. If
to neglect the exchange correlations and take the value J = 0,
all lines of the constant value for LS/HS concentrations will
be the straight lines going from the SCO critical point εs = 0
[66,68].

As shown in Fig. 3(a), at εs ∼ −10 almost Heisenberg
behavior of magnetization with temperature is observed, be-
cause the system is in the HS state. Thus, a second-order
transition from magnetic to nonmagnetic state is realized

FIG. 2. The map of the LS occupation number obtained with 2 ×
2 cluster exact diagonalization.

with heating. From Fig. 3(b) one can see that for εs ∼ −10
the population of the LS is zero at low temperature, that
provides the conventional Heisenberg model behavior. The
nonmagnetic HS phase is the paramagnetic one. Increasing εs

thermal fluctuations enhance LS population, so the second-
order transition Neel temperature decreases. At εs = 0 the
magnetic transition with heating is still the second order, but
the paramagnetic moment is reduced by approximately 20%
of the LS states. At εs = ε∗

s ≈ 1.87 there is a tricritical point.
Increasing εs further leads to a first-order phase transition to
the nonmagnetic state caused by the change of the ground
state from HS to LS, as seen from Fig. 3(b). The maximal
value of magnetization in Fig. 3(a) is m = 0.9528, instead
of m = 1. This is the manifestation of quantum shortening
of spin, which is taken into account partially within CMF
by calculating spin-fluctuation terms within a cluster. The
nonmagnetic phase of Fig. 3(a) can be qualitatively viewed
as HS to the left of the nLS = 0.5 dashed line, which comes
out close to the tricritical point, and LS to the right.

The distribution of LS density in Fig. 3(b) is related to the
Curie constant in paramagnetic susceptibility

C = μ2(1 − nLS)S(S + 1), (21)

where μ = μ2
B

3kB
. The temperature dependence of C is shown in

Fig. 4 for different values of the spin gap. Equation (16) makes

FIG. 3. (a) Average staggered magnetization m and (b) LS oc-
cupation number obtained with 2 × 2 CMF. The arrow shows the
position of a tricritical point. The dashed line is the nLS = 0.5 isoline.
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FIG. 4. Temperature dependence of the Curie constant defined
by Eq. (16) for different values of spin gap (pressure) obtained with
2 × 2 CMF (a) below, (b) above the critical pressure. The dashed
lines indicate the values of the Neel temperature for the data of the
same color; μ2 of Eq. (16) is set equal to one.

sense for the paramagnetic phase above the Neel temperature
indicated in Fig. 4(a) by dashed lines. Using parameters
extracted from the anvil-cell experiments on ferropericlase
[65,69] we can estimate the corresponding values of pressure
P by assuming that the spin gap defines pressure as εs − εc

s =
α�(P − Pc), where α� = 7.8 meV/GPa, the critical pressure
Pc is 55 GPa, and taking into account the pressure dependence
of the exchange integral is J (P) = J0(1 + 2αt

t P), where J0 is
taken to be 18 K and 2αt

t = 0.01221/GPa. This way, for each
value of εs we show corresponding pressure values �P

Pc
=

(P−Pc )
Pc

. Note that within this set of parameters the exchange
integral value is chosen to reproduce the real compound’s
Neel temperature and the critical pressure is aligned with our
critical value of the spin gap for a more convenient qualitative
discussion of our results in a context of experimental data as
discussed below. A few percent below the critical pressure
there is simply a drop of an effective magnetic moment with

FIG. 5. Bulk site’s magnetization calculated in the Heisenberg
limit in 2D within MF, CMF with different rectangular clusters, and
RPA.

temperature. Around the percent below Pc an effective mag-
netic moment is almost temperature independent. Very close
to critical pressure the LS component at the Neel temperature
is already significant and thermal fluctuations lead mainly to
increase of the HS component. Above the critical pressure, as
shown in Fig. 4(b), increasing pressure leads to slowdown in
temperature growth of an effective magnetic moment.

To explore finite-size effects of our CMF calculations we
now turn to comparison of magnetization obtained within
different clusters and within the Tyablikov approximation
(or RPA) in the Heisenberg limit. Within the Heisenberg
model RPA is known to provide results in a decent agreement
with numerically exact quantum Monte Carlo [52,70]. From
Fig. 5 it is seen that inclusion of nearest correlations leads
to an appearance of zero fluctuations in m and a substantial
decrease in Neel temperature when comparing MF with 2 × 2
CMF. At zero temperature the bulk magnetization seems to
gradually approach the RPA value 0.8168, for example for
4 × 3 (not shown) and 4 × 4 clusters we obtain m = 0.886
and m = 0.88. In 2D the Neel temperature is zero in RPA,
since it satisfies the Mermin-Wagner theorem, unlike (C)MF,
where the symmetry of the cluster’s (site’s) Hamiltonian is
lowered artificially. Analogous comparison in 3D is shown
in Fig. 6: The Neel temperature is approximately 1.5 times
higher within MF that within RPA and 1.33 times higher with
2 × 2 × 2 CMF. This way, in terms of staggered magnetiza-
tion’s and Neel temperature’s values we obtain intermediate
results between RPA and MF. In our CMF calculations in the
2D case the bulk site magnetization m(Nc) as a function of
the number of sites turned to be proportional to

√
Nc. Least

square extrapolation gave the result m∞ ≈ 0.81, which is
similar to the RPA value (see Fig. 7).

Next, we compare average staggered magnetization ob-
tained with different clusters and MF at different values of
spin gap in Fig. 8. Phase diagrams obtained within different
clusters are very similar. Besides the decrease in Neel tem-
perature there is an increase in tricritical value of a spin gap
ε∗

s and the critical value εc
s , at which the first-order phase

transition occurs, as is shown in Table I. The increase in εc
s

with the cluster’s size is related to the lowering of the cluster’s
ground state energy in magnetic phase with increasing size,
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FIG. 6. The same as in Fig. 5 in 3D within MF, 2 × 2 × 2 CMF,
and RPA.

because the main competition is between states with 0 and
Nc singlets per cluster. Similarly to the case of magnetization,
we observe 1/

√
Nc behavior of εc

s (Nc) or the ground-state
energy E0 with opposite sign in the Heisenberg limit (see
Fig. 7). By least squares extrapolation for E0(Nc) we found
E0(∞) ≈ −2.31, which is similar to the value E0(∞) ≈
−2.33 from the quantum Monte Carlo [71] and density matrix
renormalization group [72] studies. The size dependence of ε∗

s
and εc

s shows the most crucial change when going from MF
to four-site CMF with predictable behavior when increasing
the system size. Thus, the part of the phase diagram obtained
at finite temperature close to the first order transition with
small clusters from four to eight sites can be considered as
semiquantitative.

Although within standard MF approach a qualitatively
correct magnetic phase diagram is obtained, it provides no

FIG. 7. Extrapolation to the infinite system limit for the bulk
magnetization m(Nc ) and the critical value of the spin gap εc

s (Nc )
in the Heisenberg limit.

FIG. 8. Bulk site’s magnetization obtained within (a) MF, (b) 2 ×
2, (c) 3 × 2, and (d) 4 × 2 CMF. The black line shows MF second-
order transition line. Arrows show the position of a tricritical point.

information about short-range correlations in the system. In
Fig. 9 we show transverse antiferromagnetic nearest-neighbor
spin correlations C⊥ = −〈(S+

0 S−
1 + S−

0 S+
1 )〉 and longitudinal

ones C‖ = −〈Sz
0Sz

1〉. At εs < εc
s the longitudinal correlations

are always decreasing with temperature, but transverse ones
are increasing with temperature at low values of spin gap,
reaching maximum at Neel points and lowering in a paramag-
netic phase. A non-Heisenberg effect is that at εs > εc

s the spin
correlations show a reentrant behavior. At low temperature
they are zero, then increasing with heating due to thermal
excitement of triplet states. When temperature is increased
further, the correlations lower again.

Finally, we use parameters from the anvil-cell experiments
on ferropericlase (Mg,Fe)O [65,69] used above to model its
magnetization dependence on pressure and temperature. The
exchange parameter value and its linear pressure dependence
at low pressure in the HS state were obtained by fitting the
experimental data from the paper [65]. The magnetization’s
phase diagram is presented in Fig. 10(a). Heisenberg behavior
is realized in a broad range of pressure, where the Neel
temperature scales linearly with pressure and reaches its max-
imum. At P ≈ Pc the Neel temperature drops discontinuously
to zero due to a phase transition of the first order. Deviation
from Heisenberg behavior is realized at P � 51 GPa at T = 0
and at P � 45 GPa at room temperatures, as is seen from
spin correlations in Fig. 10(b). The nonmagnetic phase can
be qualitatively identified as HS to the left of the black line,
which denotes 50% of maximal effective magnetic moment,

TABLE I. Tricritical ε∗
s and critical εc

s values of the spin gap for
different clusters within CMF.

MF 2 × 2 3 × 2 4 × 2 4 × 3 4 × 4

ε∗
s ≈1.59 ≈1.87 ≈1.93 ≈1.98 a

εc
s 2 2.148 2.175 2.189 2.217 2.232

aHas not been calculated for this cluster.
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FIG. 9. (a) Transverse C⊥ and (b) longitudinal C‖ nearest-
neighbor spin correlations, obtained within 2 × 2 CMF.

and LS to the right. Our phase diagram is consistent with
experimental data and model calculations of Refs. [65,69].
This shows that the microscopic Hamiltonian we have studied
is capable of capturing the main physics of spin crossover in
ferropericlase.

V. DISCUSSION

To sum up, in order to study non-Heisenberg effects due
to SCO we have derived an effective Hamiltonian for the
two-orbital Kanamori model. The parameters of the effective
Hamiltonian have been written down analytically. It contains
HS and LS states, and interatomic exchange interaction, as
well as the exciton hopping and the biexciton creation and
annihilation processes. As it can be seen within simple MF,
due to the presence of LS states the MF magnetization within
this model is not described by the Brillouin function. The
effective Hamiltonian has been studied within CMF approx-
imation. As we have shown by comparing our results between
different cluster sizes and to other methods in the special
case, our results are of qualitative character at high tem-
peratures, but we expect them to be semiquantitative within
an interesting region close to first-order transition. We have
obtained a magnetic εs-T phase diagram of the model with

FIG. 10. (a) Average sublattice magnetization m calculated for
ferropericlase parameters from Ref. [65] by 2 × 2 CMF. The black
line is the nLS = 0.5 isoline. (b) Transverse spin correlations for the
same set of parameters.

antiferromagnetic and paramagnetic phases. At very low spin
gap values εs the magnetization’s temperature dependence is
almost Heisenberg-like. Increasing εs leads to reduction of the
Neel temperature and paramagnetic moments (or the Curie
constant in the paramagnetic susceptibility) due to thermal
population of LS states. Up to a tricritical point ε∗

s the phase
transition line is second order and from ε∗

s to a critical value of
quantum phase transition εc

s it is first order. A few percent be-
low εs there occurs a drastic change in the temperature depen-
dence of the Curie constant in paramagnetic susceptibility. At
εs > εc

s the magnetic moment and the Curie constant are zero
at zero temperature and they increase with heating because of
growing population of HS states. From a quantitative point of
view we expect our results for the magnetic phase diagram
to be between simple MF (closer to MF) and RPA, which
has not been rigorously developed yet in the case when LS
states must be taken into account. However, we have shown
that the results of CMF calculations shall approach correct
values with further increase in cluster’s size, thus showing
predictable behavior. Using cluster approach has allowed us
to predict another non-Heisenberg effect, which is a reentrant
behavior of the temperature dependence of spin correlation
functions at εs > εc

s . For the P-T magnetic phase diagram
that we have obtained for ferropericlase the non-Heisenberg
behavior is realized at P � 51 GPa at T = 0 and P � 45 GPa
at T ≈ 300 K, which is a realistic pressure and temperature
interval for a more detailed experimental investigation of this
compound and for observing the non-Heisenberg effects.
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