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Abstract: Collective lattice resonances (CLRs) emerging under oblique incidence in 2D finite-size arrays
of Si nanospheres have been studied with the coupled dipole model. We show that hybridization between
the Mie resonances localized on a single nanoparticle and angle-dependent grating Wood–Rayleigh
anomalies allows for the efficient tuning of CLRs across the visible spectrum. Complex nature of CLRs in
arrays of dielectric particles with both electric dipole (ED) and magnetic dipole (MD) resonances paves a
way for a selective and flexible tuning of either ED or MD CLR by an appropriate variation of the angle of
incidence. The importance of the finite-size effects, which are especially pronounced for CLRs emerging
for high diffraction orders under an oblique incidence has been also discussed.
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1. Introduction

All-dielectric nanophotonics, being a rapidly emerging field of modern physics [1], provides a low-loss
platform for an impressive number of applications. Well-developed state-of-the-art methods for synthesis
of different all-dielectric materials [2] enable their successful implementation in color printing [3–7],
biosensing [8–10], lasing [11,12], waveguiding [13–15], optical filtering [16–18], and nonlinear [19–23]
optics. Among a rich variety of electromagnetic phenomena arising in all-dielectric nanostructures,
collective effects in regular arrays of nanoparticles (NPs) have attracted a lot of attention recently [24–37],
which is justified by the appearance of non-trivial lattice-mediated phenomena—for example, suppression
of the back-scattering (Kerker effect) [38–41].

Collective lattice resonances (CLRs) arising in arrays of NPs originate from the strong interaction
between NPs composing the lattice, which usually occurs under the illumination with a wavelength close
to Wood–Rayleigh anomalies (WRAs) [42,43] of the array. In this case, a majority of NPs are excited with
the same phase, which results in ultra-narrow high-Q spectral features. CLRs have been well studied for
nanostructures from plasmonic NPs for a long time [44–56], while the all-dielectric analogues have gained
attention only a decade ago [57]. In contrast to plasmonic NPs (in most of the cases characterized by weak
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magnetic and strong electric responses), all-dielectric NPs with pronounced electric and magnetic optical
resonances [58] give rise to a rich variety of tunable CLRs that emerge even in regular rectangular-shaped
arrays [32]. Moreover, 2D structures from all-dielectric NPs with two distinct electric dipole (ED) and
magnetic dipole (MD) resonances exhibit inherently more sophisticated and intriguing behavior compared
to the respective situations in purely ED-responsive plasmonic arrays, for example, in disordered [36,59]
and finite-size [37,38,60–62] lattices.

Most of the numerical and theoretical studies of CLRs deal with infinitely large arrays of NPs under a
normal incidence; however, it can be easily anticipated that, under oblique incidence, all-dielectric arrays
may exhibit a plethora of properties overlooked in the literature. Our expectations are well justified by the
reported results for plasmonic arrays [63,64] (with only ED response), which imply that, for all-dielectric
NPs with ED and MD resonances, one may expect to observe even more effects. Thus, in this work, we
address this problem and study electromagnetic properties of 2D arrays of all-dielectric NPs under oblique
illumination. Moreover, we focus on finite-size arrays and reveal a role of the array size (in terms of a total
number of NPs composing the lattice) on CLRs emerged under such conditions, which is more relevant to
the experimental setups than infinite-array approximation.

2. Model

2.1. Coupled Dipole Approximation

Consider an array from Ntot spherical NPs embedded in a vacuum and illuminated by a plane wave,
which, at any location r, reads as

Einc(r) = E0 exp(ik · r) , Hinc(r) = H0 exp(ik · r) ,

where E0 =
(
E0x, E0y, E0z

)
and H0 =

(
H0x, H0y, H0z

)
are amplitudes of the electric and magnetic fields,

and k is a wave vector. The time dependence exp(−iωt) is assumed and suppressed throughout a paper.
In the framework of point-dipole approximation, electric, di, and magnetic, mi, dipole moments induced
on a given i-th NP under such an incidence are coupled to the respective dipoles on other j 6= i NPs and to
the external field as [57,65,66] (unlike these works, we use Gauss units)

di = αe

(
Einc(ri) +

Ntot

∑
j 6=i

Gijdj −
Ntot

∑
j 6=i

Cijmj

)
, mi = αm

(
Hinc(ri) +

Ntot

∑
j 6=i

Gijmj +
Ntot

∑
j 6=i

Cijdj

)
, (1)

where ri is the position of the i-th NP center, αe = 3ia1
/

2k3 and αm = 3ib1
/

2k3 are electric and magnetic
dipole polarizabilities, where a1 and b1 are scattering coefficients [67], k = |k| = 2π/λ, and λ is a
wavelength. Tensors Gij and Cij describe the interaction between dipoles induced on i-th and j-th NPs:

Gij =
exp(ikrij)

rij

[(
k2 − 1

r2
ij
+

ik
rij

)
I+

(
−k2 +

3
r2

ij
− 3ik

rij

)
rij ⊗ rij

r2
ij

]
,

(
Cij
)

αβ
= ∑

γ

εαγβ(gij)γ , gij =
exp(ikrij)

rij

(
k2 +

ik
rij

)
rij

rij
,

where I is a 3× 3 unit tensor, ⊗ denotes a tensor product, rij = |rij| = |ri − rj| is center-to-center distance
between i-th and j-th NPs, and εαγβ is Levi–Civita symbol with α, β, γ denoting Cartesian components of
the tensors.
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For an array with a given geometry and composition of NPs, the solution of the linear system of
Equations (1) yields di and mi induced on each i-th NP; thus, the electromagnetic response of the array to
the incident excitation can be explicitly found. Particularly, in this work, we consider the total amount
of the electromagnetic energy scattered and absorbed by the array normalized to the sum of the cross
sectional area of all NPs, i.e., the extinction efficiency [57,66]:

Qext =
4k

|E0|2NtotR2=
Ntot

∑
i=1

[di · E∗inc(ri) + mi ·H∗inc(ri)] , (2)

where the asterisk denotes a complex conjugate, R is the radius of the NP, and = takes the imaginary part.

2.2. Wood–Rayleigh Anomalies

CLRs emerge at wavelengths close (slightly red-shifted) to WRAs, which for a general case of a
regular 2D lattice (with pitches hx and hy along x and y axes, as shown in Figure 1a) takes place if

k‖ = kσ + pKx + qKy , (3)

where Kx = (2π/hx)x̂ and Ky = (2π/hy)ŷ are reciprocal lattice vectors, k‖ = (k‖x, k‖y) is wave vector of a
wave propagating in the lattice plane, kσ is projection of the incident wave vector on the lattice plane, [p, q]
is a pair of integers which denotes the order of the anomaly, and symbolˆdenotes a unit vector. Explicitly,
x and y components in Equation (3) read as

k‖x =
2π

λ
sin θx +

2π

hx
p , k‖y =

2π

λ
sin θy +

2π

hy
q , (4)

where θx and θy are angles between the z-axis and projections of k to XOZ and YOZ planes (see Figures 1a
and 2a, respectively).

In a homogeneous environment, the wave vector of a wave propagating in the lattice plane is
|k‖|2 = k2

‖x + k2
‖y = (2π/λ)2, which along with Equations (4) provide the quadratic equation in λ:(

p2

h2
x
+

q2

h2
y

)
λ2 + 2

(
p sin θx

hx
+

q sin θy

hy

)
λ +

(
sin2 θx + sin2 θy − 1

)
= 0 , (5)

where, for a given combination of integers [p, q], one can get a corresponding spectral position λp,q of
WRA of [p, q] order.

We emphasize that the hybridization between localized Mie resonances and [±1, 0] or [0,±1] WRAs
is usually considered in a solid body of the literature [32,36,37,57]. For a special case of normal incidence
(θx = θy = 0), these WRAs are simply λ±1,0 = hx and λ0,±1 = hy. However, Equation (5) immediately
implies that the broad variation of θx and/or θy may result in CLRs emerging from the hybridization with
WRAs of higher order (i.e., |p|, |q| > 1), which are studied below.

3. Results

We consider regular arrays from Si NPs with R = 65 nm, arranged in a 2D rectangular lattice with
hy = 480 nm and hx = 580 nm. A direct comparison with full-field simulations [31, Figure 1] [38, Figure
3] has confirmed a reliability of the coupled dipole approximation (1) for arrays with similar pitches
and the same R. Under a normal incidence with E0 = (E0x, 0, 0) and H0 =

(
0, H0y, 0

)
, arrays with

these geometrical parameters exhibit ED and MD CLRs [37, Figure 2b] at λ ≈ 490 nm and λ ≈ 586 nm,
respectively, which is the result of a hybridization between ED (λ ≈ 450 nm) and MD (λ ≈ 550 nm)
resonances of a single NP [57, Figure 3b] with [0,±1] and [±1, 0] WRAs [37, Figure 2a], correspondingly.
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Figure 1. (a) Schematic representation of a regular 2D array from Ntot = N × N NPs with radius R and
pitches hx and hy along the x and y axes. The incident wave vector k lies within XOZ plane, and the angle θx

is varied, while θy = 0; (b–e) corresponding extinction efficiency Qext for arrays from NPs with R = 65 nm,
hx = 580 nm, hy = 480 nm and for a different number of NPs: (b) 15× 15; (c) 30× 30; (d) 50× 50; (e) 70× 70.
The dashed lines show spectral positions of WRAs of [p, q] order, as labeled in plots. Data from Ref. [68]
have been used for the refractive index of Si.

Since the efficient tuning of ED and MD CLRs occurs if hy,x are changed in a direction perpendicular with
respect to the polarization of E0 or H0 [32, Figures 2 and 4], [36, Figure 2], it is insightful to consider an
incidence with only one θx,y varied keeping the other θy,x = 0. Following this approach, it is possible to
study separately ED and MD CLRs, while, for any other oblique incidence with θx 6= 0 and θy 6= 0, one
can expect the optical response to be a superposition of the studied examples.

Figures 1(b–e) show the extinction efficiency for arrays with different Ntot = N × N under incidence
with 0◦ ≤ θx ≤ 60◦ and θy = 0. Dashed [p, q] lines show corresponding angle-dependent λp,q for WRA
which fall within a visible range for a geometry considered. It can be seen that, apart from common [0,±1]
and [±1, 0], WRAs of [−2, 0] and [−1,±1] orders have emerged. This leads to the appearance of additional
ED CLRs for [−1,±1] WRA under θx > 25◦ illumination, and for [−2, 0] WRA under θx > 40◦ incidence.
Moreover, even for θy = 0, variation of θx implies gradual blue-shift of [0,±1] WRA, which allows for
fine-tuning of ED CLRs for θx < 25◦. Such angle-dependent hybridization between Mie resonances on
single NP and WRAs paves a way for the efficient tuning of ED CLRs in the 450–540 nm range. It is
noteworthy that MD CLR vanishes quite rapidly with a slight change of θx, since λ±1,0 strongly depends
on θx (cf. Equation (5)); thus, for θx > 5◦, only an MD resonance of a single NP is observed. As it might be
expected from Ref. [37], the extinction efficiency at the CLR regime grows with Ntot; thus, the CLRs that
have emerged from the interaction with high-order WRAs are more pronounced for larger arrays, which
can be clearly seen by the following Figure 1b for the array from 15× 15 NPs to Figure 1e for 70× 70 NPs.

On the contrary, by changing θy and keeping θx = 0 constant, one can control the spectral position
of MD CLRs, as clearly shown in Figure 2. In this case, however, ED CLR does not vanish so rapidly for
0 < θy < 5◦ (as it does MD CLR from Figure 1 for the opposite case of 0◦ < θx < 5◦). ED resonance on a
single NP efficiently couples to [0,−1] WRA and thus corresponding ED CLR can be tuned all the way up
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Figure 2. The same as in Figure 1, but with varying θy and constant θx = 0. The incident wave vector
k ∈ YOZ.

to ≈ 570 nm, and, finally, overlap with [±1, 0] MD CLR around 580 nm under θy ≈ 12◦ incidence. MD
CLR, however, can be efficiently tuned only for [±1, 0] WRA, while, wavelengths of high-order WRAs
appear to be quite far away from MD resonance, and only [±1,−1] efficiently interacts with MD resonance,
but for quite large angles of incidence.

Figure 3 further elaborates on discussed effects and shows several extinction spectra for the clearer
presentation. Indeed, under oblique incidence, one can observe efficient tuning of the optical properties of
the 2D lattice from Si NPs. The “gradual” quadratic λp,q(θ2) and “rapid” linear λp,q(θ) dependence with
one of the θx, y being zero (see Equation (5)) allows for a flexible control of ED and MD CLRs. For a strong
coupling of single-particle resonance with WRAs (i.e., for spectral regions where they almost overlap), the
finite size effects are of particular importance, while, for a weakly coupled case (i.e., for spectral regions
where they are sufficiently far from each other), these effects have a minor impact. For example, from
Figure 3a, one can see that Qext rapidly grows with increasing N × N for ED CLR strongly coupled to
[0,±1] around λ ≈ 490 nm, while MD CLR for [1, 0] WRA becomes almost independent on Ntot with
increasing θx.

Finally, Figure 4 demonstrates angle-dependent Q-factors of ED CLRs from Figure 1, for arrays
with different N × N. As it might be expected, the Q-factor is generally larger for arrays with larger
N × N. Interestingly, for 0◦ ≤ θx ≤ 24◦ incidence, with increasing θx, i.e., weakening coupling between
single-particle resonance and [0,±1] WRA, Q-factor gradually converges to≈ 30 value for any array size at
θx ≈ 24◦. It is noteworthy that for CLRs that have emerged from the hybridization with high-order [−2, 0]
WRA, Q-factor is about two times larger than that of commonly considered CLRs that have emerged from
the interaction with [0,±1] WRA.

4. Conclusions

To conclude, we have considered the features of collective lattice resonances emerging in regular 2D
arrays of all-dielectric nanoparticles under an oblique incidence. For a particular case of Si constituents
with fixed pitches hx,y, we have shown that high-order Wood–Rayleigh anomalies appear to be within a
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Figure 3. Extinction spectra for arrays from (a) Figure 1 and (b) Figure 2 for selected θx,y and for arrays
from 15× 15, 30× 30, and 50× 50 NPs. Spectra of infinite (inf) arrays are shown for comparison. Vertical
dashed lines show the spectral positions of [p, q] WRAs.

Figure 4. Q-factor of ED CLRs from Figure 1 as a function of θx for arrays with different number N × N of
NPs. Vertical dashed lines separate regions where the ED of a single NP hybridizes with different WRAs:
[0,±1] for 0◦ ≤ θx ≤ 24◦, [−1,±1] for 24◦ ≤ θx ≤ 42◦, [−2, 0] and [−1,±1] for 42◦ ≤ θx ≤ 60◦. Note that
15× 15 arrays do not exhibit ED CLRs for [−2, 0] WRA, as may be clearly seen from Figure 3(a).
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visible range and close to the optical resonances of a single Si nanoparticle. Under such conditions, an
efficient hybridization between either electric dipole or magnetic dipole resonance of a single nanoparticle
with, for instance, [−1,±1], [−2, 0] or [±1,−1] Wood–Rayleigh anomalies leads to the appearance of
collective lattice resonances, which can only be observed under an oblique incidence. Moreover, by
adjusting the angle of illumination, one can efficiently tune the spectral position of such collective lattice
resonances across the whole visible spectrum. We emphasize that all the results presented in this work
correspond to a single lattice (with given N × N). It means that the optical response of a considered
nanostructure can be tuned to a variety of scenarios by simply inclining the array with the respect to the
incident illumination, which, in some cases, might be more preferable compared to other strategies used to
tune the wavelength of the collective lattice resonances [69,70]. Finally, we show that the total number of
nanoparticles composing arrays may play a crucial role for collective lattice resonances under an oblique
incidence, depending on the coupling strength between Wood–Rayleigh anomalies and single-particle
resonance. Thus, results reported in this manuscript might be used in the design of photonic devices
where the tuning of the resonant response can be achieved without complex technologies.
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