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Abstract. The lowest eigenfrequency and critical force are important parameters which defines 

structure behavior under dynamic loading. The paper describes the influence of temperature on 

the lowest eigenfrequency and critical force of a waveguide straight section in the spacecraft. 

The straight waveguide modeled according to the beam theory. It has been shown that the 

temperature change is equivalent an appearance and action of the axial force which makes the 

structure prestressed and significantly modifies its lowest eigenfrequency. An example of 

calculation of dependence of the waveguide straight section lowest eigenfrequency on 

temperature was considered, and it showed the existence of a critical temperature value, where 

the vibration frequency equals to zero. This critical temperature value corresponds to the loss 

of waveguide structure stability which is extremely undesirable and requires special methods to 

avoid such a situation. Stress state of waveguide in case of its loss of stability is also estimated. 

1.  Introduction  

One of the most important requirements to dynamically loaded structures is ensuring their rigidity 

controlled, in particular, by eigenfrequency, the minimum value of which shall not be less than a 

certain allowable value [1-5] to avoid the resonance: 

 minf f .                                                                 (1) 

The common deficiency of calculation methods existing until recently for static, dynamic and 

thermoelastic states of structures is that these types of calculation are performed independently from 

each other which does not correspond to their actual operation conditions. In particular, the assessment 

of structures rigidity is performed with no regard to contributing factors, for example, their 

temperature, which changes the object geometry and leads to occurrence of thermal stresses, which 

change their expected static and dynamic states [6-9]. 

An example of such structures is spacecraft antenna-feeder devices' waveguides, which are 

designed to transmit signals between transmit-receive antennas and UHF blocks. In the course of 

manufacturing, testing, space launch and on-station operation within the set period of active lifetime, 

waveguides are subject to action of different static and dynamic loads: power, deformation and 

temperature loads. In this regard, waveguide structures shall meet stringent requirements for their 

strength and rigidity [7-9]. 

This paper covers investigation of influence of waveguide straight section temperature on its 

dynamic state determined by its lowest eigenfrequency. We are going to consider such temperature 

changes which may occur during the space launch and spacecraft on-station operation. During orbit 
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insertion, the source of heating is temperature differentials in the near-Earth space, and on orbit the 

source is sun rays and heat production as a result of strength losses of signals transmitted via a 

waveguide up to +1200С. Waveguide cooling occurs in the shade down to the value of the space cold 

temperature -1200С [10]. 

2.  Mathematical model of waveguide 

A waveguide is a thin-walled elongated structure with a rectangular cross section which satisfies the 

conditions of the shell theory [11,12]. However, as a first approximation, application of the shell 

theory is needless and requires complex mathematical calculations with numerical methods. For this 

reason, we consider rather elongated waveguides which allow to find solutions in analytical form 

according to known conditions of the beam theory and the vibration theory [1-5,13-16]. Therefore, the 

found solution be in an explicit form and allow to assess the influence of not only temperature but also 

other structure parameters on the value of its lowest eigenfrequency.  

2.1. Waveguide beam model 

As a first approximation, the design model for the extended waveguide may be considered as a hinged 

beam with equivalent geometrical characteristics, supports and loading requirements (figure 1). The 

hinge support simulates the actual design of the most types of real waveguide supports. 

Let us consider that a waveguide is heated up evenly during spacecraft irradiation with sun rays. 

This holds true as the waveguide material has high thermal conductivity and it is placed in vacuum 

where there are no convection and other opportunities for heat removal. Additional heating of the 

waveguide structure occurs in the process of microwave signals transmission inside a waveguide, 

which may be considered according to the paper [10]. 

As a result of the temperature change, the waveguide are subjecting to thermal expansion and 

compression which can be replaced by the equivalent axial force N in the design model. During the 

heating of the waveguide, it expands and due to the presence of fixed supports, a compressive axial 

force N occurs, while when cooled, the waveguide compresses and the axial force will be tensile. It is 

obvious that during beam compression eigenfrequency decrease with further possible loss of stability. 

This state is the most dangerous, for this reason we consider the compression direction of the axial 

force N for the design model, as shown in figure 2. Here one of the fixed supports is replaced with a 

movable one. 
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Figure 1. Sun rays action on a waveguide.  Figure 2. Design model of a waveguide. 

 

The dotted line shows the waveguide deflection x-axis corresponding to its first mode of vibration. 

Such beam deformation also corresponds to the first mode of its loss of stability during compression 

during waveguide heating. 

2.2. Analytical solution of free vibrations equation 

According to the vibration theory [6-8], the dynamic state of the waveguide model is described by the 

differential equation: 

( )
2 2 2

2 2 2
,

w w w
EJ N S q x t

x x x x t


      
+ + =   

      
,                                     (2) 
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where:  w=(w,t) – deflection of waveguide longitudinal axis; 

 E – Young's modulus of the waveguide material; 

 J – waveguide inertia moment; 

  – waveguide material density; 

 S – waveguide cross sectional area; 

 q(x,t) – external force action of the waveguide. 

According to the accepted design model, the waveguide geometry and its material properties, as 

well as axial force N do not change along the length, and external force action q(x,y) is absent, in such 

a case equation (2) take the following simplified form: 

4 2 2

4 2 2
0

w w w
EJ N S

x x t


  
+ + =

  
.                                                 (3) 

For solution of equation (3), it is necessary to set 4 boundary conditions which reflect conditions of 

waveguide hinged supports. The absence of deflections and bending moments in hinged supports can 

be written as: 

( ) ( )0, , 0w w x t w x l t= = = = = ;           
( ) ( )2 2

2 2

0, ,
0

w x t w x l t

x x

 =  =
= =

 
;            (4) 

According to the accepted first mode of vibrations, we use following equation as a decision 

function [1-3]: 

( ) ( ), sin sin
x

w x t A t
l




 
=  

 
,                                                 (5) 

where:   А is vibration amplitude; 

  is angular vibration frequency. 

After inserting decision function (5) in free vibrations equation (3), we get: 

( ) ( ) ( )
4 2

2

4 2
sin sin sin sin sin sin 0

x x x
EJA t NA t SA t

l l l l l

    
    

     
+ − =     

     
.     (6) 

From equation (6), after simplification and conversion, we get vibration frequency equal to [1-3]: 

2 2

min 2 2
1

EJ Nl

l m EJ






 
= − 

 
,                                             (7) 

where:  m is the mass per unit length of the beam. 

Value of angular frequency of vibration (7) can be easily converted to value of vibration frequency: 

2
f




= .                                                             (8) 

The obtained solution (7) determines the first natural eigenfrequency of the waveguide having 

bending stiffness EJ, length l, specific weight m and subjected to the action of axial force N. 

2.3. Influence of temperature on waveguide eigenfrequency 

Now we consider the effect of temperature. The value of the axial force N can be determined by Hook 

's law and the coefficient of thermal expansion of the waveguide material [17-20] by equation: 

N T ES=   ,                                                        (9) 

where:  α – coefficient of thermal expansion of the material; 

 T – change of the waveguide temperature. 
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Considering the expressions (7-9) we get an equation determining the dependence of the first 

eigenfrequency on temperature for the considered waveguide model (figure 1): 

( )
2

min 2 2
1

2

EJ T S l
f T

l m J

 



   
 =  − 

 
.                                (10) 

Obtained resolving equation (10) determines the explicit analytical dependence of the beam lowest 

eigenfrequency from temperature, as well as from its geometry, material and weight. 

2.4. Thermal stress 

The changing in temperature reduces or increases the size of the waveguide, in particular its length. If 

the waveguide supports prevent a free change in its length, thermal stresses appear in this direction. In 

the present case of fixing the waveguide in hinged supports, the change in temperature lead to normal 

stresses, which, according to Hook's law, are determined by the equation [17-20]: 

( )T T E  =   ,                                                       (11) 

The thermal stresses are inevitable when a spacecraft is exposed in orbit due to sunlight and can 

reach dangerous values for waveguide material. 

3.   Results 

For the purpose of calculation, we consider two waveguide with typical cross-section size of 

35х15x1.2 mm, inertia moment J=6.6*10-9 m4, having two lengths: l=0.25 m and l=0.5 m. The 

waveguide material is duralumin with properties as Е=7.1*105 MPa, density =2.77 kg/m3 . The 

temperature change is considered within the range from –1200С to +1200С. 

After insertion of these data in equation (10), we obtain values which are graphically shown in 

figure 3 in the form of two curves. 

 

 

 

 

Figure 3. Dependency of the waveguide lowest 

eigenfrequency value on temperature (hinge 

supports) 

 Figure 4. Comparative solutions for fixed 

supports 

 

Two curves in figure 3 represent dependencies of the lowest eigenfrequency value on temperature 

for the two waveguide lengths with hinge supports: 0.25m and 0.5m. Characteristic points in this 

graph have following values: f01 = 920 Hz;  f02 = 230 Hz; T01 = 66 оС;  T02 = 16 оС. 

The thermal stresses in the waveguide calculated by equation (11) show that a temperature change 

of T=1оС results in normal stress equal 8.875 MPa. So, for the characteristic values of temperatures 

in figure 3 we obtain the following values of the corresponding normal stresses: 01 = 586 MPa, 02 = 

142 MPa. These values are dangerous and exceed the yield strength of some waveguide material. 
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4.   Discussion 

Obtained equation (7) is perfectly compliant with known formulas obtained by another authors. For 

example, if we accept that there is no axial force (N=0), we obtain a well known expression of the 

lowest eigenfrequency for a hinged beam [1]: 

2

4

EJ

m l
 =


.                                                          (12) 

Solution (10) shows that a situation is possible in equation (10) when a term of a fraction under the 

radical turns into zero. This critical case corresponds to such a value of axial force Ncr at which 

vibration frequency of a waveguide become equal to zero and the loss of stability occur [21-24]: 

2

2cr

EJ
N

l


= .                                                           (13) 

Expression (13) fully coincides with the Euler formula for the critical compressive force in case of 

the loss of stability of a hinged beam. Resolving equation (10) and a diagram in figure 3 show non-

linear and significant dependence of the lowest eigenfrequency of the waveguide on temperature. In 

figure 3 values f01=233.4 Hz and f02=933.6 Hz correspond to the lowest eigenfrequencies for 

waveguides with lengths of 0.25 and 0.5 m respectively in case of absence of axial force N.  Values 

T01=66 оС and T02=16оС in figure 3 determine temperatures, which correspond to the loss of 

construction stability. 

With the aim of comparative assessment of results, calculations of the waveguide shell model were 

performed FEM analysis in the Ansys software, and in this case these calculations showed decrease of 

frequencies by 5-7% in comparison with those obtained in accordance with the beam theory. For this 

reason, results obtained as per equation (10) for critical structures require clarification by means of 

calculations with more precise procedures [25-27]. For example, it is obvious that the actual 

waveguide supports have some bending stiffness and conditions (4) not be exactly met. Consider the 

extreme case of fixed waveguide supports at its both edges. In this case the solution of the equation (3) 

give more higher frequencies: f01 = 2085 Hz; f02 = 521 Hz; T01 = 264 оС;  T02 = 66 оС (figure 4). 

In order to increase eigenfrequency, as well as the stability of a waveguide, a simple and efficient 

method is changing the supports design in such a way as to compensate temperature changes of 

waveguide section lengths. For example, one of the supports may be made sliding to compensate for 

thermal expansion along the longitudinal axis of the waveguide. 

5.   Conclusions 

In this paper, we considered the influence of the waveguide temperature on its dynamic behavior 

which was characterized with the lowest eigenfrequency and critical compressive force. For this 

purpose, the beam deflection curve vibration equation was solved taking into account the action of the 

axial force occurring as a result of thermal deformations. 

An analytical solution was obtained for a case of the waveguide hinge support which determines 

the eigenfrequency dependence on the temperature. The solution showed significant dependence of the 

waveguide first eigenfrequency and stress on the temperature, and even probability of the loss of its 

stability even at relatively small temperature changes which is an unacceptable situation. A way to 

decrease the temperature impact has been suggested which is based on changing the design of 

waveguide supports. The obtained results may be used for assessment of dynamic behavior of any 

extended structures which are subject to temperature changes, for example, steam piping, oil piping, 

pipelines and others. 
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242914: "Development of methods of calculation of a thermoelastic state of waveguide system of the 
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