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Abstract. The most important parameters that determine the dynamic behavior of the 

waveguide in orbit are the first natural vibration frequency and the critical compressive force at 

which the stability of the waveguide structure is lost. This paper deals with the selection of the 

type and location of the outermost and intermediate supports for a single waveguide between 

two microwave units to provide the required values of the first natural vibration frequency and 

critical compressive force. The most common support arrangement schemes and their 

corresponding coefficients for equations defining the first natural frequency and minimum 

critical compressive force are given. For the calculation, the analytical dependencies of beam 

vibration theory and stability theory are used, which allowed to obtain simple equations and to 

comprehensively assess the influence of various factors on the obtained results. The results can 

be used in the design of any extended structures to ensure their dynamic behavior by means of 

support arrangement. 

1.  Introduction  

In mechanical engineering there are a large number of extended structures, which are subject to forced 

fluctuations and significant temperature change: pipelines, oil pipelines, steam pipelines, rails, 

waveguide, etc. For such structures, an important problem is the provision of their dynamic state, 

which is largely characterized by the first natural frequency of vibration and the minimum critical 

force [1-3]. Providing the first natural frequency of vibrations of the structure above the specific value 

serves as a condition of absence of resonance at the lower frequency, at which usually amplitude of 

vibrations and stresses reach maximum values. The minimum value of critical force is relevant mainly 

for thin-walled extended structures, in which buckling occurs even with relatively small compressive 

forces. In general, these conditions can be written as: 

 minf f ,     min crP P .                                                       (1) 

One such design is the waveguide of the spacecraft antenna-feeder system. Forced vibrations of the 

waveguide are experienced by spacecraft engines, so one of the most important parameters 

determining the dynamic behavior of the waveguide is the minimum value of the first natural 

frequency of vibrations. When the spacecraft is orbiting, the solar rays and attenuation of the 

transmitted microwave signal cause the waveguide to heat to +1200С, resulting in its thermal 

expansion [4]. In the event that the waveguide supports do not allow it to expand freely, especially 

along its longitudinal axis, this results in an equivalent compressive force P which can reach a critical 

value and cause loss of stability of the waveguide construction (figure 1). 
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Figure 1. Sun rays action on a waveguide and equivalent model. 

One effective way to provide a minimum of natural frequency and critical force is to select the 

appropriate species and order of the edge and intermediate supports. Theoretical bases of calculation 

of vibrations and loss of stability are presented in the works of many scientists of the 19-20 century [5-

12]. Their calculated constraints are most simple based on beam theory, which is applicable to 

extended thin-walled structures. On the basis of the obtained dependencies, various manuals have been 

developed in the future to help the ordinary calculation engineer to carry out the necessary calculations 

without using fundamental theoretical foundations. However, practically all existing literature is given 

from the point of view of solving problems of vibration theory and stability theory for different types 

of beam supports. In the engineer 's work there is usually the opposite task, to select such type of 

supports and to create from them such their location at which the first natural frequency of vibrations 

and critical compressive force do not exceed the specified permissible values. In order to solve this 

problem, this study has been completed. This paper addresses the issue of controlling the dynamic 

state of the waveguide construction, which is characterized by conditions (1), by selecting the type and 

order of the supports. The results obtained can be used for any extended structures experiencing forced 

heat vibrations and requiring the provision of minimum values of the first natural frequency of 

vibrations and critical compressive force. 

2.  Mathematical model and schemes of waveguide  

Waveguide modeling be most accurate according to shell theory [13,14], but the mathematical 

dependencies obtained from it are complex and the solution requires the use of numerical methods. 

Therefore, we use the theory of beams, which is quite accurate at the length of the structure under 5-6 

times more than the characteristic size of its cross-section [15-18]. We consider the waveguides only 

with such geometric dimensions, for which this condition is satisfied and we get the solutions of task 

(1) in a simple analytical form. According to the vibration theory [5-9], the dynamic state of the 

waveguide beam model at free vibrations is described by the differential equation: 

4 2

4 2
0

w w
EJ m

x t

 
+ =

 
,                                                           (2) 

where: w=(w,t) is the deflection of waveguide longitudinal axis; E is the Young's modulus of the 

waveguide material; J is the waveguide inertia moment; m is the mass per unit length of the 

waveguide. According to the theory of vibrations, we use a decision function in the form: 
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x
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l
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,                                                 (3) 

where: А is vibration amplitude;  is angular vibration frequency. 

For solution of equation (2), it is necessary to set 4 boundary conditions which reflect conditions of 

waveguide supports. For example, the absence of deflections and bending moments in hinged supports 

can be written as: 
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After taking into account boundary conditions, we get a solution for angular frequency of 

oscillations converted to the value of frequency of oscillations: 

2
f




= .                                                                     (5) 

For convenience, the expression of the first natural frequency of the waveguide is represented in 

the universal form [5-9,19,20]: 

2

1 42

E J
f

m l






= 


,                                                            (6) 

where α is the coefficient of the type and location of the supports at vibrations; l is waveguide 

length. Thus, the effect of the method of fixing the waveguide on its first natural frequency only be 

taken into account by a dimensionless coefficient α. The expression for the first critical compressive 

force of the waveguide, according to studies [10-12], is also presented in universal form: 

1 2 2

EJ
P

l




=


,                                                               (7) 

where  is the coefficient of the type and location of the supports at stability loss. Similarly, the 

effect of the method of the waveguide supports on its first critical compressive force only be taken into 

account by a dimensionless coefficient . The waveguides can be single-span and have no 

intermediate supports. However, in most cases, the waveguides connect two remote massive UHF-

blocks, have a large length and several intermediate supports. Consider both cases of waveguide 

design (figures 2,3) with different types of supports. 

 

 

 

 

Figure 2. Single-span waveguide.  Figure 3. Multi-span waveguide. 

Using different versions of boundary conditions describing conditions of waveguide supports and 

substituting in them solution of equation (2) we obtain expressions for the first natural frequency of 

vibrations and critical force. Figures 4 and 5 show the possible types of supports and their 

corresponding coefficient values α и . 

   

Figure 4. Coefficients for single-span 

waveguide.  

Figure 5. Coefficients for multi-span 

waveguide. 
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Of particular interest is the dependence of the first eigenfrequency on the number of intermediate 

supports N for the multipath waveguide. Consider such cases in figure 6, where all supports are 

equidistant from each other.  

 

Figure 6. Multi-span waveguide with N equidistant intermediate supports. 

When equation (2) is solved, the values of coefficient α for the first natural frequency of vibrations 

(figure 6) are obtained depending on the number of intermediate supports N, given in table 1. 

Table 1. Values of coefficient α for the first natural frequency of vibrations. 

Scheme 

No. 

Number of intermediate support N 

0 1 2 3 4 5 

11 3,14 6,28 9,42 12,57 15,71 18,85 

12 4,73 7,85 10,67 13,57 16,55 19,56 

 

The considered ways of fixing and the found values of coefficients corresponding to them α and  

allow to carry out the assessment of the first own frequency of fluctuations and the critical squeezing 

force in the majority the cases of a design of supports of waveguides which are found in practice. 

3.  Results 

For the purpose of calculation, we consider waveguide with typical cross-section size of 35х15x1.2 

mm, inertia moment J=6.6*10-9 m4, length l=0.5 m. The waveguide material is duralumin with 

properties as Е=7.1*105 MPa, density =2770 kg/m3. 

We calculate the first natural frequency and critical force for the waveguide with the specified 

dimensions and shown in figures 4,5 methods of supports. The results are presented in the form of 

graphs in figures 7 and 8, the number in the circle indicates the number of the calculation scheme. 

 

 

 

Figure 7. Dependence of the first natural 

frequency on the type of supports. 

 Figure 8. Dependency of the first critical force on 

the type of supports. 

Having set the numerical data depending on the multi-span waveguide (figure 6), we plot the value 

of the first natural frequency from the number of intermediate supports in figure 9. Also of practical 



MIP: Engineering-2020

IOP Conf. Series: Materials Science and Engineering 862 (2020) 022044

IOP Publishing

doi:10.1088/1757-899X/862/2/022044

5

 

 

 

 

 

 

interest is the relationship showing how many times the first natural frequency of the waveguide 

change when N intermediate supports are added, it is shown in figure 10. 

 

 

 

 

Figure 9. Dependence of the first natural 

frequency on the number of intermediate 

supports 

 Figure 10. Dependence of multiplier for the 

first natural frequency on the number of 

intermediate supports 

The graphs in figures 7-10 are based on points showing certain ideal types of supports: hinged 

support without friction and absolute rigid attachment. Intermediate values between points refer to real 

supports having finite stiffness and friction. 

4.  Discussion 

The solutions obtained show that control of the dynamic state of the waveguide by means of supports 

arrangement is an effective method. For example, for a single-span waveguide, variation of the 

supports allows the first natural frequency to be increased by 6 times and the first critical force to be 

increased by 16 times. For a multi-span beam, the introduction of each additional intermediate support 

initially increases the first natural frequency of vibration by about 1.5 times, but with the number of 

intermediate supports above 10 their influence on the solution is reduced and the first natural 

frequency is determined by the actual stiffness of the supports themselves. 

In addition to the positioning of the supports, it is necessary to use other methods of controlling the 

dynamic behavior of the waveguide through the construction of the supports. For example, a radical 

solution to avoid buckling is to replace fixed supports with sliding ones that allow the waveguide to 

slip through them when heated. In this case, the compressive force be determined only by the friction 

forces in the support, which are usually extremely small. 

5.  Conclusions 

This paper describes the effect of selecting the type and location of end and intermediate supports for a 

single waveguide between two UHF-blocks on the value of the first natural frequency of vibrations 

and critical compressive force. The most common support arrangement schemes are given and their 

corresponding coefficients are obtained for equations defining the first natural frequency and 

minimum critical compressive force. An example of the numerical calculation of the waveguide is 

given and recommendations are given when designing the supports. The results of the paper can be 

used in the design of any extended structures to ensure their dynamic behavior by means of support 

arrangement. 
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242914: "Development of methods of calculation of a thermoelastic state of waveguide system of the 

spacecrafts of communication at operation". 
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