КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ТРЕХ ИОННЫХ СОЕДИНЕНИЙ ЛЕВОФЛОКСАЦИНА

А.Д. Васильев^{1,2}, Н. Н. Головнев^{1,*},

¹Сибирский федеральный университет, г. Красноярск, Россия E-mail: ngolovnev@sfu-kras.ru

²Институт физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН, г. Красноярск, Россия

Статья поступила хх апреля 2019 г.

Определена структура трех ионных соединений левофлоксацина (LevoH, $C_{18}H_{20}FN_3O_4$), LevoH₃[CoCl₄]·H₂O (I), LevoH₃[ZnBr₄]·H₂O (II), LevoH₃[CuBr₄]·H₂O (III). Кристаллы I–III моноклинные, упаковка частиц в соединении III отличается от таковой в других ионных соединениях левофлоксацина тем, что в нем направление винтовой оси не совпадает с наибольшим параметром ячейки. В независимой части ячейки содержатся: в I по два иона LevoH₃²⁺ и CoCl₄²⁻, две молекулы кристаллизационной воды; в II-III по два иона LevoH₃²⁺, MBr₄²⁻ (M = Cu, Zn) и две молекулы кристаллизационной воды. Установлена абсолютная структура кристаллов, конфигурация хирального центра катиона левофлоксациндиума S. Структуры стабилизированы многочисленными водородными связями, X–Y… π - и π - π -взаимодействиями.

Ключевые слова: катион левофлоксациндиума, тетрагалогениды d-элементов, ионные соединения, структура.

Левофлоксацин (LevoH) – один из антибактериальных препаратов третьего поколения важной группы синтетических антибиотиков, именуемой фторхинолонами (FQ), широко применяется в медицине [1]. Из-за низкой растворимости LevoH вместо субстанции можно использовать его соединения, например, соли [2]. Нецентросимметричные кристаллы левофлоксацина обладают нелинейными оптическими (НЛО) свойствами [3], поэтому его соли могут рассматриваться как потенциально полезные материалы НЛО [4]. В рамках систематического изучения структуры солей PCA фторхинолонов методом монокристального охарактеризованы соли: LevoH₃[CoCl₄] \cdot H₂O (**I**), LevoH₃[ZnBr₄] \cdot H₂O (**II**) μ LevoH₃[CuBr₄] \cdot H₂O (**III**).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали полугидрат левофлоксацина, LevoH·½H₂O, (производитель – "Zhejiang Kangyu Pharmaceutical Co., Ltd", Китай), HCl, HBr, CoCl₂, CuO и ZnO (все марки XЧ) без дополнительной очистки.

Синтез I-III. К раствору CoCl₂ в избытке концентрированной HCl добавляли твердый LevoH· $^{1}/_{2}$ H₂O, а к растворам левофлоксацина в избытке концентрированной HBr добавляли оксид CuO или ZnO. Использовали двукратный молярный избыток неорганических реагентов из-за возможной кристаллизации галогенидных солей катиона LevoH₃²⁺. При испарении полученных растворов при комнатной температуре соответственно осаждались крупные кристаллы I, II и III. Монокристаллы для PCA отбирали из общей массы продуктов.

РСА. Интенсивности отражений измерены с помошью рентгеновского монокристального дифрактометра SMART APEX II с CCD детектором (Bruker AXS), МоКа-излучение. Экспериментальные поправки на поглощение введены с помощью программы SADABS [5] multi-scan методом. Модели структур I-III установлены прямыми методами (SHELXS [6]) и уточнены с помощью комплекса программ SHELXL [7]. Из разностных синтезов электронной плотности установлено наличие в соединениях молекул кристаллизационной воды и определены положения атомов водорода в катионах левофлоксацина, которые затем были идеализированы и уточнялись в связанной с основными атомами форме. Уточнение было стабильным и привело к низким значениям R-факторов (табл. 1). Структуры I-III депонированы в Кембриджском банке структурных данных и имеют соответствующие номера CCDC-1905328, CCDC-795548 и CCDC-1905321. Данные могут быть получены через сайт www.ccdc.cam.ac.uk/data_request/cif.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В соединениях **I–III** левофлоксацин находится в виде катиона LevoH₃²⁺ (рис.1). Два избыточных иона водорода связаны с атомами кислорода карбоксильной и карбонильной групп, а значения длин связей и валентных углов в LevoH₃²⁺ совпадают с найденными ранее [8, 9]. Кристаллы нецентросимметричные с пространственной группой $P2_1$, поэтому была определена абсолютная структура соединений.

В независимой части кристаллических ячеек **I–III** содержатся два иона LevoH₃²⁺ (A, B), два иона MX_4^{2-} (M = Co, X = Cl; M = Cu, Zn, X = Br) и две молекулы воды. В тетраэдрических анионах CoCl₄²⁻ расстояние Co–Cl лежит в интервале 2.2573(13) – 2.3276(13)Å, а углы Cl–Co–Cl изменяются от 100.27(5)° до 118.68(5)°, в то время как в менее искаженных тетраэдрах ZnBr₄ кристалла **II** расстояния Zn–Br и углы Br–Zn–Br

находятся в интервале 2.371(3) – 2.431(3)Å и 105.93(12) – 113.43(13)°, соответственно. В искаженных полиэдрах CuBr₄ расстояния Cu–Br изменяются от 2.347(2) до 2.401(2) и валентные углы Br–Cu–Br от 97.16(8)° до 139.19(9)°, т.е. имеют обычные значения для бромидных комплексов Cu(II). В целом все соответствующие геометрические параметры в **I–III** согласуются с литературными данными [10].

Циклы C2–C3–C4–C10–C9–N1 (цикл 1, Cg₁) и C5–C6–C7–C8–C9–C10 (цикл 2, Cg₂) находятся в одной плоскости; атомы O4, F, N2, O1, C1, O2 и O3 также мало отклоняются от этой плоскости. Конформации ионов LevoH₃²⁺ в структурах отличаются углом поворота циклов 1 вокруг связи C7–N2.

В ионах LevoH₃²⁺ гексациклы, содержащие атомы N2 и N3 (цикл 4), имеют конформацию "кресло", а гексациклы с атомом O4 (цикл 3) в ионах A соответствуют конформации "конверт" (рис. 2a) с выходом атома C18 из плоскости O4–C8–C9–N1–C11 на 0.677(5) Å в I, 0.64(2)Å – II и 0.72(1) Å – III. Цикл 3 в независимом ионе В соли I представляет собой "конверт", в структурах II и III установлена его конформация типа "полукресло" (рис. 2*6*) с выходом по разные стороны от плоскости O4–C8–C9–N1 атомов C18 и C11 соответственно на 0.47(2) и 0.23(2)Å в II, 0.41(2) и 0.39(2)Å в III.

В независимых катионах LevoH₃²⁺ соединений **I–III** образуется внутримолекулярная водородная связь (**BC**) O1–H···O2 (рис. 1, табл. 2). Образование внутримолекулярной BC C14–H···F можно предположить только в структуре **III** (табл. 2). На отсутствие такой BC в соединениях **I** и **II** указывает расстояние H···F, превышающее 2.4 Å, а также значения других геометрических параметров.

Одна из молекул H_2O в **I** (OwB) разупорядочена по двум положениям с коэффициентами заполнения позиций 0.6 и 0.4. Все атомы водорода, в том числе и в упорядоченной молекуле воды, проявились на разностном синтезе электронной плотности. Одна из позиций атомов водорода разупорядоченной молекулы также участвовала в уточнении. Несмотря на то, что атомы водорода этой молекулы полностью найти не удалось, короткие расстояния от атомов кислорода до ближайших атомов хлора предполагают наличие ВС (рис. 2, табл. 2). Кроме того, в структуре наблюдаются еще 10 укороченных контактов С–Н…СІ. Расстояния С–Н находятся в интервале 2.6–2.8 Å, а углы С–Н–СІ изменяются от 128 до 155°.

В структуре **II** атомы водорода в молекулах воды обнаружить не удалось, но расстояния между атомами кислорода и брома, равные 3.55Å, 3.48Å, 3.43Å и 3.27Å, свидетельствуют о водородном связывании [11]. Можно выделить также два укороченных контакта C–H…Br (табл. 2).

Положения атомов водорода молекул воды в структуре **III** были найдены из разностных синтезов электронной плотности и далее уточнялись в идеализированном по расстояниям виде. Соответствующие параметры межмолекулярных взаимодействий приведены в табл. 2. Как и в **II**, здесь есть укороченные контакты C–H…Br, для которых расстояния H…Br лежат в диапазоне 2.9–3.0 Å, а углы C–H–Br изменяются от 123 до 162 град.

В структурах **I** и **II** ионы LevoH₃²⁺ объединены в пары π - π -взаимодействием типа «голова-к-хвосту» [11] (табл. 3). В нем участвуют гексациклы N1–C2–C3–C4–C10–C9 (Cg₁) независимых ионов А и В. Однако в структуре **III**, возможно из-за более существенного искажения тетраэдра CuBr₄, в стекинг-взаимодействии между ионами А и В (рис. 3) одновременно участвуют циклы Cg₁ и C5–C6–C7–C8–C9–C10 (Cg₂) с образованием бесконечных цепей. Это приводит как к иной упаковке ионов, так и к иной ориентация оси симметрии 2₁.

Наряду с π - π -стекингом, структуры I-III стабилизированы взаимодействиями типа X-Y… π , причём во всех них есть взаимодействие C1A-O2A…Cg₂ (Cg₂ – цикл 2). В III имеется три подобных взаимодействия с параметрами: расстояния между атомом кислорода и центром кольца 3.430(10) Å и 3.846(11) Å для O2A, 3.259(10) Å для O2B; углы между связью C1-O2 и линией O2…центр цикла 90.5(7)° и 90.1(8)° для O2A, 93.8(8)° для O2B. Два таких же взаимодействия в I [3.575(4), 78.8(3)° и 3.465(4) Å, 81.3(3)°] и одно в II [3.595(14) Å и 76.7(11)°], а также два взаимодействия Со-Cl…Cg₂ в I и по два Zn-Br…Cg₂ и Zn-Br…Cg₁ в II участвуют в образовании трехмерных надмолекулярных структур.

Работа выполнена в рамках государственного задания Минобрнауки РФ Сибирскому федеральному университету в 2017-2019 г. (4.7666.2017/БЧ).

- 1. C.A. Fief, K.G. Hoang, S.D. Phipps, J.L. Wallace, J.E. Deweese. ACS Omega, 2019, 4 (2), 4049–4055
- 2. L.A. Mitsher. Chem. Rev. 2005, 105(2), 559-585.
- 3. S. Gunasekaran, K. Rajalakshmi, S. Kumaresan. Spectrochim. Acta, 2013, A112, 351-363.

4. Н.Н. Головнев, М.С. Молокеев, М.К. Лесников. *Журн. структур. химии*, **2018**, *59*(3), 668–673.

- 5. G.M. Sheldrick. SADABS. Version 2.01. Madison (WI, USA): Bruker AXS Inc., 2004.
- 6. G.M. Sheldrick. Acta Cryst., 2015, A71, 3-8.
- 7. G.M. Sheldrick. Acta Cryst., 2015, C71, 3-8.
- 8. А.Д. Васильев, Н.Н. Головнев. Журн. структур. химии, 2011, 52(5), 940-944.
- 9. Н.Н. Головнев, А.Д. Васильев. Журн. неорган. химии, 2016, 61(11), 1472-1475.
- 10. Cambridge Structural Database. Version 5.37. University of Cambridge, UK, November.
- 11. Стид. Дж. В., Этвуд Дж.Л. Супрамолекулярная химия. Ч.1-2. Москва: ИКЦ «Академкнига», 2007. 895с
- 4. Н.Н. Головнев, М.С. Молокеев, М.К. Лесников. *Журн. структур. химии*, **2018**, *59*(3), 668–673.
- 8. А.Д. Васильев, Н.Н. Головнев. Журн. структур. химии, 2011, 52(5), 940-944.
- 9. Н.Н. Головнев, А.Д. Васильев. Журн. неорган. химии, 2016, 61(11), 1472-1475.

11. Стид. Дж. В., Этвуд Дж.Л. Супрамолекулярная химия. Ч.1-2. Москва: ИКЦ «Академкнига», 2007. 895с

т ногици то о но			
Брутто-формула	C ₁₈ H ₂₄ Cl ₄ CoFN ₃ O ₅	$C_{18}H_{24}Br_4FN_3O_5Zn$	C ₁₈ H ₂₄ Br ₄ CuFN ₃ O ₅
Цвет кристалла	темно-зеленый	желтый	черный
Размер кристалла, мм	0.36×0.28×0.24	0.46×0.42×0.34	0.40×0.30×0.12
Температура, К	100	296	300
* * *	7.6046(4),	8.8164(11),	7.5497(7),
<i>a</i> , <i>b</i> , <i>c</i> , Å	24.7286(14),	27.424(3),	11.7841(10),
	12.7563(7)	10.8861(14)	27.368(2)
β,°	91.4030(10)	90.257(2)	96.289(6)
$V, Å^3$	2398.1(2)	2632.0(6)	2420.1(4)
Пр. гр., Z	$P2_1, 4$	$P2_1, 4$	$P2_1, 4$
<i>D</i> , г/см ³	1.612	1.934	2.098
μ , MM^{-1}	1.204	7.045	7.549
$2\theta_{\rm max}$, °	57	50	56.86
Число измеренных отражений	22724	19404	20754
Число независимых отражений	11318	9185	9919
Число отражений с $F > 4\sigma(F)$	9984	4807	5009
Пределы по <i>h</i> , <i>k</i> , <i>l</i>	$\begin{array}{l} -10 \leq h \leq 10; \\ -32 \leq k \leq 32; \\ -17 \leq l \leq 17 \end{array}$	$\begin{array}{l} -10 \leq h \leq 10; \\ -32 \leq k \leq 32; \\ -12 \leq l \leq 12 \end{array}$	$\begin{array}{l} -8 \leq h \leq 9; \\ -15 \leq k \leq 15; \\ -35 \leq l \leq 27 \end{array}$
R _{int}	0.0315	0.0622	0.0721
Весовая схема	$w = [\sigma^2 + (0.0397P)^2]^{-1},$ P = (F _o ² + 2F _c ²)/3	w=[σ^2 +(0.0224P) ²] ⁻¹ , P = (F _o ² + 2F _c ²)/3	$w = [\sigma^2 + 0.0250P)^2]^{-1},$ P = (F_o^2 + 2F_c^2)/3
Число уточняемых параметров	606	565	589
$R1 [F_{o} > 4\sigma(F_{o})]/all$	0.0368 / 0.0437	0.0534 / 0.1339	0.0492 / 0.1224
$wR2[F_0>4\sigma(F_0)]/all$	0.0807 / 0.0841	0.0814 / 0.0966	0.0730 / 0.0845
GOOF	0.99	1.059	0.822
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e / Å^3$	0.56 / -0.47	0.518 / -0.460	0.794 /0.833
$(\Delta/\sigma)_{\rm max}$	0.001	0.0	0.01
Параметр Флэка	0.004(10)	0.001(12)	-0.003(17)

Таблица 1. Экспериментальные данные и параметры уточнения структуры І-ІІІ

D–H	d(D–H)	<i>d</i> (HA)	∠DHA	<i>d</i> (DA)	А	Преобразование для атома А	
LevoH ₃ [CoCl ₄]·H ₂ O (I)							
N3A–H4A	0.88(4)	2.61(4)	141(3)	3.344(3)	Cl11	1-x; 1/2+y; 1-z	
N3A–H4A	0.88(4)	2.74(4)	128(3)	3.356(3)	Cl14	1-x; 1/2+y; 1-z	
O3A-H21A	0.74(4)	1.71(4)	171(4)	2.448(4)	OwA	X, Y, Z	
O1A-H22A	0.84	1.72	149	2.482(3)	O2A	x, y, z	
N3B-H24	0.82(4)	2.51(4)	161(3)	3.299(3)	Cl12	X, Y, Z	
O3B-H61	0.81(4)	2.28(4)	166(4)	3.077(3)	Cl12	1-x; 1/2+y; 2-z	
O1B-H34	0.84	1.83	146	2.570(3)	O2B	x, y, z	
OwA-HwA1	0.79(4)	1.92(4)	140(4)	2.580(6)	OwB1	x, y, z	
OwA-HwA1	0.79(4)	2.15(4)	167(4)	2.926(8)	OwB2	x, y, z	
OwA–HwA2	0.68(4)	2.40(4)	162(5)	3.058(4)	Cl24	1-x; y-1/2; 1-z	
OwB1–HwB	0.65(5)	2.75(4)	141(6)	3.282(6)	Cl23	-x; y-1/2; 1-z	
LevoH ₃ [ZnBr ₄]·H ₂ O (II)							
O1(A)–H1(A)	0.90	1.84	139	2.588(18)	O2(A)	x, y, z	
O1(B)-H1(B)	0.90	1.87	136	2.588(17)	O2(B)	x, y, z	
O3(A)–H2(A)	0.90	1.70	168	2.584(17)	Ow1	2-x, y-0.5, -z	
O3(B)–H2(B)	0.90	1.80	152	2.623(17)	Ow2	x-1, y, z	
N3(A)–H3(A)	0.98	2.98	137	3.76(2)	Br22	x, y, z	
N3(A)–H3(A)	0.98	2.98	137	3.82(2)	Br23	x, y, z	
N3(B)–H3(B)	0.98	2.58	165	3.536(14)	Br24	2x, y0.5, 1z	
C18(B)–H22(B)	0.97	2.86	136	3.620(17)	Br21	2x, y0.5, 1z	
C2(B)-H4(B)	0.93	2.87	141	3.636(17)	Br13	x, y, z	
$LevoH_{3}[CuBr_{4}] \cdot H_{2}O(\mathbf{III})$							
O1(A)-H1(A)	0.90	1.73	147	2.525(13)	O2(A)	x, y, z	
O1(B)-H1(B)	0.90	1.71	145	2.500(13)	O2(B)	x, y, z	
O3(A)–H2(A)	0.90	1.68	179	2.579(12)	Ow1	x, y, z	
O3(B)–H2(B)	0.90	1.68	174	2.581(13)	Ow2	-x, 0.5+y, 1-z	
N3(A)–H3(A)	0.98	2.51	146	3.369(9)	Br21	-x, 0.5+y, 1-z	
N3(B)–H3(B)	0.98	2.55	143	3.388(10)	Br13	1+x, y–1, z	
OW1–HW11	0.899(13)	2.48(3)	165(9)	3.355(9)	Br12	-x, y-0.5, -z	
OW1–HW12	0.900(13)	2.78(3)	154(4)	3.612(10)	Br11	x, y–1, z	
OW2–HW21	0.895(13)	2.565(15)	177(3)	3.459(9)	Br23	−x, y–0.5, −z	
OW2–HW22	0.899(13)	2.64(2)	156(2)	3.475(9)	Br22	x-1, y, z	
C14(A)–H13(A)	0.97	2.08	120	2.695(15)	F(A)	x, y, z	
C14(B)–H14(B)	0.97	2.21	117	2.794(17)	F(B)	x, y, z	

Таблица 2. Водородные связи D–H…А (длины связей *d*, Å; углы, град.) и кратчайшие контакты в структурах **I** – **III**

	Cg _i –Cg _j	<i>d</i> , Å	α, град.	β, град.	Cg _i _p, Å	Cgj_p, Å
т	$Cg_{1(A)}$ - $Cg_{1(B)}$	3.906(2)	2.2(2)	31.2	3.416(2)	3.341(2)
L	$Cg_{1(B)}$ – $Cg_{1(A)}$	3.906(2)	2.2(2)	29.0	3.341(2)	3.415(2)
п	$Cg_{1(A)}$ – $Cg_{1(B)}$	3.894(9)	5.6(8)	25.5	3.632(7)	3.514(7)
11	$Cg_{1(B)}$ – $Cg_{1(A)}$	3.893(9)	5.6(8)	21.1	3.513(7)	3.632(7)
	$Cg_{1(A)}$ – $Cg_{2(B)}$	3.904(7)	3.9(5)	24.6	3.650(5)	3.549(4)
ш	$Cg_{2(B)}$ – $Cg_{1(A)}$	3.903(7)	3.9(5)	20.8	3.549(4)	3.649(5)
	$Cg_{2(A)}$ - $Cg_{1(B)}$	4.017(7)	2.8(5)	23.7	3.678(5)	3.608(5)
	$Cg_{1(B)}$ – $Cg_{2(A)}$	4.017(7)	2.8(5)	26.1	3.608(5)	3.678(5)

Таблица 3. Параметры π - π -взаимодействия между ионами LevoH₃²⁺ в кристаллах **I**-**III**

d – расстояние между центроидами циклов; α – угол между плоскостями циклов; β – угол между вектором, соединяющим центры циклов, и нормалью к плоскости первого цикла;
Cg_i_p – длина перпендикуляра от цикла Cg_i к плоскости цикла Cg_j; Cg_j_p – длина перпендикуляра от цикла Cg_i.

Рис. 1. Строение иона LevoH₃²⁺ с нумерацией атомов. Внутримолекулярная водородная связь обозначена пунктиром

Рис. 2. Гексациклы 3 в конформации "конверт" (а) и "полукресло" (б) в структуре III

Рис. 3. Взаимное расположение ионов левофлоксацина в структуре III

СВЕДЕНИЯ ОБ АВТОРАХ

1. Васильев Александр Дмитриевич, с.н.с. лаб. кристаллофизики Института физики СО РАН, доцент кафедры Физики твёрдого тела и нанотехнологий Сибирского федерального университета (СФУ)

2. Головнев Николай Николаевич, профессор кафедры физической и неорганической химии Института цветных металлов и материаловедения Сибирского федерального университета (СФУ)

АДРЕС ДЛЯ ПЕРЕПИСКИ

660041 Красноярск, пр. Свободный 75"Б", кв.29, Головневу Н.Н.

E-mail: ngolovnev@sfu-kras.ru, тел.(8391)2445471

Для целей рецензирования структурных данных необходимо представить в редакцик вместе с рукописью CIF-файлы исследованных структур.

Файл проверки checkCIF желательно также представить в редакцию вместе с рукописью

Соединение	пр.гр.	а	b	с	β	Ссылка
C ₁₈ H ₂₂ FN ₃ O ₄ ×CuBr ₄ ×H ₂ O	<i>P</i> 2 ₁	7.5497	11.7841	27.3676	96.289	
C ₁₈ H ₂₂ FN ₃ O ₄ ×ZnBr ₄ ×H ₂ O	<i>P</i> 2 ₁	8.8164	27.4238	10.8861	90.257	
C ₁₈ H ₂₂ FN ₃ O ₄ ×CoCl ₄ ×H ₂ O	<i>P</i> 2 ₁	7.6046	24.7286	12.7563	91.403	
$C_{18}H_{22}FN_3O_4{\times}2ClO_4$	<i>P</i> 2 ₁	9.727	20.4405	12.286	104.327	

Взаимная укладка независимых молекул левофлоксацина в структурах **I**, **II**, **III**. Молекулы с обрезанными атомами O4,C11, C12, C18.

LevoCuBr₄