МАЛОУСАДОЧНАЯ КЕРАМИКА НА ОСНОВЕ ДОЛЕРИТОВЫХ МЕЛКОДИСПЕРСНЫХ ОТХОДОВ ЩЕБЕНОЧНОГО ПРОИЗВОДСТВА

д-р техн. наук **A. Е. Бурученко**¹ (e-mail: buruchenko.ae@mail.ru), д-р техн. наук **B. И. Верещагин**², канд. техн. наук **B. К. Меньшикова**¹ (e-mail: vi1222@mail.ru)

¹ФГАОУ ВО «Сибирский Федеральный Университет» (ФГАОУ ВО «СФУ») (Россия, г. Красноярск)

² ФГАОУ ВО «Национальный исследовательский Томский политехнический университет» (ФГАОУ ВО НИ ТПУ) (Россия, г.Томск)

Приведены результаты возможности применения долеритовых мелкозернистых отходов щебеночного производства в керамических шихтах для изготовления малоусадочных изделий. Выявлено, что отходы при твердофазовом спекании снижают огневую усадку при всех видах использования сырья. При спекании в присутствии жидкой фазы выполняют армирующую роль при формировании структуры керамического черепка и обеспечивают изделиям высокие физико-механические свойства.

Ключевые слова: долеритовые отходы, глины, обжиг, спекаемость керамики, стеновые материалы.

Key words: dolerite waste, clay, firing, sintering of ceramics, wall materials.

 \mathbf{C} увеличением объемов промышленного И гражданского строительства, возрастает спрос на различные керамические материалы и изделия, в том числе и на крупноразмерную плитку. Изделия должны обладать высокими прочностными характеристиками, иметь определенную форму, размеры, быть экономически рентабельными и экологически предопределяет безопасными. Это разработку энергосберегающих технологий изготовления малоусадочных изделий с использованием новых

видов сырья, требует научно обоснованных подходов к определению составов керамических масс, обеспечивающих процесс спекания при невысоких температурах обжига.

В последние годы ведутся технологические разработки составов масс для различного рода строительных материалов на базе техногенных отходов. Получены строительные материалы на основе отходов горного производства и металлургии [1-3]. Как компоненты масс для керамических изделий используются отходы обогащения железорудных месторождений и нетрадиционное высокомагнезиальное сырье [4,5].

Для получения безусадочной и малоусадочной керамики необходим особый подход при разработке составов масс. При ЭТОМ используются такие компоненты, которые обеспечивают прочность и малую усадку. К ним относятся сырье, содержащее волластонит, диопсид, авгит и т.д. [6-8]. Данные минералы имеют высокую прочность и в процессе обжига практически сохраняют свои размеры. При спекании в присутствии жидкой фазы они выполняют армирующую роль и положительно влияют на процессы структурообразования керамических изделиях, чем И обеспечивают им высокие прочностные характеристики.

Целью настоящей работы являлось исследование по получению малоусадочной керамики на основе долеритовых мелкозернистых отходов щебеночного производства.

В качестве компонентов керамических шихт использовалось сырье Красноярского края: долеритовые мелкозернистые отходы (2-5 мм), легкоплавкие и тугоплавкие глины, и натрий-силикатное стекло. Долеритовые мелкозернистые отходы являются продуктом дробления пород Назаровского щебеночного завода. Для обеспечения пластичности при формовании и активизации процесса спекания брались легкоплавкая глина Первомайского и тугоплавкая глина Компановского месторождений. В качестве плавня применялось натрий-силикатное стекло в виде раствора. Химический состав сырьевых компонентов представлен в таблице 1.

 Таблица 1. Химический состав долеритовых отходов и глин Компановского и

 Первомайского месторождений

Criaro	Массовое содержание, %								
Сырье	SiO ²	Al_2O_3	TiO ₂	Fe ₂ O ₃	MgO	CaO	K ₂ O	Na ₂ O	п.п.п
Долеритовые	48,15	12,22	0,50	7,33	11,3	12,01	1,45	3,68	3,20
отходы	40,13	12,22							
Глина									
Первомайского	61,75	14,98	1,2	8,49	0,92	1,74	3,75	0,60	6,57
месторождения									
Глина									
Компановского	61,79	18,5	-	3,08	1,89	1,63	1,06	0,12	11,6
месторождения									

Рентгенофазовый анализ (рис.1) отходов показал, что долеритовые мелкозернистые отходы состоят в основном из моноклинного пироксена темно-серого цвета, представленного твердым раствором на основе диопсида $CaO\cdot MgO\cdot 2SiO_2$ (d=3,80; 3,24; 3,00; 2,89; 2,54; 2,52). В меньшем количестве присутствует кварц (d=3,34; 2,45; 2,28; 2,23) и альбит (d=3,21; 2,95).

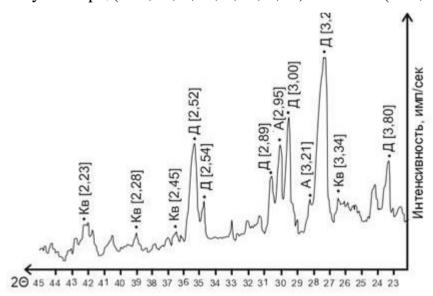


Рис. 1. Рентгенограмма долеритовых отходов Д – диапсидоподобная фаза, Кв – кварц, А – альбит

Состав легкоплавкой глины представлен такими глинистыми минералами как каолинит, монтмориллонит и гидрослюда. Отмечается присутствие кварца, альбита, ортоклаза и незначительного количества

карбоната кальция и оксида железа. Основным глинистым минералом тугоплавкой глины является каолинит. В меньшем количестве содержится монтмориллонит. Кроме глинистых минералов присутствуют кварц и полевые шпаты в виде альбита и ортоклаза.

Термограмма долеритовых мелкодисперсных отходов представлена на рис.2. На кривой ДСК кроме эндоэффекта при 100°С, обусловленного выходом адсорбционной воды, существенных термических эффектов не фиксируется. Сравнение термограмм ДСК, ДТГ и ТГ долеритовых мелкодисперсных отходов с термограммой снятой с диопсидовой породы Южного Прибайкалья показало их идентичность [9].

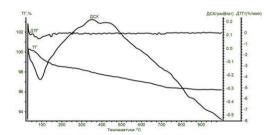


Рис. 2. Термограмма долеритовых мелкодисперсных отходов

Для проведения исследований долеритовые отходы размалывались до прохода через сито 0,05 мм с остатком не более 5%. При использовании отходов, как основного компонента в керамических массах для получения малоусадочной плитки, к ним до 30% добавлялась легкоплавкая глина Первомайского месторождения и тугоплавкая глина Компановского месторождения.

В качестве плавня вводилось натрий-силикатное стекло в количестве по 15%.

Из подготовленных керамических масс формовались образцы цилиндрической формы диаметром и высотой 2 см, полусухим способом при давлении 20 МПа. Затем они сушились, обжигались в печи при температурах 800-1150°C с интервалом 50°C и выдержкой при конечной температуре 10 минут. После обжига, рассчитывали огневую усадку, водопоглощение, прочность на сжатие и проводили рентгенофазовый анализ.

Рассмотренные составы для получения малоусадочной керамики представлены в таблице 2.

Таблица 2. Компонентный состав исследуемых керамических масс,%

	Обозначение керамической						
Компонент	массы						
	1	2	3	4			
Долеритовые отходы	70	70	70	75			
Глина Первомайского месторождения	30	-	20	-			
Глина Компановского месторождения	-	30	10	10			
Натрий-силикатное стекло	-	_	-	15			

В таблице 3 представлены результаты физико-механических свойств образцов после обжига на разные температуры.

Таблица 3. Физико-механические свойства образцов

1.00	Огневая усадка, %			Водопоглощение, %				Прочность на сжатие, МПа				
t,°C	Составы				Составы				Составы			
	1	2	3	4	1	2	3	4	1	2	3	4
800	0,9	1,8	1,2	2,3	14,0	15,9	15,1	13,2	13,9	9,5	12,8	32,0
850	1,0	1,8	1,3	2,3	14,0	16,0	15,0	13,00	14,0	10,1	13,3	43,5
900	1,1	2,2	1,4	2,4	13,9	15,8	15,0	13,0	14,2	11,6	13,8	54,2
950	1,1	2,3	1,4	2,5	13,8	15,7	14,6	12,8	14,5	12,2	14,4	60,1
1000	1,2	2,5	1,5	3,2	13,8	15,2	14,5	12,5	15,1	19,3	15,2	63,4
1050	1,4	2,8	1,7	4,1	13,6	14,8	14,0	8,8	17,2	20,1	18,0	60,0
1100	2,0	3,0	2,3	5,5	11,9	13,6	12,9	2,0	22,7	25,0	26,2	47,9
1150	4,5	3,7	4,8	6,9	2,2	7,5	5,9	0,5	49,5	38,5	50,0	25,3

Из таблицы 3 видно, что для составов 1,2,3, обожженных при температурах 1000-1050°С, огневая усадка составляет не более 3%, водопоглощение не превышает 15%, а прочность на сжатие находится в пределах 15-20 МПа.

Существенное отличие в свойствах образцов отмечается с введением в состав керамической массы натрий-силикатного стекла (состав 4). После обжига при температурах 950-1050°С прочность возрастает до 60-65 МПа. При этом усадка не превышает 4,1%, водопоглощение в пределах 8,8-12,8%.

Для изучения физико-химических процессов, проходящих в керамических массах при обжиге, исследовалось поведение каждого из

минералов путем фиксирования изменения их линий интенсивности на рентгенограммах через каждые 50°C.

Из графиков изменения линий интенсивности минерала диопсидовой фазы от температуры обжига видно, что в процессе нагревания до 1050°С его количественное содержание в составах 1,2,3 возрастает незначительно (рис.3), а линии интенсивности кварца практически не изменяются (рис. 4). Это указывает на то, что при твердофазовом спекании, не обеспечиваются достаточные прочностные свойства материала. Взаимодействие диопсидовой фазы и кварца с продуктами разложения глинистых минералов происходит при температурах обжига выше 1050°С, что подтверждается ростом усадки для образцов без добавок натрий-силикатного стекла (составы 1,2,3; табл.3)

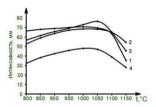


Рис. 3. Изменение интенсивности линий рентгеновских дифракционных максимумов минерала диопсидовой фазы от температуры обжига образцов из составов 1, 2, 3, 4

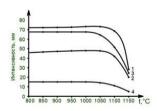


Рис. 4. Изменение интенсивности линий рентгеновских дифракционных максимумов кварца от температуры обжига образцов из составов 1, 2, 3, 4

Для увеличения интенсификации процесса спекания за счет образования жидкой фазы в состав керамической массы вводили натрийсиликатное стекло (состав 4). Как видно из рис. 5 интенсивный рост прочности образца начинается с 800°С и идет до температуры 1000°С. Процесс спекания сопровождается незначительной огневой усадкой.

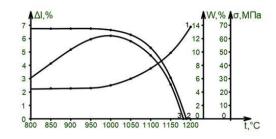


Рис. 5. График зависимости:

1 - огневой усадки (Δ I), 2 - водопоглощения (W), 3 - прочности (σ) от температуры обжига образцов состава 4

Наилучшие показатели свойств образцов из керамических масс у состава 4. Изучение фазового состава показало, что он сформирован из частично оплавленных минералов диопсидовой фазы и зерен кварца, сросшихся между собой и связанных стеклофазой, образованной при расплаве натрий-силикатного стекла и альбита. За счет этого образовалась армированная структура керамического черепка высокой прочности.

Таким образом, в результате проведенных исследований установлено:

- долеритовые мелкодисперсные отходы могут быть использованы в качестве основного сырья для производства малоусадочных изделий, обожженных при температурах 950-1100°C.
- минералы диопсидовой фазы практически не участвуют в твердофазовых реакциях образования новых соединений.
- интенсивное жидкофазное спекание в присутствии натрийсиликатного стекла происходит в интервале 800-1050°С. Кристаллы диопсидовой фазы и оплавленные зерна кварца армируют керамический черепок, обеспечивая повышение прочности изделий до 60 МПа и усадку в пределах 2,5-4,1%.
- использование долеритовых мелкодисперсных отходов щебеночного производства при изготовлении стеновой керамики позволит снизить себестоимость изделий за счет снижения затрат на помол, массоподготовку,

температуру обжига и обеспечить высокую механическую прочность выпускаемой продукции.

СПИСОК ЛИТЕРАТУРЫ

- Худякова Л.И., Войлошников О.В., Котова И.Ю. Строительная керамика из отходов горного производства // Стекло и керамика. 2018.
 № 7. С. 19-23.
- 2. Кудиева А.А., Курмашов Б.Т., Салиева Г., Нуржанова З. Физикомеханические свойства стеновой керамики на основе кремнистой породы опоки // Прорывные научные исследования как двигатель науки: сборник статей Международной научно-практической конференции. Уфа. Аэтерна. 2018. С. 146-150.
- 3. Клименко Н.Н., Колокольчиков И.Ю., Михайленко Н.Ю., Орлова Л.А., Сегаев В.Г. Новые строительные материалы с повышенной прочностью на основе металлургии // Стекло и керамика. 2018. № 5. С. 44-48.
- Щербина Н.Ф., Кочеткова Т.В. Использование отходов обогащения железнорудных месторождений в производстве керамических изделий // Стекло и керамика. 2016. № 1. С. 24-26.
- Ильина В.П., Попова Т.В., Фролов П.В. Получение керамических материалов на основе нетрадиционного высокомагнезиального сырья // Огнеупоры и техническая керамика. 2014. № 11-12. С. 62-66.
- Столбоушкин А.Ю. Влияние добавок волластонита на формирование структуры стеновых керамических материалов из техногенного и природного сырья // Строительные материалы. 2014. № 8. С. 13-17.
- 7. Верещагин В.И., Бурученко А.Е., Меньшикова В.К., Могилевская Н.В. Керамические материалы на основе диопсида // Стекло и керамика. 2010. № 11. С. 13-18.

- Ильина В.П., Инина И.С., Фролов Т.В. Керамические массы на основе пероксенита и легкоплавкой глины // Стекло и керамика. 2016. № 10. С. 15-18.
- 9. Баяндина Е.В., Зыкова Ю.А., Сафонова Т.В. Исследование керамогранитных масс с помощью термического анализа // Вестник ИрГТУ. 2011. № 3. С.101-106.