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ABSTRACT 73	  

Advances in the use of molecular tools in ecological and biodiversity assessment 74	  

of aquatic ecosystems 75	  

Conservation and sustainable management of aquatic ecosystems is a priority in 76	  

environmental programs worldwide. However, these aims are highly dependent on the 77	  

efficiency, accuracy and cost of existent methods for the detection of keystone species 78	  

and monitoring of biological communities. Rapid advances in eDNA, barcoding and 79	  

metabarcoding promoted by high-throughput sequencing technologies are generating 80	  

millions of sequences in a fast way, with a promising cost reduction, and overcoming 81	  

some difficulties of the traditional taxonomic approaches. This paper provides an 82	  

updated broad perspective of the current developments in this dynamic field presented 83	  

in the special session (SS) “The use of molecular tools in ecological and biodiversity 84	  

assessment of aquatic ecosystems” of the XIX Congress of the Iberian Association of 85	  

Limnology (AIL2018), held in Coimbra, Portugal.  86	  

Developments presented are mainly focused on the Iberian Peninsula (Portugal and 87	  

Spain, including Atlantic Macaronesian islands) but include studies in France, 88	  

Germany, Finland, Russia (Siberia) and South America. The networks within which 89	  

these researchers are involved are yet even broader, profiting from existing molecular 90	  

facilities, and traditional taxonomic expertise, which can be viewed as a characteristic 91	  

of this new research area. It was evident in the SS that the use of molecular tools is 92	  

widespread, being used to study a diversity of aquatic systems, from rivers’ 93	  

headwaters to estuaries and coastal lagoons, and volcanic, mountain and frozen lakes 94	  

to hot springs. The organisms targeted are likewise varied and include fish, 95	  

macroinvertebrates, meiofauna, microalgae such as diatoms and dinoflagellates, other 96	  

protists, fungi, and bacteria (cyanobacteria and other). Some studies address the 97	  
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whole biodiversity (i.e., all species present independently of the taxonomic group) 98	  

from environmental samples of water, biofilms and preservative solution from field 99	  

samples (e.g., ethanol from macroinvertebrate samples). Great advances were 100	  

acknowledged in the special session, namely in the use of metabarcoding for detecting 101	  

hidden biodiversity, juvenile stages, low-abundance species, non-indigenous species 102	  

and toxicity potential, and ultimately for ecological monitoring of diatoms and 103	  

invertebrates. Yet, several drawbacks were highlighted and need further work, which 104	  

include: taxonomic gaps in the reference databases (including gaps at species level 105	  

and on intraspecific variability) or absence of public databases (e.g. for meiofauna), 106	  

still high sequencing costs, the need of a substantial bioinformatics effort, difficulties 107	  

in establishing the amount of environmental sample necessary for a good DNA 108	  

extraction and the need for testing different genetic markers to obtain accurate results. 109	  

Key words: eDNA, metabarcoding, conservation, ecological quality, species 110	  

detection, rivers, lakes, thermal springs, estuaries, lagoons 111	  

 112	  

RESUMO 113	  

Avanços no uso de ferramentas moleculares na avaliação ecológica e 114	  

biodiversidade dos ecossistemas aquáticos 115	  

A conservação e gestão sustentável dos ecossistemas aquáticos é uma prioridade nos 116	  

programas ambientais em todo o mundo. No entanto, esses objetivos são altamente 117	  

dependentes da eficiência, precisão e custo dos métodos existentes para detectar 118	  

espécies e monitorizar comunidades biológicas. Avanços recentes no que respeita ao 119	  

ADN ambiental e ‘barcoding’ e ‘metabarcoding’, promovidos por tecnologias de 120	  

sequenciação designadas ‘high-throughput sequencing’, têm gerado milhões de 121	  
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sequências de forma rápida, com uma promissora redução de custos num futuro 122	  

próximo, e superando algumas dificuldades das abordagens taxonómicas tradicionais. 123	  

Este artigo vem fornecer uma perspetiva atualizada e abrangente dos 124	  

desenvolvimentos neste campo que foram apresentados na sessão especial (SE) “O 125	  

uso de ferramentas moleculares na avaliação ecológica e da biodiversidade dos 126	  

ecossistemas aquáticos”, no XIX Congresso da Associação Ibérica de Limnologia 127	  

(AIL2018) realizado em Coimbra, Portugal. 128	  

Os desenvolvimentos apresentados centram-se principalmente na Península Ibérica 129	  

(Portugal e Espanha, incluindo as ilhas atlânticas), mas também em França, Alemanha, 130	  

Finlândia e Rússia (Sibéria). No entanto, as redes em que estes investigadores estão 131	  

envolvidos são ainda mais amplas, aproveitando as infraestruturas moleculares e o 132	  

conhecimento taxonómico existentes. Ficou claro na SE que o uso de ferramentas 133	  

moleculares está disseminado, sendo usado numa diversidade de sistemas aquáticos, 134	  

desde as cabeceiras dos rios aos estuários e lagoas costeiras, e desde lagos vulcânicos, 135	  

de montanha e congelados, a fontes termais. Os organismos estudados são também 136	  

variados e incluem peixes, macroinvertebrados, meiofauna, microalgas tal como 137	  

diatomáceas e dinoflagelados, outros protistas, fungos e bactérias (cianobactérias e 138	  

outros). Alguns estudos abordam toda a biodiversidade a partir de amostras 139	  

ambientais de água, biofilmes e solução conservante. Grandes avanços foram 140	  

reconhecidos na sessão especial, nomeadamente no uso de ‘metabarcoding’ para a 141	  

deteção de biodiversidade críptica, estádios juvenis, espécies de reduzida abundância, 142	  

espécies não nativas, do potencial de toxicidade e, finalmente, para a monitorização 143	  

ecológica de diatomáceas e invertebrados. No entanto, dificuldades também foram 144	  

assinaladas, que necessitarão de mais investimento futuro, e que incluem: lacunas 145	  

taxonómicas das bibliotecas de referência (incluindo ao nível da espécie e da intra-146	  
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variabilidade de espécies), ausência de bibliotecas públicas (por exemplo, para 147	  

meiofauna), altos custos de sequenciação, a necessidade de um esforço substancial de 148	  

bioinformática, dificuldades em estabelecer a quantidade de amostra ambiental 149	  

necessária para uma boa extração de DNA e a necessidade de testar diferentes 150	  

marcadores genéticos para obter resultados precisos. 151	  

Palavras-chave: eDNA, metabarcoding, conservação, qualidade ecológica, detecção 152	  

de espécies, rios, lagos, fontes termais, estuários, lagoas 153	  

 154	  
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INTRODUCTION 169	  

Biological diversity means the variability among living organisms from all sources 170	  

including terrestrial, marine and other aquatic ecosystems and ecological complexes 171	  

of which they are part; this includes diversity within species, between species and of 172	  

ecosystems (Wilcox, 1984). Biodiversity reflects the ecosystem’s health and 173	  

resilience to withstand and recover from a variety of disturbances. Therefore, it is 174	  

essential to discover and understand the biodiversity present in the study area, which 175	  

is a challenging task. Most of the traditional approaches for assessing biodiversity, 176	  

where species are identified based on their morphological characters, are time-177	  

consuming, expensive and require high taxonomic expertise (Leese et al., 2016). On 178	  

the other hand, rapid assessment based on an estimation of the abundance and 179	  

distribution of target species through molecular tools may be conducted in a short 180	  

time more cheaply and easily (Minchin et al., 2016). For instance, using species-181	  

specific DNA markers, the presence of one target species from water samples can be 182	  

detected using PCR and simple electrophoresis in agarose gel. This is an efficient and 183	  

convenient approach when the target species is known because it is a reproducible, 184	  

fast and a cost-efficient method (Ardura et al., 2015a; Clusa et al., 2016; Devloo-185	  

Delva et al., 2016; Ardura et al., AIL2018). 186	  

The special session “The use of molecular tools in ecological and biodiversity 187	  

assessment of aquatic ecosystems” of AIL2018 (XIX Iberian Association of 188	  

Limnology meeting in Coimbra, Portugal, June 2018) aimed to present and discuss 189	  

recent studies undertaken in the Iberian Peninsula, other European countries and 190	  

South America, in order to promote knowledge exchange and envisage on future 191	  

research directions in this area. The authors represented 13 countries and 46 192	  

institutions (including research institutions, official agencies and companies), which 193	  
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highlights the fast development of this area around the world and the importance of 194	  

broad networks in the advancement of this particular research field (Fig.1). 195	  

The different ways of using molecular approaches in the context of ecological and 196	  

biodiversity assessment in aquatic ecosystems highlighted in the studies presented in 197	  

the SS (Table 1) were synthesized in the section “Perspectives on the use of molecular 198	  

tools.” From those studies, we extracted the main contributions for the area (section 199	  

“Main findings”), as well as the main problems or gaps identified by the researchers 200	  

(section “Main drawbacks”) and ended with general inferences and future research 201	  

directions (section “Conclusions”). 202	  

 203	  

PERSPECTIVES ON THE USE OF MOLECULAR TOOLS 204	  

I. Improvement of biodiversity detection and biological quality monitoring with 205	  

molecular tools 206	  

Biodiversity 207	  

Molecular tools are particularly useful to assess the diversity of concealed 208	  

communities, allowing a more accurate species detection and distribution in a specific 209	  

ecosystem. This is the case of the meiofauna, which comprises organisms between 210	  

30-1000 µm (Higgins & Thiel, 1988). Due to their small size, morphotaxonomic 211	  

inventories can largely fail to identify accurately (Alves et al., 2015). Various 212	  

taxonomic meiofaunal groups of an estuary in the North of Portugal have been 213	  

detected by a target region (Fais et al., AIL2018). Phytoplankton and general 214	  

microeukaryotic plankton dynamics under the formation of ice-and-snow cover were 215	  

studied in a Siberian mountain lake through molecular techniques (Díaz-Quijano et al., 216	  

AIL2018).  217	  
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Other examples of detection of small organisms are the microalgae dinoflagellates or 218	  

diatoms, which have additionally high morphological similarities and lack of unique 219	  

characteristics between different species (Lin et al., 2009). The eDNA analysis has 220	  

been used in French coastal lagoons to detect a set of signal species using 221	  

mitochondrial cytochrome oxidase I gene (COI), such as, 21 genera of Dinoflagellates 222	  

and 9 genera of diatoms, including Chaetoceros and Nitzschia involved in harmful 223	  

algal blooms (HABs); and invasive invertebrate species (barnacles, copepods, 224	  

polychaeta and ascidians), some of them being pollution indicators (Polydora cornuta, 225	  

Ficopomatus enigmaticus and Hydroides elegans) (Ardura et al., AIL2018). 226	  

Ecological impact of algal toxicity is also being investigated through molecular tools 227	  

(Cordeiro et al., AIL2018). Toxins are transferred along the food chain, from different 228	  

microalgae (mainly Dinoflagellates, Cyanobacteria, and Diatoms) and HABs can be 229	  

responsible for massive fish mortality (Thangaraja et al., 2007), while the presence of 230	  

toxins in fish or shellfish can cause severe human diseases (e.g., diarrheic shellfish 231	  

poisoning). In the Azorean archipelago (Portugal), the potential for cyanotoxin 232	  

production was assessed in thermal environments and freshwater lakes, which are 233	  

common in these volcanic islands. The confirmation of cyanobacteria’s DNA and 234	  

potential risk of cyanotoxin production in the eDNA samples (Cordeiro et al., 235	  

AIL2018), revealed to be an efficient method for monitoring these ecosystems and 236	  

help to prevent threats to public and environmental health (Pearson & Neilan, 2008; 237	  

Salmaso et al., 2017). 238	  

Genetic tools have been increasingly used for studying invasions, because it allows 239	  

species identification (e.g. Ardura et al., 2010; Ardura & Planes, 2017), determination 240	  

of the region of origin (Ardura et al., 2013) and time of initial incursion of non-241	  

indigenous species (Hilbish et al., 2000; Rius et al., 2014; Teske et al., 2014). This is 242	  
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especially important as the number of introduced species has been increasing during 243	  

the last decades, in freshwater ecosystems (Elvira & Almodóvar, 2001; Anastácio et 244	  

al., 2018). One example is the minnow species (Phoxinus genus), a freshwater fish 245	  

that has been used as live bait since the 1900s. Individuals were sampled in the Douro 246	  

basin (Portugal) and morphologically identified as Phoxinus bigerri, a common 247	  

minnow in the Iberian Peninsula. Nevertheless, barcoding showed that the population 248	  

caught closer to the Atlantic Ocean is phylogenetically closer to Phoxinus phoxinus 249	  

from Charente river in France, confirming for the first time the presence of this 250	  

species in the Douro basin (Garcia-Raventós et al., AIL2018).  251	  

Apart from the tools used for single and mixed-organism samples, other sources of 252	  

DNA have been explored for faster biodiversity assessment such as, DNA from 253	  

sediment samples, water or sample preservation liquids (e.g., Aylagas et al., 2016; 254	  

Deiner et al., 2017; Hajibabaei et al., 2012). These approaches avoid the traditional 255	  

sampling protocols that require a large investment in human resources with many 256	  

specialists studying different biological elements. In these cases, DNA is extracted 257	  

directly from environmental samples (e.g., water) followed by high-throughput 258	  

sequencing (HTS) metabarcoding. Taking into account previous results of DNA 259	  

extraction directly from the water (Ardura et al., 2015a; Zaiko et al., 2015; Ardura & 260	  

Planes, 2017) a HTS tool was developed to obtain a baseline of biodiversity from 10 261	  

different coastal lagoons (Ardura et al., AIL2018).  262	  

Alternatively, Martins and collaborators (CIBIO/InBIO University of Porto, 263	  

Aqualogus company and Polytechnic Institute of Bragança) are exploring the option 264	  

of DNA metabarcoding from preservative ethanol of freshwater macroinvertebrate 265	  

samples (Martins et al., AIL2018). This approach requires following the Water 266	  

Framework Directive (WFD; European Union 2000) sampling protocols but avoids 267	  
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the sorting step of separating animals in a sample from vegetation, sediment and litter, 268	  

which is very time-consuming. The authors are examining the performance of 269	  

different laboratory procedures on species detection based on the preservative liquid, 270	  

and compared taxa recovery with the conventional morphological method. More than 271	  

half of the taxa found in ethanol were macroinvertebrates targeted by WFD, while the 272	  

remaining percentage was identified as, e.g., bacteria, Stramenopiles, terrestrial 273	  

invertebrates, amphibians and fishes (Martins et al. AIL2018). 274	  

Biological quality monitoring 275	  

The use of molecular tools in biological quality monitoring is becoming more and 276	  

more realistic and several studies highlighted its potential (e.g., Filipe et al., 2018; 277	  

Filipe et al. AIL2018). Comparison between morphology and metabarcoding-based 278	  

approaches to determine species composition at estuarine sites indicated that species 279	  

richness, one of the metrics frequently used in bioassessment, would be considerably 280	  

underestimated if only morphological methods were used (Lobo et al., 2017).  281	  

In the ecological quality assessment of rivers, diatoms are one of the obligatory 282	  

elements, according to the WFD. Thus, a considerable effort has been made to 283	  

develop diatom metabarcoding and optimize different stages of the process (choice of 284	  

primers, Kermarrec et al., 2014; diatom barcode database, Rimet et al., 2016; DNA 285	  

extraction, Vasselon et al., 2017a; quantification bias, Vasselon et al., 2018; 286	  

bioinformatics treatment, Coissac et al. 2012). In France, diatom metabarcoding has 287	  

been applied successfully at small (80 samples, Vasselon et al., 2017b) and larger 288	  

monitoring networks (447 samples). In rivers of Central Portugal, the comparison 289	  

between the Portuguese official monitoring index for diatoms (IPS – Indice de 290	  

Polluosensibilité Spécifique), calculated based on morphological identification data 291	  

and on Operational Taxonomic Units (OTUs) converted into species data, showed a 292	  
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high correlation (Mortágua et al., AIL2018). Besides, more than half (ca. 56%) of the 293	  

samples shared the same water quality class either using the conventional or the 294	  

molecular approach. These results show the potential for adaptation of present 295	  

taxonomic indices to molecular data, as it was concluded in studies in Mayotte island, 296	  

France (Vasselon et al., 2017b) and in the UK (Kelly et al., 2018).  297	  

The benthic invertebrates are another compulsory quality element of the WFD. In 298	  

Portugal, five sites sampled in Tua river (Douro basin) were classified to the same 299	  

quality status through both morphological identification and ethanol-based DNA 300	  

metabarcoding (Martins et al., AIL2018) when applying the Iberian Biological 301	  

Monitoring Working Party (IBMWP) index with presence/absence data, at family 302	  

level (Alba-Tercedor et al., 2002). However, only about half of the species identified 303	  

by metabarcoding were detected by morphology, whereas the former missed about 304	  

20% of the species identified morphologically, corresponding to taxa with a low 305	  

frequency (<5 individuals). 306	  

In Valencia, the Laboratorios Tecnológicos de Levante (Pujante et al., AIL2018) in 307	  

the context of the European project BIOWAT-KIT (DNA-based kit for biodiversity 308	  

assessments and biomonitoring of European water bodies), are developing and 309	  

validating a genomic tool for the identification and assessment of diversity of benthic 310	  

invertebrate communities in Europe, with the aim of improving and facilitating the 311	  

bioassessment. An audit (made by taxonomists) to an official European freshwater 312	  

monitoring program, based on macroinvertebrate samples, revealed that 29-30% of 313	  

the specimens had been overlooked by the primary taxonomists (Haase et al., 2010). 314	  

For 16% of the samples, these discrepancies led to different final ecological 315	  

assessment and demonstrated the need for adequate quality control and auditing in 316	  

freshwater monitoring. Múrria and collaborators (University of Barcelona, Spain and 317	  
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Salford, Manchester, UK) used metabarcoding techniques to compare the estimates of 318	  

the ecological status using traditional morpho-taxonomy against high-throughput 319	  

DNA sequencing of: 1) bulk sampling (after sorting individuals from multi-habitat 320	  

Surber samples), 2) eDNA (water samples) and 3) invertebrate drift sampling 321	  

(intervals of 1 hour). Results showed that while the traditional and bulk sampling 322	  

approaches detected essentially riverine species, the eDNA also captured terrestrial 323	  

associated fauna (Múrria et al., AIL2018). 324	  

Development of indices based on molecular information for the monitoring of aquatic 325	  

ecosystems (i.e., ecological status or conservation status) is the purpose of the work 326	  

developed at the University of Cantabria. Yet here, the main goal is a global 327	  

assessment of water bodies through eDNA from water and sediment (Sainz-Barain et 328	  

al., AIL2018). Additionally, the study of bacterial diversity and primary producers 329	  

through metagenomics is aimed, which could give complementary information on 330	  

ecosystem functions (e.g., organic matter degradation or primary production under 331	  

different conditions). 332	  

Molecular analysis constitutes, in addition, a simpler way of analysing the impact of 333	  

anthropogenic and natural alterations in complex communities composed of 334	  

microorganisms. A study in mesocosms run by Calapez and collaborators 335	  

(Universities of Aveiro and Coimbra, Portugal) analysed stream biofilm responses to 336	  

multiple-stressors typical of Mediterranean streams and found biofilm community 337	  

shifts induced by flow stagnation, organic loads and grazing activity. Specifically, the 338	  

OTUs determination helped to investigate how biofilm microbial communities’ 339	  

proportions changed under the different stressor combinations more quickly. The 340	  

interaction of those three stressors altered algae, fungi and bacteria diversity 341	  

proportions within the biofilm, with a synergistic effect on fungal diversity, while 342	  
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algae and bacteria had an antagonistic response to stressors’ interaction (Calapez et al., 343	  

AIL2018). 344	  

 345	  

II. Molecular analysis in aquatic water bodies 346	  

Different aquatic systems have been studied through molecular techniques by the 347	  

teams present in the SS: rivers and streams, lakes, thermal waters and estuaries and 348	  

coastal lagoons. 349	  

Rivers and streams 350	  

Rivers of NW Iberian Peninsula (Portugal and Spain) have been studied under the 351	  

FRESHING project (Next-generation biomonitoring: freshwater bioassessment and 352	  

species conservation improved with metagenomics) by CIBIO/InBIO, covering up to 353	  

150 sampling sites (Filipe et al., AIL2018). Each site was sampled using conventional 354	  

methods along with water sampling from different microhabitats in order to maximize 355	  

the detection of several taxa present in the water body through eDNA. However, 356	  

results shown in the special session focused on freshwater fish. In central Portugal, 357	  

the studies of the University of Coimbra and Aveiro and partners from INRA Thonon, 358	  

France, include 88 sites located in the catchments of rivers Vouga, Mondego and Lis 359	  

in a total area of 11 215 km2. These sites were sampled for algae and 360	  

macroinvertebrates, but present results report to diatoms only (Mortágua et al., 361	  

AIL2018; Mortágua et al., 2019). 362	  

In the BIOWAT-KIT project, three rivers from each country (Spain, Finland and 363	  

Germany) have been selected to test a genomic tool across different European regions 364	  

covering a variety of climatic and geomorphological conditions. In Spain, the rivers 365	  

are typically Mediterranean with different characteristics: Júcar is a calcareous 366	  
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mountain river; Mijares is a low-mountain river with high mineralization; while the 367	  

Turia river is a low altitude river (Pujante et al., AIL2018). Another Mediterranean 368	  

river from Catalonia, the Llobregat (156 km in length), was studied by Múrria and 369	  

collaborators, which covers a gradient of pollution and anthropogenic impact. This is 370	  

a well-studied river (Munné & Prat, 2004, 2011), which includes a pollution gradient 371	  

from pristine headwater reach, through site located downstream of a big reservoir or 372	  

salt mining, to urban and agricultural landscapes at lowlands. A sampling of 373	  

macroinvertebrates was done in 5 sites along the river (Múrria et al., AIL2018). 374	  

In Cantabria, two rivers, Pas and Asón (Spain), with temperate hyper-oceanic climate 375	  

with sub-Mediterranean characteristics were studied with molecular tools to compare 376	  

diversity under pristine and polluted conditions. In addition, water and biofilm 377	  

samples were recently collected from 96 river sites belonging to the Douro, Ebro and 378	  

Cantabrian basins (Spain). These sites were sampled to determine the total 379	  

biodiversity from microorganisms to vertebrates and are currently being identified 380	  

(Sainz-Barain et al., AIL2018).  381	  

Lakes 382	  

The studies presented in the SS addressed a wide diversity of freshwater lakes. The 383	  

Azores archipelago (Portugal) located in the North Atlantic Ocean is composed of 384	  

nine islands, which are very important and unique in terms of biodiversity, climate, 385	  

volcanic activity and geomorphology (Antunes & Rodrigues, 2011). Fifteen 386	  

freshwater lakes from the Archipelago of the Azores in São Miguel, Pico, Flores and 387	  

Corvo islands were studied to investigate cyanotoxin production potential.  388	  

In France, diatom metabarcoding has been applied to assess the structure of diatom 389	  

community and the ecological status of the littoral zone of Lake Bourget (deepest 390	  
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French lake). The structure of the assemblages based on the morphological (taxa lists) 391	  

and molecular (OTUs lists) identification of diatoms were well correlated. However, 392	  

the ecological status of the lake varied between these two methods since floristic 393	  

inventories differed significantly (Rivera et al., 2018; Rivera et al., AIL2018). The 394	  

main reason for this discrepancy was the incompleteness of the diatom reference 395	  

database (R-Syst::diatom) (Rimet et al., 2016). 396	  

In Cantabria, five mountain lakes were sampled for molecular analysis of 397	  

environmental samples (water and sediment). The first is located at ca. 1870 m of 398	  

altitude in the Liordes Valley, a unique ecosystem in the Picos de Europa massif, 399	  

located in a glacial-karst depression surrounded by calcareous walls. The Lloroza 400	  

lakes (ca. 1800 m of altitude) are small lagoons of karstic nature located in Picos de 401	  

Europa National Park in the Cantabria province. Finally, the Enol and Ercina (at ca. 402	  

110m of altitude) are two glacial lakes forming the Covadonga lakes located within 403	  

the Picos de Europa National Park in the Asturias province.  These samples are still 404	  

being processed (Sainz-Barain et al., AIL2018). 405	  

In Siberia, the Oiskoe mountain lake is being studied with phytoplankton samples 406	  

through metabarcoding from a conservation perspective (Diaz-de-Quijano et al., 407	  

AIL2018). Located in the Ergaki Natural Park, West Sayan Mountains, is a poorly 408	  

studied area due to its extreme climate with a wide range of annual temperatures (-409	  

41°C to +32°C). The lake is surrounded by a mosaic landscape of bogs, sparse taiga 410	  

forest, scree and alpine tundra and biodiversity has particular adaptations to these 411	  

conditions (Anishchenko et al., 2015). However, human activities, namely tourism 412	  

and global warming in South Siberia and Central Asia, are the present threats to these 413	  

ecosystems. 414	  

Thermal waters 415	  
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In São Miguel island, in the Azorean archipelago, environmental samples were 416	  

collected from 21 thermal sites, including hot springs, thermal pools and ponds, 417	  

thermal streams and hydrothermal vents, with temperatures ranging from 28˚C to over 418	  

90˚C (Cordeiro et al., AIL2018). Cyanobacteria were isolated from these samples and 419	  

deposited in BACA-Banco de Algas e Cianobactérias dos Açores (Universidade dos 420	  

Açores), which is part of REBECA (Red de excelencia en biotecnología azul (algas) 421	  

de la región de la Macaronesia). From the 40 strains isolated, 24 strains and 422	  

environmental samples were targeted for cyanotoxin production potential through 423	  

conventional PCR. Preliminary results show that none of the studied cyanobacteria 424	  

strains have cyanotoxin production potential (Cordeiro et al., AIL2018). 425	  

Estuaries and coastal lagoons 426	  

Finally, studies have been undertaken in estuaries and coastal lagoons. A proof-of-427	  

concept study (Lobo et al., 2017b) on the application of DNA metabarcoding for 428	  

monitoring estuarine macrozoobenthic communities has been conducted in the Sado 429	  

estuary (SW Portugal). The metabarcoding approach was able to discriminate 430	  

macrozoobenthic communities among sampling sites successfully and provided biotic 431	  

index levels comparable to the morphology-based approach (Lobo et al., 2017b). Up 432	  

north, in river Lima (NW Portugal), the estuarine area has become an important 433	  

Portuguese harbour, used for commercial navigation and fishing activities and is 434	  

subjected to constant dredging as well as the input of agricultural run-off and urban 435	  

and industrial sewage (Sousa et al., 2007). The University of Minho (Portugal) team 436	  

is monitoring meiofauna communities of this estuary through metabarcoding, 437	  

annually, whose preliminary results were presented at the AIL conference (Fais et al. 438	  

2018, AIL2018). 439	  
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In Cantabria, five sediment and five water samples were taken from 3 estuaries (Pas, 440	  

Miera, and Asón) characterized by large intertidal surfaces and dominated by the tidal 441	  

dynamic, making them well-mixed estuaries. This coast is subjected to various 442	  

anthropogenic pressures. These sites have been sampled to determine general 443	  

biodiversity through molecular analysis. 444	  

The team from the University of Oviedo (Spain) has been using metabarcoding 445	  

(eDNA) to determine the biodiversity and detect particular organisms in the coastal 446	  

lagoons of Gulf of Lyon, in the French Mediterranean coast (Ardura et al., AIL2018). 447	  

Ten lagoons were analysed: Berre, Beaduc, Bages-Sigean, La Palme, Leucate, Mejean, 448	  

Prevost, Thau, Vic and Canet. These ecosystems provide habitat for many species, 449	  

nursery areas and feeding grounds for marine and estuarine fish (Perez-Ruzafa et al., 450	  

2011). They support important fisheries and allow for intensive aquaculture 451	  

exploitation (Cataudella et al., 2015). Despite their being most of them under 452	  

protection, they still suffer from several threats derived from human activities such as 453	  

pollution, eutrophication, climate change and introduction of non-native species (≈100 454	  

non-indigenous species were identified; Reizipoulou et al., 1996; Chapman, 2012).  455	  

 456	  

III. Selection of adequate barcode genes for each group of organisms  457	  

The selection of barcode genes varies with the target taxonomic group studied and the 458	  

focus of the studies. The researchers took different options in the studies presented in 459	  

the SS: 460	  

COI 461	  

The DNA barcode region elected most frequently for the identification of 462	  

individualized specimens is a fragment of the mitochondrial COI gene (Herbert et al., 463	  
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2003). The Cytochrome c (COI) is an amino acid sequence that is highly conserved in 464	  

eukaryotes, differing by only a few residues. There are robust universal primers for it 465	  

that recover most animal phyla, and thousands of reference sequences are available in 466	  

public databases such as BOLD and GenBank (Ratnasingham & Herbert, 2013).  467	  

(Herbert et al. 2013). However, the high variability in the third position of the COI 468	  

codons makes it difficult to design universal primers for metabarcoding DNA studies 469	  

(Ficetola et al., 2010). For fish identification, most used barcode markers in DNA 470	  

reference collections are the COI and cytochrome b (Cytb) genes, other mitochondrial 471	  

genes, which can confirm taxonomic identification at the species level. However, 472	  

some studies are showing that COI might not be the best option for assessing and 473	  

monitoring freshwater fish diversity using environmental DNA from water because 474	  

this marker might not contain suitably conserved regions (e.g., Deagle et al., 2014). 475	  

Instead, the potential of using the MiFish region from the ribosomal 12S is under 476	  

consideration (Miya et al., 2015; Filipe et al., AIL2018).  477	  

For Iberian freshwater macroinvertebrates, public repositories for COI DNA barcodes 478	  

cover 35% of the taxa (3348 morphospecies) (Múrria et al., AIL2018). However, this 479	  

coverage is highly variable across taxonomic groups. For instance, Odonata (79 480	  

species, 54.43%), Hemiptera (81 species, 54.32%), Mollusca (65 species, 53.85%), 481	  

Trichoptera (390 species, 50.77%) and Crustacea (10 species, 50.5%) were the best-482	  

represented groups, whereas Diptera (1693 species, 23.21%), and Plecoptera (135 483	  

species, 31.11%) were the less barcoded orders. Portuguese invertebrate communities 484	  

sampled were also processed for metabarcoding using a small COI fragment (313bp) 485	  

by Martins and collaborators in CIBIO (AIL2018). The HTS data were identified 486	  

against the invertebrate collection of the InBIO Barcoding Initiative (at CIBIO-UP) 487	  
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that includes hundreds of specimens of macroinvertebrate taxa from northeast 488	  

Portugal. 489	  

Macroinvertebrates and marine fish have been the target of comprehensive DNA 490	  

barcoding campaigns across multiple coastal ecosystems in continental Portugal. The 491	  

primary marker was the COI, occasionally supplemented by other markers (e.g., 492	  

Borges et al., 2012). In the Lima estuary, DNA from meiofauna communities was 493	  

extracted from intertidal sediments. In this case, the target genes were the COI and 494	  

18S ribosomal RNA (18S rDNA) gene. MiSeq amplicon sequences were processed in 495	  

mothur (version 1.39.5, Schloss et al., 2009) by using appropriate bioinformatic 496	  

procedures; while the taxonomy of the processed sequences were assessed by blasting 497	  

against the full ntNCBI database (Fais et al., AIL2018). This database was chosen due 498	  

to the lack of adequate reference sequences in better-known databases, such as BOLD 499	  

(Ratnasingham and Hebert, 2007) and Silva (Pruesse et al., 2007). In the French 500	  

coastal lagoons, the invertebrate communities were as well analysed from eDNA with 501	  

COI marker. 502	  

18S, rbcL and 16S 503	  

In the project BIOWAT-KIT a preliminary evaluation of different genomic regions 504	  

using publicly available sequence data was carried out in order to identify the best-505	  

suited DNA barcode marker for the identification of 141 families of invertebrates 506	  

belonging to four different phyla (Platyhelminthes, Annelida, Mollusca, and 507	  

Arthropoda). Several primer pairs have been designed, including a degenerate primer 508	  

pair and a cocktail of group-specific primers, which will presumably amplify all the 509	  

target invertebrate taxa present in freshwater samples. Based on the results, the 510	  

mitochondrial 16S gene was selected for the DNA metabarcoding analysis of 511	  

freshwater invertebrate communities within this project, since it combines both 512	  
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conserved regions suitable for primer design, and variable regions with good 513	  

taxonomic resolution at the family level (and potentially, also at the genus or species 514	  

level) (Pujante et al., AIL2018).  515	  

In Thonon (France), the INRA team targeted several genes for diatoms (18S, COI, 516	  

rbcL) (Kermarrec et al., 2013). While COI is found in mitochondrial DNA of 517	  

eukaryotic organisms, the 18S is part of the ribosomal RNA of eukaryotes and the 518	  

ribulose-1,5-bisphosphate carboxylase/oxygenase (rcbL) is present in plants 519	  

chloroplasts. The rcbL showed to be the most suitable barcode for biomonitoring 520	  

purposes with diatoms (Kermarrec et al., 2013; Kermarrec et al., 2014; Pawlowski et 521	  

al., 2016). Thus, DNA metabarcoding of periphytic diatom community samples from 522	  

Portuguese and French rivers included a step for DNA extraction using commercial 523	  

kit NucleoSpin® Soil and a second step for DNA sequencing with MiSeq system 524	  

(Illumina) using rbcL plastid gene (312 bp barcode) (Mortágua et al., AIL2018, 525	  

Mortágua et al. 2019, Rivera et al., 2018). Sample sequences obtained from 526	  

metabarcoding were then analysed using the software mothur (version 1.39.5, Schloss 527	  

et al., 2009). Taxonomic assignment of OTUs was based on the R-Syst::diatom 528	  

database (Rimet et al., 2016, version 17-05-2017, http://www.rsyst.inra.fr/en). In 529	  

French lagoons, the process was similar, but the DNA extraction was done with the 530	  

kit Power Water DNA Isolation MOBIO® and sample sequences obtained from 531	  

metabarcoding were then analysed using the software QIIME (https://qiime2.org). 532	  

In Azorean lakes and thermal springs, DNA was extracted up to 24h after sample 533	  

collection, according to the gram-negative bacteria protocol of PureLinkTM Genomic 534	  

DNA Mini Kit (Invitrogen, Carlsbad, CA, USA), followed by amplification of genes 535	  

targeting 16S rDNA and cyanotoxins (Microcystin, Saxitoxin and Anatoxin-a) using 536	  

conventional PCR and electrophoresis protocols (Cordeiro et al., AIL2018). All 537	  
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protocols used were modified from existing ones available in the scientific literature 538	  

(Ouahid et al., 2005; Ballot et al., 2010; Ledreux et al., 2010; Rantala-Ylinen et al., 539	  

2011; Casero et al., 2014). 540	  

Biofilms from central Portugal and their response to multiple stressors in mesocosms 541	  

were assessed through their OTUs composition in a study by Calapez et al. 542	  

(AIL2018). DNA was extracted from a portion of the biofilm using PowerSoil® DNA 543	  

Isolation Kit (Mobio Laboratories Inc., Carlsbad, CA, USA), followed by a PCR to 544	  

amplify rDNA genes for each studied biofilm community, using a Taq DNA 545	  

polymerase. The bacterial V3 region of 16S gene, fungi and eukarya of 18S gene 546	  

were amplified using universal primers pairs ITS1F-GC and ITS2, the V3 region of 547	  

bacterial 16S rDNA gene was amplified with the primer pair 338F-GC and 518R for 548	  

16S and Euk1A and Euk516r-GC for 18S. Then a Denaturing Gradient Gel 549	  

Electrophoresis (DGGE) was run for each community, conducted in a DCode system 550	  

(Bio-Rad, Hercules, CA, USA). DGGE images were converted, normalized, and 551	  

analysed with the software BioNumerics 7.6 (Applied Maths, Sint-Martens-Latem, 552	  

Belgium) to obtain the relative abundances according to gel band intensity (OTUs). 553	  

In the Russian lake Oiskoe, planktonic microeukaryotes were assessed before and 554	  

after ice-and-snow cover formation (Díaz-Quijano et al., AIL2018). The focus was set 555	  

on phytoplankton and general protists, but other eukaryotic actors of the microbial 556	  

loop, such as ciliates and fungi were assessed as well. General eukaryote primer pair 557	  

targeting the V4 region of the small subunit 18S rRNA gene was used (Balzano et al., 558	  

2015). This is a modification of Stoeck’s primer pairs (Stoeck et al., 2010), with an 559	  

extra degenerate nucleotide position, which allows haptophytes to be targeted.  560	  

Total biodiversity (from microorganisms to vertebrates) has also been addressed in 561	  

projects developed in Cantabria, with the addition of 16S and 18S primers for 562	  
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prokaryotes and eukaryotes (Bact02 and Euka02 primers, respectively), besides COI 563	  

for macroinvertebrates (Sainz-Barain et al., AIL2018). 564	  

 565	  

IV. New database entries 566	  

Continuous incorporation of data from new or updated biological surveys is essential 567	  

to develop a good species database (Olenin et al., 2016). Many of the studies 568	  

presented in the SS originated important new barcode data that fed different databases. 569	  

Fish and invertebrates 570	  

For marine life, core COI reference databases for the most prominent groups of 571	  

Portuguese and Iberian fish and macroinvertebrates were made publicly available on 572	  

BOLD systems. Regarding fish, in addition to the Portuguese marine ichthyofauna 573	  

(Costa et al., 2012), reference databases have been generated for the Mediterranean 574	  

(Landi et al., 2014), the North Sea and British Isles species (Knebelsberger et al. 575	  

2014). A published compilation for all European marine fish species is available as 576	  

well (Oliveira et al., 2016). For freshwater fish species, the reference database for 577	  

European species is almost complete concerning standard DNA barcodes (COI) and 578	  

public data can be found in GenBank and BOLD databases. However, there is only 579	  

very limited 12S sequence data available that can be used as a reference to 580	  

taxonomically annotate eDNA derived OTUs. Among the invertebrates there are 581	  

published databases and other scattered DNA barcode contributions available for 582	  

annelids, namely Polychaeta (Lobo et al., 2016; Ravara et al., 2017), for molluscs 583	  

(Gastropoda: Borges et al., 2016; bivalve woodborers: Borges et al., 2012), and for 584	  

crustaceans (e.g. Amphipoda; Lobo et al., 2017b).   585	  

Meiofauna 586	  
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Concerning meiofauna, to the best of our knowledge, there are no specific databases. 587	  

Yet, Tang and collaborators (2012) gathered a total of 12 000 sequences (generated 588	  

and retrieved from GenBank) across 55 meiofaunal datasets comprising 3 taxonomic 589	  

ranks (15 species complexes, 26 genera, and 14 higher taxa above the genus level, 590	  

including orders, classes, and phyla), using either 18S or COI markers. 591	  

Diatoms 592	  

For diatoms, R-Syst::diatom, a specific reference barcoding database has been 593	  

developed (http://www.rsyst.inra.fr/) (Rimet et al., 2016) and was used in the studies 594	  

presented at AIL2018 conducted in Portugal by Mortágua et al. (AIL 2018; 2019) and 595	  

in France by Rivera et al. (AIL 2018). This database is open access and contains 18S 596	  

and rbcL barcodes. In addition, R-Syst::diatom provides information concerning 597	  

morphological diatom features (e.g., biovolumes, chloroplasts, etc.), ecological 598	  

features (taxa preference to pollution) and life-forms (mobility, colony-type). The 599	  

database is uploaded and curated every six months. The	  sequences	  obtained	  in	  the	  600	  

Russian	  study	  are	  not	  attributed	  to	  any	  taxocenose-‐specific	  database	  but	  should	  601	  

be	   made	   available	   to	   the	   builders	   of	   a	   cryophyllic	   diatom	   and	   green	   algae	  602	  

ribosomic	  RNA	  database	  at	  the	  Helmholtz	  Centre	  for	  Polar	  and	  Marine	  Research	  603	  

in	  Potsdam,	  Germany	  (shuang@awi.de).	  604	  

 605	  

V. Multidisciplinary international networks 606	  

The metagenomics is an area where extended networks tend to be formed in order to 607	  

easily tackle all the fields involved, encompassing fieldwork and sample collection to 608	  

laboratory procedures, taxonomic expertise and molecular analyses. This need is clear 609	  

in the global distribution of authors of the SS (Fig. 1).  610	  
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The University of Minho team (Portugal) has integrated the Consortium for the 611	  

Barcode of Life (CBOL) from early stages and later the International Barcode of Life 612	  

(iBOL) and in collaboration with the Museu Nacional de História Natural e Ciência,, 613	  

Instituto Português do Mar e da Atmosfera, the Portuguese Institute of Malacology, 614	  

the research institutes IMAR, CIIMAR and CNC/Biocant, and the Universities of 615	  

Guelph (Canada), Bangor (UK) and Vigo (Spain) works to build core reference 616	  

databases for marine life. 617	  

The teams from the Universities of Aveiro and Coimbra (Portugal) have been 618	  

working with INRA at Thonon-les-Bains (France) in the laboratorial treatment of 619	  

periphytic biofilms, from extraction, amplification, sequencing of DNA and 620	  

bioinformatic analyses. MARE team is also collaborating with CIBIO (Portugal) for 621	  

the assessment of freshwater invertebrate communities and biological quality through 622	  

DNA. For the FRESHING project (CIBIO/InBIO, Portugal) the laboratory procedures 623	  

and the HTS (MiSeq v2, 2x250bp PE) were performed in CIBIO-UP (Portugal) while 624	  

fieldwork have been done in collaboration with the company Aqualogus and the 625	  

taxonomical identification at Instituto Politécnico de Bragança (Portugal). These 626	  

teams, like those from Universities of Minho, Coimbra and Aveiro (Portugal), 627	  

Cantabria and Barcelona (Spain), are part of the larger network of the European 628	  

COST action DNAqua-Net, which among other tasks are tackling problems such as 629	  

an adaptation of currently used biotic indices for metabarcoding data. 630	  

Samples from the Cantabrian coast (Spain), Gulf of Lion (South France), Polynesian 631	  

ports and Spanish rivers are being processed in molecular facilities of the University 632	  

of Oviedo. DNA sequencing will be done at the Massive Sequencing Service Unit 633	  

from the IBBTEC (CSIC - Universidad de Cantabria – Sodercan). The University of 634	  

Barcelona team is currently collaborating with the University of Salford (UK) and 635	  
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University of Tromsø (Norway) for sequencing facilities and bioinformatics. In the 636	  

Azores, all molecular laboratory work is conducted in the laboratories of the 637	  

University of Azores (UAc) and CIBIO. The cyanobacteria cultures were established 638	  

and maintained in BACA-Banco de Algas e Cianobactérias dos Açores (UAc), which 639	  

is part of the REBECA network. The team works on this topic with the Ecotoxicology 640	  

team from CIIMAR, University of Porto. In Russia, the molecular facility used was 641	  

the Laboratory of Experimental Hydroecology, at the Biophysics Institute (Siberian 642	  

branch of the Russian Academy of Sciences). Sequencing (Illumina MiSeq) was 643	  

performed in three facilities: Konstantin V. Krutovsky lab, at the Sukachev Institute 644	  

of Forest; the Centre for Collective Use of the Institute of Bioorganic Chemistry, 645	  

Novosibirsk, Russia; and the company Evrogen (Moscow). 646	  

 647	  

MAIN FINDINGS 648	  

The SS showed several interesting results at the technical level but also new insights 649	  

for the ecology and conservation of aquatic systems. 650	  

Technical aspects 651	  

It was found that the choice of the markers to target particular primer pair can 652	  

considerably influence the metabarcoding-based analyses output. For estuarine 653	  

meiofaunal. up to 85% of the species constituting a mock community were detected 654	  

by using a combination of 3 primer pairs targeting the COI region, while only 30 to 655	  

60% were recovered by using any primer set alone (Hollatz et al., 2017; Fais et al., 656	  

AIL218). Also, the amount of starting material from the sample for eDNA extraction 657	  

is critical for a comprehensive assessment of meiofaunal communities in estuarine 658	  

ecosystems. 659	  
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The use of preservative ethanol from field samples seems to be a promising solution 660	  

for macroinvertebrate biodiversity assessment, with faster processing of samples in 661	  

the lab for DNA metabarcoding. However, the results are sensitive to various 662	  

laboratory procedures, namely DNA extraction methods and/or the storage and 663	  

collection timing of preservative ethanol (Martins et al., AIL2018).  664	  

Ecology and conservation 665	  

Molecular analyses in aquatic ecosystems brought not only new information but also 666	  

new questions. DNA barcoding studies on Portuguese marine life have been revealing 667	  

numerous cases of comparatively high intra-specific divergences, suggesting the 668	  

existence of considerable hidden diversity and putative cryptic species across diverse 669	  

marine taxa, including fish and major groups of invertebrates (Fais et al., AIL2018). 670	  

These findings suggest that populations of marine organisms may be much more 671	  

structured than previously thought, calling for a continuous effort on the description 672	  

of the hidden diversity and further completion of the reference databases. In order to 673	  

improve the efficiency of amplification of COI barcodes from marine 674	  

macrozoobenthos, Lobo et al. (2013) developed a new pair of degenerate primers 675	  

with a broad scope of amplification success across a phylogenetically diverse range of 676	  

marine metazoan taxa. 677	  

In the very first study based on molecular data of freshwater diatom communities in 678	  

Portugal, the total number of diatom taxa identified was 125 from 88 river samples 679	  

which corresponded to about 41% of the number of taxa identified by using the light 680	  

microscope (Mortágua et al. AIL2018; Mortágua et al., 2019). These results, 681	  

somewhat unexpected, were in accordance with results registered in studies 682	  

performed in other countries (Vasselon et al., 2017b; Rivera et al., 2018 and Keck et 683	  
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al., 2018). A possible explanation might be the high number of unassigned reads, 684	  

which is a consequence of the incompleteness of the reference database.  685	  

The molecular approach was also found important in the detection of new 686	  

introductions of fishes and tracking introduction histories, which can be relevant for 687	  

designing proper management plans. It is the case of the species P. phoxinus that was 688	  

recorded for the first time in the Douro Basin. This species can be easily misidentified 689	  

as other species from the same genus when using only morphological identifications 690	  

in the field.,  691	  

 The eDNA and metabarcoding approaches were found efficient to obtain accurate 692	  

baseline information to be used in conservation planning and ongoing management of 693	  

coastal lagoons in the south of France. Despite their different status of conservation 694	  

within Natural Parks, Reserves or Natura 2000 Network, they are already 695	  

contaminated with non-indigenous species, some of them already described as 696	  

invasive species. 697	  

New records of cyanobacteria species presence were detected in the Azores through 698	  

molecular analyses (Cordeiro et al., AIL2018). In addition, some of the sampled lakes 699	  

cyanotoxins production potential was confirmed, mainly associated with 700	  

eutrophication and anthropogenic effects, which shows the potential of molecular 701	  

tools for monitoring cyanotoxin risk in aquatic systems. 702	  

In Russia, a unique dataset of early winter lake water microbial communities was 703	  

produced as winter dynamics are usually out of the scope of limnological studies in 704	  

Siberia, due to the harsh fieldwork conditions (Diaz-de-Quijano et al., AIL2018). The 705	  

Cryptomycota clade LKM11, which was previously found in ice-covered lakes of 706	  

Antarctica (Rojas-Jimenez et al., 2017), represented up to 6-10% of the reads in 707	  
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intermediate and deep layers of the water column of the ice-covered Oiskoe lake. 708	  

Metabarcoding of microbial but also macroscopic communities enabled an easier 709	  

calculation of phylogenetic diversity metrics, and testing hypotheses on the ecological 710	  

mechanisms governing community assemblages. 711	  

 712	  

MAJOR DRAWBACKS 713	  

Different technical drawbacks were signalized in the SS, in spite of the potential 714	  

advantages of molecular approaches in biodiversity and ecological assessment of 715	  

aquatic ecosystems.  716	  

Taxonomic gaps 717	  

In the SS it was often referred to the existence of taxonomic gaps in the reference 718	  

databases when considering local fauna. One example is the study in the Lima estuary 719	  

and in the Tua river in Portugal with benthic invertebrates, where a fair number of 720	  

OTUs could not be assigned to phylum or other lower taxonomic rank due to the 721	  

primers used for targeting the COI region (Mortágua et al., 2019). A similar issue was 722	  

reported for the diatoms as previously referred, in spite of the large database and 723	  

diatom cultures existing in Thonon-les-Bains, INRA, with a high number of 724	  

unassigned reads (67%). The increase in the number of diatom barcodes in reference 725	  

databases will allow for a complete study of diversity, namely in what concerns to 726	  

rare taxa. In some cases, databases are not sufficient for assigning species and they 727	  

must be assigned at genus level; in these cases, previous taxonomic work is necessary. 728	  

In the French coastal lagoons, only ca. 10% of reads obtained were identified to the 729	  

species level and those that could not be described to the species level had multiple 730	  

best BLAST hits or the best BLAST hit had no species-level information available. In 731	  
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addition, local databases covering intra-specific variability are important, especially 732	  

when geographical barriers can lead to high intra-specific variability (e.g., Douro 733	  

River Basin). 734	  

Extraction of eDNA 735	  

Protocols need further adjustments and should be adapted to the environments and 736	  

types of samples (e.g., biofilms scrapings or preservative liquid of bulk samples 737	  

instead of water). eDNA extraction was the biggest setback. This was found through 738	  

the development of the work with cyanobacteria as they have a wide range of 739	  

morphological characteristics, like mucilage sheaths (Codd et al., 2017), that makes 740	  

DNA extraction more complicated. Different methods were tested to improve cell 741	  

lysis, like sonication, enzymatic lysis and readjustments of temperature and 742	  

incubation time (Kim et al., 2009). Similar results were found using ethanol from the 743	  

preservation of macroinvertebrate samples where different DNA extraction methods 744	  

retrieved different species diversity across time. 745	  

Amount of environmental sample  746	  

The amount of sample needed for good DNA extraction can be harder to determine 747	  

since it depends not only on the type of sample (e.g., water, sediment) but also on the 748	  

study site. For example, in eutrophic lakes, there is a higher abundance and diversity 749	  

of phytoplankton, while in thermal springs there is lower abundance and diversity of 750	  

phytoplankton. Preliminary research employing metabarcoding on eDNA extracted 751	  

from sediments at an estuarine site in the North of Portugal revealed that more OTUs 752	  

assigned to meiofauna were recovered by using higher amounts of sediment samples 753	  

(Fais et al., AIL2018). 754	  

Genetic markers 755	  
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Different genetic markers and bioinformatics pipelines must be considered to obtain 756	  

the most accurate results. For fish, it is hard to find a single nuclear marker with 757	  

enough resolution to delimit closely related species (Filipe et al., AIL2018). Despite 758	  

the appropriateness of COI and CytB markers for the majority of the species, some 759	  

genera such as Achondrostoma or Cobitis can represent a bigger problem to identify 760	  

the specimens taxonomically to species-level. 761	  

Cost of sequencing 762	  

The cost of HTS is still significantly high and highly variable, which limits their 763	  

present use in large monitoring programs. Especially in Russia, the purchase of 764	  

reagents and materials from western countries might take up to 6 months and cost up 765	  

to twice their price in the West, which makes it difficult to match financing and 766	  

project calendars, when it comes to using metabarcoding in a particular project. 767	  

 768	  

CONCLUSIONS 769	  

Studies presented in AIL2018 meeting enhanced the importance and applicability of 770	  

molecular techniques in environmental studies, towards fast and significant 771	  

information acquisition. This information can be used in biodiversity and ecological 772	  

quality assessments, conservation and management of aquatic water bodies. 773	  

During the SS, it became clear that molecular tools, and particularly the 774	  

metabarcoding approach, could provide fine-scale taxonomical resolution data, 775	  

contribute to detect new invasions and allow for unveiling hidden biodiversity 776	  

resulting from low-abundance, small sizes and poor-developmental stages. 777	  

Yet, a lot of work and investment is still needed before molecular tools can be used 778	  

routinely in monitoring programs, namely in the completion of databases, 779	  
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optimization and standardization of both laboratory and field protocols, in automation 780	  

in sample handling and bioinformatics analyses and ultimately in reducing analyses 781	  

costs. Moreover, considering the adaptation to the WFD, which requires reaching a 782	  

quality status that could actually replace the existing ones based on taxonomy, it is 783	  

necessary to establish new reference values for different types of rivers and other 784	  

water bodies (Feio et al., 2014) or check existing ones with molecular data, and 785	  

establish clear responses to disturbance gradients (Filipe et al., 2018). This however, 786	  

might soon become a reality for diatoms, macroinvertebrates and fish. The relatively 787	  

well-developed taxonomy and autoecology of diatoms make them an ideal case to 788	  

compare genetic, morphological and ecological determination of species. On the other 789	  

hand, by the use of primer pairs that target a phylogenetic range wider than diatoms, 790	  

(e.g., targeting eukaryotes) studies could include a wider spectrum of autoecologies 791	  

with more power to inform about the ecological state of aquatic ecosystems. 792	  

Despite most studies presented, in the special session being from Europe, the 793	  

perspectives, main findings and drawbacks are likely to be common to other 794	  

geographic areas across the globe. Therefore, we expect this review to be useful to 795	  

other researchers across the world, dealing with molecular tools for ecological and 796	  

biodiversity assessment of aquatic ecosystems. 797	  
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Table 1.  Biological groups, water bodies and barcode genes assessed in studies 1202	  
presented in the special session “The use of molecular tools in ecological and 1203	  
biodiversity assessment of aquatic ecosystems” of the XIX Congress of the Iberian 1204	  
Association of Limnology (AIL2018). Grupos biológicos, massas de água e barcodes 1205	  
analisados nos estudos apresentados na sessão especial ”O uso das ferramentas 1206	  
moleculares na avaliação ecológica e biodiversidade dos ecossistemas aquáticos”, 1207	  
do XIX Congresso da Associação Ibérica de Limnologia (AIL2018) 1208	  

Biological group  Type of water 
body/location 

Barcode gene Reference 

Total biodiversity – eDNA 
(water) 

Coastal lagoons of 
Gulf of Lyon - 
France 

COI, 18S Ardura et al., 
AIL2018 

Total biodiversity – eDNA 
(water, sediment) 

Rivers and estuaries 
– Pas, Asón, Miera 
rivers (Cantabria), 
Douro, Ebro 

COI, 18S, 
16S 

Sainz-Barain et 
al., AIL2018 

Fish Rivers –	  Douro 
catchment 

12S – MiFish 
region 

Filipe et al., 
AIL2018 

Fish (non-indigenenous species) 
– Phoxinus phoxinus 

Rivers - Douro 
catchment 

COI, Cytb Garcia-Raventós 
et al., AIL2018 

Macroinvertebrates and eDNA 
(ethanol) 

Rivers – Tua (Douro 
catchment) 

COI Martins et al., 
AIL2018 

Macroinvertebrates Rivers – Spain 
(Mediterranean 
rivers), Finland and 
Germany 

16S Pujante et al., 
AIL2018 

Macroinvertebrates and eDNA 
(water) 

Rivers – Lobregat, 
(Mediterranean river, 
Catalonia) 

COI Múrria et al., 
AIL2018 

Diatoms Rivers – central 
Portugal 

rbcL Mortágua et al. 
AIL2018; 
Mortágua et al., 
2019 

Diatoms Lakes – Bourget, 
France 

rcbL Rivera et al., 
2018; Rivera et 
al. AIL2018 

Biofilms (bacteria, fungi, 
microalgae) 

Rivers (mesocosms) 16S, 18S Calapez et al., 
AIL2018; Calapez 
et al., 2019 

Phytoplankton Mountain lake - 
Oiskoe, Siberia 

18S Díaz-Quijano et 
al., AIL2018 

Algae (toxicity, Cyanobacteria) Thermal waters and 
freshwater lakes – 
Azores islands 

16S and sxtA, 
sxtI, sxtH, 
sxtG for 

Cordeiro et al., 
AIL2018 
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saxitoxinas, 
anaC, anaF 
for anatoxina, 
and mcyC, 
mcyD, mcyE, 
mcyG for 
microcistina 
	   

Meiofauna (sediment) Estuary – Lima river, 
Portugal 

COI, 18S Fais et al., 
AIL2018 
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 1213	  
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 1216	  

Legend to figure 1217	  

Figure 1. Distribution of the contributors to the special session “The use of molecular 1218	  
tools in ecological and biodiversity assessment of aquatic ecosystems” of the XIX 1219	  
Congress of the Iberian Association of Limnology (AIL2018) in the World. Image 1220	  
produced in Google Maps (2019). Distribuição dos autores da sessão especial “O uso 1221	  
das ferramentas moleculares na avaliação ecológica e biodiversidade dos 1222	  
ecossistemas aquáticos”, do XIX Congresso da Associação Ibérica de Limnologia 1223	  
(AIL2018) no mundo. Imagem produzida no Google Maps (2019). 1224	  
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