Journal of Siberian Federal University. Mathematics & Physics 2020, 13(4), 398-413

DOI: 10.17516/1997-1397-2020-13-4-398-413
VIIK 519.644.7

On Error Estimates in S, for Cubature Formulas Exact
for Haar Polynomials

Kirill A. Kirillov*
Siberian Federal University
Krasnoyarsk, Russian Federation

Received 12.03.2020, received in revised form 8.05.2020, accepted 15.05.2020

Abstract. On the spaces Sp, an upper and lower estimates for the norm of the error functional cubature
formulas possessing the Haar d-property are obtained for the n-dimensional case.

Keywords: Haar d-property, error estimates for cubature formulas, function spaces Sj.

Citation: K.A.Kirillov, On Error Estimates in S, for Cubature Formulas Exact for Haar Polynomials,
J. Sib. Fed. Univ. Math. Phys., 2020, 13(4), 398-413. DOI: 10.17516,/1997-1397-2020-13-4-398-413.

Introduction

The problem of constructing and analyzing cubature formulas that are exact for a given set
of functions was earlier considered primarily as applied to the computation of integrals exact
for algebraic and trigonometric polynomials. For example, the approximate integration formulas
of algebraic accuracy can be found in [1,2]. The cubature formulas exact for trigonometric
polynomials in particular were studied in [3-7].

The approximate integration formulas exact for the system of Haar functions can be found in
the monograph [§]. The accuracy of approximate integration formulas for finite Haar sums was
used in [8] to derive error estimates for these formulas.

A description of all minimal weighted quadrature formulas possessing the Haar d-property,
i.e., formulas exact for Haar functions of groups with indices not exceeding a given number d, was
given in [9]. The error estimates for quadrature formulas possessing the Haar d-property in the
case of the weight function g(z) = 1 were obtained in [10]. In particular, in the mentioned paper
the upper estimate for the norm of the error functional ||0y| 5; Was found for the quadrature
formulas having the Haar d-property:

_1
lonls, < (2477,

and the lower estimate for the norm of the error functional |||
ture formulas exact for constants:

g+ was obtained for the quadra-
P

lonllg, > 275N s
P

The problem of constructing cubature formulas possessing the Haar d-property, i.e., formulas
exact for Haar polynomials of degree at most d, was solved in the two-dimensional case in
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[11-15] under the condition that the weight function g(z1,22) = 1. The error estimates for these
cubature formulas was derived in [16]. In particular, in [16] the upper estimate for the norm of
the error functional ||d x|

g+ was obtained for the mentioned cubature formulas:
P

1 _1
lonllgy < 20(27) 7.

In the present paper the error estimates of cubature formulas with arbitrary positive coeffi-
cients at the nodes, similar to the estimates given above for the one- and two-dimensional cases,
are derived in the n-dimensional case. As a result, we find the upper estimates for the error
functional éy of the cubature formulas possessing the Haar d-property:

n—1

S;gQ"

ox 1l <257 @Y7 Iflls,. o] (2) 77,

and we obtain the lower estimate for the norm of the error functional ||dx||4. for the cubature
p

formulas exact for any constant:

[on]

5> (@ —n—1) PN

1. Basic definitions

In this paper, we use the original definition of the functions X, ;(z) introduced by
A.Haar [17].

1 om=l 1
The binary intervals of rank m are the intervals [, 1 = {0, 27n1>’ L gm—1= (2ml, 1} )

J—1
2m—1’ om—1 ’

m=2,3,...,and l,, ; = m=3,4,...,5=2,...,2m 1 —1. By a binary interval

of the 1st rank we will consider the interval {1 ; = [0, 1]. The binary segments of rank m are the

e
J J ],ml,Q,...,jl,...,2m1.

closed intervals I, ; = {Qm_l, T

The left and right halves of {,,, ; (without its midpoint) are denoted by L, ; and l:z’ j» respec-
tively. Obviously, l;,j = lm+1,2j—1, l;rw- = lm+1,2j-
In [17], the Haar functions x,, ;(x) are defined by:
m—1 —
27z, T € lm,j’
m—1

277, rzell
Xm,j(7) = R — (1)

0) T e [O, 1] \lm,j7

{vaj (x —0) + xm,j(z+ O)}/Q, x is an interior discontinuity point,

m=12...,5=1,...,27° %

Thus, the Haar system of functions is constructed in groups: the mth group contains 2™!
functions {xm ()}, where m = 1,2,..., j = 1,...,2"" 1. The Haar system of functions
includes the function x1(x) = 1 too, which is outside of any group.

In the one-dimensional case, the Haar polynomials of degree d are by definition the functions

d 2m!
Py(x) = ao + Z Z ) Xm j (@),
m=1 j=1
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v\}hered:l)Q7 , ag, agn)ER m—l d j:l,...,2m_1,and

2d—1
S {af} #0.
j=1

By the 0-degree Haar polynomials we will consider real constants.
In the n-dimensional case, the Haar polynomials of degree d are the functions

Py(z1,...,2y) = ap+

om1— 1 Qms — 1

n
J1, J? y . . . .
+§ : E : E E E gnll, s Zl""7zs)xm1,]1(xll)"'Xmm]s(xls)?
s=1 1<i1<...<is<n mi+...+ms<d j1=1 Jjs=1
where d = 1,2,..., ag, a9 (i, i) € R, 1< iy < ... <ig<n, my+...+m, <d,

s=1,...,n, jp=1,...,2™ 1 k=1,...,s, and

gm1—1 gms—1

Eni > ooy Y { (15 1,...,15)}27&0,

s=1 1<i1<...<is<n mit...+ms=d ji1=1 Jjs=1

The same way as in the one-dimensional case, by 0-degree Haar polynomials we will consider
real constants.
Consider the following cubature formula

1 1 N
:/0 /0 f(a:l,...mn)d:rl...dxn%chf(xgk),...m;k)):QN[f], (2)
k=1

where (xgk), e ,x%k)) € [0,1]™ are the nodes, the coeflicients C} at the nodes are real,
k=1,...,N.

The cubature formula (2) is said to possess the Haar d—property (or just the d-property) if it
is exact for any Haar polynomial P(x1,...,z,) of degree at most d, i.e., Qn[P] = I[P]. Such a
formula with the least possible number of nodes is called a minimal cubature formula with the
d-property.

We recall the definition of the linear normed space S, in the n-dimensional case introduced
by I. M. Sobol’ [§].

Let p be a fixed number with 1 < p < +00. The set of functions f(z1,...,x,) defined in the
unit n-dimensional cube [0, 1]™ and representable as a Fourier-Haar series

flxy,...,zn) = co+

0 2mi—l gms—1 (3)
E ]17 Js) ; . . . .
+Z Z Z Z Z m17 M Zl"."ZS)thJl(xll)"'Xms>]s(x15)
s=11<i1<...<is<nmi=1 ms=1 j1=1 js=1
ith real coeffici (g15002ds) (- ) (1< g < — 1.9
with real coefficients co, ey s (i1, - -,0s) (1 < i1 < ... <y < n, my,...,mg = 1,2,...,

s=1,...,n, jr=1,...,2m~1 k=1 ... s) satisfying the conditions

A:E)zl,...,zs) (f) _

) 00 L gm1—1 gms—1 % (4)
mq— mg—1
— E E —g—t. =5 § E yeeeads P \|P
= 272 2 ’07(.,%11’ ’Zmb Z]_,...,ZS)‘ gAil’m’iN

my1=1 ms=1 Ji=1 Js=1
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(where A;, . ;. are real constants, 1 < 43 < ... < i3 < n, 1 < s < n) is called the class
Sp(A1, .oy Aps oo A i AL )

It was proved in [8] that the set of functions f(z1,...,z,) belonging to all the classes
Sp(Al,...7An,... All A1 ) (Wlth all possible Al,...,An,..., Ailv"wis""7A17"'7n’

while p being fixed) equlpped with the norm
Iflls, = Z Z Al()z‘l,.i.,z‘s)g)’ (5)
s=11<i1<...<is<n

forms a linear normed space, which is denoted by S,. All the functions f(x1,...,x,) that differ
by constant terms are regarded as a single function.

The coefficients cy, 6%11’7 ’js)(il,...,is) (1 <ip < ... <idg<n, my,...,mg = 1,2,...,
s=1,...,n, jg=1,...,2™ 1 k=1,...,5) in the representation of the function f(xy,...,x,)

as a series (3) are called the Fourier-Haar coefficients of this function.
In [8] it was proved that the series (3) converges absolutely and uniformly.

2. Derivation of estimates for the norm of the error functional
of cubature formulas in §,

Let (2) be a cubature formula with the coefficients C at the nodes satisfying the inequalities
Cr>0,k=1,2,...,N. We denote the error functional of the cubature formula (2) by oy [f] so
that

1 1 N L
5N[f]:I[f}—QN[f]:/O /O f(xl,...,mn)dml...dmn—ZCkf(xg>,.._,xgc>)7 (6)
k=1

where the function f € S,, p > 1. It was shown in [8] that any such function is contin-
uous at all points which coordinates are not binary rational numbers. Hence the integral

[ flz1,...,2n)dzy ... dx, exists not only in the Lebesgue sense, but also in the Riemann
0 0
sense.
Let
om1— 1 oms — 1 q %
- N mp—1_ =  mg—1 k
Bt (@) =2 et L Y Y zck xomna(#0) X (#)| 6 @)
Jji=1 js=1 |k=
where ¢ > 1, 1<i1<...<is<n, my,....,meg=12..., s=1,...,n.

Lemma 1. If the cubature formula (2) is exact for any constant and f € S, then for the absolute
value of the error functional satisfies the inequality

R i e

s=1 1<i1<...<is<n mi1=1 meg=1

om1—1 gms—1 , %
(Jrommns ; (i1 mris)
ml’, wds) Zlv"'vzs) Emli’,;rg(Q) .

Ji=1 Jjs=1

Proof. The series (3) is substituted into (6). Since the series (3) converges uniformly and
since the cubature formula (2) is exact for any constant, we have:
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oo 2m1—1 gms—1

on [f]=— Z Z Z Z Z{Tﬁ 239 (i, i) X
s=1 1<i1<...<ts<nm1=1 ms=1 j1=1 js=1
< (9
X ZCkal,jl (IE?) o X s (:L’Ef)) }

k=1

Since the series in (3) is absolutely convergent, it follows that the series in (9) also absolutely
converges. Applying the triangle inequality to the expression on the right-hand side of (9), we

obtain:
0o 2mi-l  gms—l
LTRSS DD SERD Db DD DY £t IURAR
s=1 1<n<.. <z;<nm1 1 ms=1 j1=1 js=1 (10)

X Z Ckath (a:gf)> s Xme,gs ($55)> ‘
k=1

Now we apply the Holder inequality to the sums over ji,...,js on the right-hand side of (10).
Taking into account (7), we obtain the inequality (8). O

It was shown in [9] that there exist Haar polynomials of one variable of degree m that satisfy
the equality:

2m, Z € lmy1,5,
fmg(@) =q 271 2 € g1\l (11)
0. 2ef01\ Tty
where m = 1,2,... and j = 1,2,...,2™. It was also proved in [9] that the functions
Km,1(Z), ..., km,om () form a basis in the linear space of Haar polynomials of degree at most

m.
The definition of the Haar functions (1) and relation (11) imply the following equalities:

_m41

Xm,j (i) =272 |Km2j—1(2:) — Km,25 ()|, (12)
Fom,2j—1(2i) + K 2 (i) = 26m—1,5(3), (13)
i=1,...,n, m=1,2..., j=1,...,2™" 1
Let
K0 (@i, i,) = Koy gy (T6,) - o, (24, (14)
1<ii<...<ig<n, my,...,mg=1,2,..., s=1,...,n, j,=1,....27 L r=1 . s.
Lemma 2. For any ordered set (i1,...,is), 1 <i3 <...<is<n, 1<s<n, and for any

positive integer M there exists at least one ordered set (M, ..., M) satisfying the inequality
M +...+ Mg > M such that

DUt (@)= sup Xt (g), (15)

mi+...+ms=2M
Proof. For a fixed positive integer M, we choose (mq,...,m,) in accordance with condition
that the sum mj +...4+mg is minimum among all ordered sets (my, ..., mg) such that m;+...+

+m, = M and each of the closed s-dimensional binary parallelepipeds Iy, 11,5, X ... X I 41,5,
contains at most one node of the cubature formula (2).
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If the coordinates of the nodes of the cubature formula (2) acgf) ¢ {27 (25, — 1) : g, =

=1,...,2" 1} k=1,...,N, then we set m, = m,. Otherwise, we set M, = 1—|—max{m,. eN:
there exists z\/) = 2~ mT(QJ(K) 1),1< G <ome—1l 1 < K < N},r=1,...,s
Then, for all ordered sets (myq, ..., ms) such that my +...+ms > m1+...+ Mg the following

three conditions are satisfied:

— the inequality m1 + ... +ms > M holds;

— each of the closed s-dimensional binary parallelepipeds I, 41,5, X ... X by 41,5, contains
at most one node of the cubature formula (2);

— the coordinates of every node of the cubature formula (2) differ from the points
{27 (25, — 1)} = supp {km, 2j,—1} N supp {km, 25, }, Jr = 1,..., 2" r=1,...,s.

By virtue of (7), (12), we have:

y . gy —1 gMa-11 N

1150525 —My—...— Mg

st @=amn S UE S o
= Js= =

q) ¢
k k k k
o (45) s (o)) s (o) = s, ()]}

1< <...<13&<n, 1 <s<n.

According to the choice of (71, ..., M), the coordinates
2P (k=1,...,N) (17)
of every node of the cubature formula (2) differ from the points {277+ (2j, —1)} =
= supp {fm, 2j,—1} N supp {km, 25}, jr = 1,...,2™ 71 r =1,...,s, and each of the closed
s-dimensional binary parallelepipeds
Zfﬁ1+1,j1 X ... X lﬁ%SJrl,js (18)

contains at most one node of the cubature formula (2) (by this fact every binary segment
l#,+1,j, = supp {km, .} contains a projection at most one of node of the cubature formula),
jr=1,...,2m r=1,...,s. Then the equality (16) can be rewritten as

Ji=1 Jjs=1

ool 8 R o () o ()]}

1
o1 oMMs N q] ¢
i1y ——. k k
ZGot) (g) =2 {z z[z Cutir o (20)) - Ko, (xEJ)H -

Js=1

1<ii <...<ig<n, 1<s<n. Here we use the fact that the sum

N
Z Ck/q’ml,]l ( Ef)> M K/ﬁls»js (ng))
k=1

contains at most one nonzero term for any ordered set (ji,...,Js)-
Consider the coordinates (17) of nodes of the cubature formula (2) satisfying the equality

.’L‘Ek) = 2_mrjra 1<y < 2mr 1< r<s. (20)

- 9

The following (s + 1) cases are possible for the quantity of such coordinates of the nodes.
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1. Equality (20) does not hold for any of the coordinates (17) of the nodes (for definiteness,
the numbers of such nodes are denoted by k =1,..., Ny).

2. Only one coordinate in (17) satisfies equality (20) (let & = Ny +1,..., N2 be the numbers
of nodes whose coordinates satisfy this condition).

3. Exactly two coordinates in (17) satisfy equality (20) (to be specific, we assume that the
coordinates of the nodes with numbers k = Ny + 1,..., N3 obey this condition).

s+ 1. Equality (20) holds for all s coordinates (17) (let k = Ny +1,..., N be the numbers of
nodes whose coordinates satisfy this condition).

Moreover, each of the nodes with the numbers k = N,.+1,..., N1 belongs to exact 2" closed
s-dimensional binary parallelepipeds of the form (18), where r = 0,1,...,s, Ng =0, Ngy; = N.
Given the above, as well as the equality (11), the relation (19) can be rewritten as

) . ~ M - _ N2 . _
S (g) = g | (@bt py $R (R moi)
k=1 k=N;+1
1
N3 ~ ~ q N R N .l
+4 3 (Mt 20 T 4 428 Y (Mt eSO T = (21)
k=Ny+1 k=N.+1
1
Ny N> N3 N a
= Z Cr? + 21—q Z Cr? + 22(1-q) Z Cil+ ...+ 2s(1—q) Z e ,
k=1 k=Ny+1 k=Na+1 k=N.+1
1< <...<ig<n, 1 <s<n.

Since this reasoning holds not only for (71, . .., M), but also for any ordered set (my, ..., ms)
such that mqy + ... + mg > m1 + ... + my it is true that the value 27(,311:','_'_’,32)5 (q) does
not depend on myq,...,ms for all (mq,...,m,) satisfying the inequality m; + ... + ms; >
> mq+...+m,. Therefore, sup in the equality (15) reduces to max ,

mit...4+ms>=M ML<my+...+ms<mi+...+Mg
whence we obtain the assertion of the lemma. O
Let ¢ be a number related to p by
1 1
-+ -=1 (22)
p q

Let us prove the following theorem.

Theorem 1. If the cubature formula (2) is exact for any constant, then its error functional
satisfy the following relations:

Onlfll < IIflls,  sup _ Slvnia) (), f € Sy, (23)
mM1,y...,Mg
Ioxlls, = sup TGt (g). (24)

mi,...,msEN

If the cubature formula (2) possesses the Haar d-property, then

OnLf1l < £ s, Sup >d255;§:::::izl(q), f €Sy, (25)
mi—+...mMgs
lonllsy = sup TG (g). (26)

mi+...+ms>d
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Proof. Let the cubature formula (2) be exact for any constant. By virtue of (4), (5), the
inequality (23) follows from (8). Using (23), we obtain:

| sup S (o)

M,y Mg
mi,...,msEN

In order to establish that this inequality can not be improved, we use the technique applied in [§].
For M = s, we fix the ordered set (My,..., M), the existence of which was proved in Lemma 2.
We introduce the following notation:

N
i15ls _My-1 o Ms—1 A i
C"‘);lll ,JZ ) —9=% 3 ZC’k Xty i <x§1)> o Xt (335)) )

Then, according to Lemma 2, we have

oMy —1 oMs—1

sup TR () = 2V (a) = [ XX
mi+..+ms=>M J1=1 Js=1

N (i
15
Z @.717 7]5

k=1

] e

Consider the function

oMi—1  oMg—1

ff(‘jfll oM ($1,...,xn): ooy mgn@“’ s

Jji=1 Jjs=1

-1

g
9(“’”.715) Xy .5, (wil)"‘X]WS,js ("I;'Ls) )

J1--e5ds

1<i; <...<is<n, 1<s<n. For this function, the Fourier—Haar coefficients are given by

g—1

. (11, iis) | (it

. 51n@ SN my = Mq,...,mg =M

00:0, C(Jh ,js)(zlw“als){ g 7_75 1, 7_75 ) 1 1 s Hbs ER)

M, M .
0 otherwise.

Then, taking into account the relation (4) and the equality (¢ —1)p = ¢, which follows from (22),

we have:
1
21Wl 1 2]\/[;—1 P
(i15eeris) [ p(E1esis) ) _ oMty Med Z Z i1
Ap fMl,...,Ms =2 6]17 »Je (28)
Ji=1 Js=1
At the same time, according to (9),
) 2t 2t (z i ) (¢ i ) -1
o (A == S X (sl el
G1=1 Ge=1
N oM —1 oMs—1
(k) (k)Y | _ M-l 4 M1 (i1,0nsis) |2
X ZCkXMl,jl (xil e X s (T4, = -2 ‘Zl '21 @Jh i
= J1i= Js=

The last relation, combined with (27) and (28), shows that

[ e oM1—1 QMa 1
=275 ttTy |

Ji=1 Js=1

o i)

‘@ i1,

1
q P
Jise- Je X

=g () S @

My —1 Mg—1

2 2 . N

« @(7,1,...,25)
Z Azl J1ysds

Jji=1 Js=
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Note that A(kl" N (f(“’,,._, ) = 0 for all ordered sets (k1,...,ks) # (i1,...,i5). Then
(i i1,ee8s) (i
WA g, = AR (fiid, ), and
o [ )| = =i @ |

which implies the equality (24).
If the cubature formula (2) possesses the Haar d-property, then by virtue of its accuracy for
Haar polynomials of degree at most d, the equality (9) becomes

my—1 ms—1
2™m1 2

77% Z Z Z Z {c(“’ STe) (i, i) %

s=1 1<i1<.. <ib<nm1+ Ams>d ji1=1 Js=1
(k)
X E CrXmi g1 ( i ) <o Xmg,gs (xis .

Hence, the inequality (8) can be written as

oA Y 3 {Q"gu..‘w;—lx

s=1 1<i1<...<is<n mi+...4+ms>d

omy—1 gms—1 %
N P o
X[ > - § i) (i, i) ] Eﬁii’;:z:%l(q)}-

Then the inequality (2 ) becomes (25). Proceeding as in the proof of the equality (24), we

construct the function f ““"’ZM) (z1,...,2y) such that

on [ ]| = sup Tt (g), (29)

vvvvv ms
Sp mit...4+ms>d

..... M

where the ordered set (M, ..., M) satisfies the following conditions:

M+ ...+ M, >d,

S @ = s D0 (q).

M1, M
mi+...4+ms>d

This ordered set exists by virtue of Lemma 2, which is used for M =d + 1.

The equality (26) follows from (25) and (29). a
Lemma 3. For positive integer my, ..., mg satisfying the inequality
my+...+ms < d, (30)

it is true that

where 1< iy < ... <ig<n, s=1,....n, jr=1,...,2" 1 r=1...s.
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Proof. Since each of the functions Km, j, (i), ..., Km, ;. (2, ) is a Haar polynomial of one
variable and the degrees of these polynomials are my, ..., mg respectively, then it follows from
(14) that for my, ..., ms satisfying the condition (30), the function Kf,{}fn) (Xiyy ..., x,) 1S a
Haar polynomial of degree my + ... + mgy < d of variables x;,,...,2;,. Then, by virtue of the
accuracy of the cubature formula (2) for the Haar polynomials of degree at most d, the first
equality in (31) holds true.

The second equality in (31) follows from the relations (14) and (11), which define the functions

Kr(,ﬁ fn) (Tiy, ..oy mi) and Koy gy (T0)), ooy K. (T4,)- ]

.....

Lemma 4. For positive integer I, the following inequality holds:

om1—1 oms—1 q %
R _ —.—ms+ils) X N\ ) |G s
27(7?1: :in)s( )<2 mq m +é{ Z Z {QN[Kr(rﬁ—l,?..,ms—l(xil“"7xi5):|} } , (32)
Ji=1 Js=1
where 1 <i1 < ... <is<n, my,....,mg=1,2..., s=1,...,n.

Proof. Inequality (32) is proved by induction on I.
Applying the triangle inequality, and also taking into account the equality (12) and the
positivity of the coefficients at the nodes of the cubature formula (2), we obtain:

N
Z Ci Xmi,j1 (xz(f)> s X, gis (!ng))
k=1

N
X ch Hm172j1_1 (ng)> - K‘m172j1 (l‘gf)> ’ e “mm?js—l (ng)) - Hms,st ('/ng)) ‘
k=1

The nonnegativity of the functions x, j(z) implies the inequality

Km,., 25, -1 (Igf@)) - Bm,,2j, ( ( ))‘ Km,.,2j,—1 ( ( )) + Km,. 25, (:C’Ef:)> ’

r=1,...,8, k=1,...,N. Then, by virtue of the equalities (13) and (14), it is true that

Kmq,2j:-1 (l‘if)) — Kmq,2j: (ng)) ’ s |Fmg,25,—1 (mgf)) — Km,,2js ( gg))‘ =

< |:K‘m172j1_1 (x'ff:)) + K’mlx2j1 (I‘Ef)):| te |:I€m372j3—1 (ng)) + 'L@msa2js ( ’Sf)):|
i (29 o, (o) = 2EG (o).
Combining this with (33) yields
N
Z Ck Xmi,j1 (mgf)) <o Xms,gs (‘Tz(f))
k=1

which implies (32) for [ = 1.
Based on the induction hypothesis that

_omi+l mgtl
2 PIENING

(33)

_mytlmg +1
—s—

+SQ |:[(7(rﬁ7 17-] )ms—l(IiU' .. 5Iis):|a

2(217 ,1 )( ) < 2—m1—4..—m3+ls—sx

mi,..
gmi—l+1 gms—l+1 1
KU ds) ( , ) " (34)
m1 I+1,..., ms—I+1 Liyy ooy Lig ’
Ji=1 Js=1
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we prove (32). The sum on the right-hand side of the inequality (34) can be written as

gm1—l+1 gms—l+1 q
‘715 7]3) R R _
E E : { |: mi—Il+1,..., m5l+1(x117""mls)i|} -
Ji=1 Js=1
35
2m,1—l 2m,s—l 2]-1 2j3 q ( )
_ (J17~~-7JS) . .
=D IRED DD DIRSED IR (oM S CARRES)
J1=1 Jjs=1 J1=2j1 -1 Js=2js—1

Using inequality

M M q
Zagg{Zal} (a; 20, i=1,....,M, ¢>1)

i=1 i=1
and equality (13), we have:

2j1 27s

q
Z Z {QN{ n;]f’zﬁ,.)..,msl+1(xi1""’xis)}} S

Ji1=2j51—-1 Js=25s—1

271 2Js q
< {QN[ Z Z Kv(rﬁ"iiJl'g...,mg—l+1($217~-wxis)]} =

J1=2j1—1  Js=2j,—1

2j1 2js q
:{QN[ Z Z “ml—l—&-LJl(fL‘il)--~Hms—l+1,J5($is>]} =

J1=251—1 Js=2j5s—1

q
= { N|:(/‘9m1—l+1,2j1—1(xi1)+"5m1—l+1,2j1 (%1)) . -(Hms—l—&-l,st—l(xi1)+/‘5ms—l+1,2js (wz))]} =
q q
= {QN [2‘gmm1_l7jl (Jc“) o RBmg—1,js (xzs):l } {2 QN [ nﬁ’ l’jé)mrl(xil, ... ,xis)} } .

In view of the equality (35) and the last relations, it follows from (34) that the inequality

(32) holds true. O
Lemma 5. If the cubature formula (2) possesses the Haar d-property, then
. . n—1 _1
sup - Tl (g <27 (29) P (36)
mi+...+mg>d
Proof. Let (mq,...,ms) be an arbitrary fixed set of indices for which the inequality

mi + ...+ ms > d holds true. We denote by [ the minimal number among all integers L
satisfying the condition
mi+...+mg— Ls <d. (37)

Then the following equality holds:
mi+...+mg—Ils=d—r, where r€{0,1,...,s—1}. (38)

Applying Lemmas 4 and 3 (by virtue of (37), the condition of Lemma 3 for the lower indices of

the Haar polynomial K(] ’J&)msfz (ziy, ..., ;) is satisfied) and taking into account (22) yields
om1 1 oms— l 1
Tl yeensls mi—...—ms+ls
SRR DS oI
ji=1 js=1 (39)

1

1 _1
:2—m1—...—ms+ls (2m1+...+ms—ls) a _ <2m1+...+ms—ls) P )
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The relations (39) and (38) imply
. . _1 ” s— n—1 _1
S @) < () =2k ()P <0 (0 P <o (2)7F
whence we obtain the inequality (36). |

Lemma 6. If the cubature formula (2) is exact for any constant, then
sup Bl (q) > (27— — 1) 7P N7 (40)
N

Proof. Consider the function

N1 N2 N3 N
o(Ch,...,CNn) = chq+21—q Z C74-22(1-9) Z Cpl4. .. 4+250-9) Z Cud, (41)
k=1 k=N;+1 k=No+1 k=Ns+1

where the constants Ni,..., Ny are defined in the proof of Lemma 2. By virtue of (21), the
equality

Q=

Sleis) () — 6 (Cy, Ca, . ..., ON)]

M,y ms

(42)

holds true.
If the cubature formula (2) satisfies the condition

Ci+Co+...4Cn=1(C; >0,i=1,2,...,N),

which follows from the accuracy of (2) for any constant, it is easy to show that the function (41)
attains its infimum, which is equal to

[Ny +2(Na = N1) + 22 (N3 — Np) + ... +2° (N = N,)] 7 =

= [N+(21—1)(N2—N1)+(22—1)(NB—N2)+...+(2S—1)(N—NS)}1“’,

when
Ci=Cy=...=Cy, = [Ny +2(Ny — Ny) + 2% (N5 — No) + ... +2° (N = N,)] ",
s -1
Cni+1=Cnyp2=...=Cn, =2 [Ny +2(Ny — Ny) +2° (N3 — No) + ... +2° (N = N,)]
. —1
CNot1 =Cnyg2=...=Cn, =2° [Ny +2(N2 — N1) + 2> (N3 — No) + ...+ 2° (N = N,)|
s s -1
CnNyt1=CNnyq2=...=Cn =2°[N1 +2(No — N1) + 2> (N3 — N3) + ...+ 2° (N = N,)] .

Then, taking into account (22), we derive from (42)

ZULt) () > [N+ (28— 1) (No — Np) + (22— 1) (N3 — No) +... + (2° — 1) (N — N,)]

’ﬁll ..... mg
_1 .
2 [N+(21—1)N+<22—1)N++(2571)N] P — (2S+17571) pN_% 2
_1
> (2" —n 1) * N7,
where (M1, ...,my) is the ordered set chosen in the proof of Lemma 2 (in this case M = s, where

M is the parameter from the conditions of Lemma 2). This yields the inequality (40). O
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Theorem 2. For the cubature formula (2) exact for any constants, the norm of the error func-
tional satisfies the inequality

> (2 —n—1) P N5, (43)

If the cubature formula (2) possesses the Haar d-property, then

lon [f]] <

= (2977 ||f\|sp, (44)

1on]ls; < 25 (2d) : (45)

Inequality (43) follows from Theorem 1 and Lemma 6, while inequalities (44), (45) follow
from Theorem 1 and Lemma 5.

Remark 1. In [9] one considered the following weighted quadrature formulas possessing the

/0 () () di ~ ,éck 7 (=®). (46)

where 2(*) € [0, 1] are the nodes of a formula; Cy, are the coefficients of the formula at the nodes

(real numbers); and k = 1,..., N. If the weight function g(z) = 1, then the number N of nodes
2d—1

Haar d-property:

of the quadrature formula (46) satisfies the inequality N > . The last inequality follows
from a lower estimate for the number of nodes of the quadrature formula (46) possessing the
Haar d-property, where g(z) is an arbitrary weight function (see [9]).

Moreover, in [9] all minimal weighted quadrature formulas possessing the d-property were
described. In the case of the weight function g(z) = 1, it was proved that the minimal formula is
unique: the number of its nodes is N = 2471, the nodes of this formula are 2*) = 274(2k — 1),
and the node coefficients are Cj, = 279+ for k = 1,2,...,29"1. The norm of the error functional

of this formula satisfies the equality (see [10])
S
Ionllg, =277 N7, (47)

which also follows from the inequalities (43) and (45) for n = 1; a number d related to N by
N =24-1,

Remark 2. In [12], one constructed the minimal cubature formulas possessing the Haar d-
property for d > 5

//fxl,xz ) dy dia ~ Z(ka( ) ) (48)
(k) (

where (27,25 ) € [0,1]? are the nodes of a formula; Cy, are the coefficients of the formula at

the nodes (real numbers); and k = 1,..., N. The number N of nodes of such formulas satisfies
the equality

—3.2% 4 2, d is odd
N = ’ 49
{ 2d722+1+27 d is even, (49)
where d = 5, 6, 7,... Then, the norm of the error functional of the minimal cubature formulas
(48) possessing the Haar d-property satisfies the inequality
S* g EN7 (50)
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L m\/i ;)-% .
where Ey = 21(N+ NV st , d is odd, 51)
2% (N—i—%/ﬁ)_;, d is even.

The inequality (50) follows from the estimate

_1
Ion|ls- < 27 (2977,
P

which was obtained in [16] for the norm of the error functional of arbitrary cubature formulas
(48) having the Haar d-property. The number N of nodes of these cubature formulas is defined
by (49).

The relations (50), (51) also follows from (45) for n = 2; a number d related to N by (49).

3. Conclusions

In [8], the cubature formulas

1 1 N
1
/ f(xl,...,asn)dasl...dxn%—Zf(:cgk),...,x%k» (52)
0 0 N 1
with nodes z(k), . ,x%k) €1[0,1]™ (k=1,...,N) were considered that form P,-nets, i.e., nets
1

that consist of N = 2¥ nodes and satisfy the following condition: each binary parallelepiped of
volume 277" contains 27 net points (v > 7). For such formulas with a function f from S, the
following upper estimate for the norm of the error functional was proved in [8]:

n—147

Ionllg. <27 N5, (53)

It is easy to see that for n = 1 and n = 2 P,-nets with an arbitrarily large number N = 2" of
nodes exist for any 7 = 0,1, 2,... Therefore, in the one- and two-dimensional cases, the constant
multiplier on the right-hand side of (53) takes the least value at 7 = 0, and estimate (53) for the
cubature formulas (52) with nodes forming Py-nets in the one-dimensional case is written as

1]

_1
S; g N p, (54)
while in the two-dimensional case this estimate is written as

161

i .1
5 S2PNTE. (55)

It was proved in [8] that cubature formulas (52) with 2¢ nodes forming Py-nets have the
Haar d-property. Therefore, the estimate (45), which is obtained in the present paper, is a
generalization of the estimate (53) to the case of arbitrary cubature formulas possessing the
Haar d-property.

Moreover, for any cubature formula (52) with a function f € S, it was established in [8] that
the norm of the error functional satisfies the lower estimate

o]

_1
o 2 N7r.

Hence, the cubature formulas (52) with the nodes forming P.-nets have the best convergence
1
rate of 0 in the norm, which is equal to N™» as N — oc.
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The relations (43), (47), (50), (51) imply that for minimal formulas possessing the Haar
d-property in the one- and two-dimensional cases |||/ g. < N “% as N — oc.

Comparing the values on the right-hand sides of the relations (47) and (54), as well as (50)
and (55), we conclude that the upper bounds for the |[0x|/g. in the case of minimal quadrature
formulas (46) with the weight function g(z) = 1 and the minimal cubature formulas (48) with
the d-property are less than the upper bounds for this value in the inequalities (54) and (55),
respectively, i.e., the upper bounds for the norm of the error functional of formulas with nodes
forming the Py-net in the one- and two-dimensional cases.

In addition, the quadrature formula (46) with the weight function g(z) = 1 and the number
N = 2971 of nodes, as well as the cubature formula (48) with the number N of nodes satisfying the
equality (49), being the minimal formulas of approximate integration, provide the best pointwise
convergence of Jy[f] to zero as N — oo.
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O6 onenkax NOrpenIHoCTy Ha MIPOCTPAHCTBAX S, KyOaTypHBIX
dopmyJ1, TOYHBIX AJid HOJMHOMOB Xaapa

Kupuinn A. Kupusion
Cubupckuii de/iepajbHbIil YHUBEPCUTET
Kpacuosipck, Poccuiickas Peepariust

Awunorarusi. [TosydeHnl BepxHsisi 1 HUXKHSISI OIIEHKM HOPMBI (DYHKITHOHAJIA, ITOT'PEITHOCTH 0018/ IAI0NINX
d-cBoiictBoM Xaapa KybaTypHbIX (POPMyJI Ha IPOCTPAHCTBAX Sp B N-MEPHOM CIIyUae.

Koaro4geBble cioBa: d-cBoiicTBo Xaapa, IOIPENIHOCTE KyOaTypHOi hOPMYJIbI, IIPOCTPAHCTBA Sp.
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