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Abstract 

TransPrise is an effective and efficient deep learning tool that significantly improves            
prediction of eukaryotic transcription start sites. The performance of TransPrise was           
compared with the CNNProm approach using the well annotated genome of Oryza sativa.             
TransPrise predictions offer a significant improvement over other promoter-prediction         
methods. The run time of TransPrise is XXX minutes on a genome of XXX long. 
 
We present the full basis for the comparison and encourage users to freely access a set of our                  
computational tools to facilitate and streamline their own analyses. The ready-to-use Docker            
image with all necessary packages, models and code is available at           
https://hub.docker.com/r/zarubinaa/tss-rice/ The source code of the TransPrise algorithm, is         
available on GitHub (https://github.com/StepanAbstro/TransPrise) and is ready to use to be           
customized to predict TSS in any eukaryotic organism. 
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Introduction 

Thousands of eukaryotic genomes have been sequenced so far         

(https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/), including animals (1,590),    

fungi (3,275), and plants (665). As of 2018, these genomes are at various assembly levels,               

with 840 genomes assembled at the level of chromosomes, 46 are complete, 1,191 are in               

contigs, and 4,057 are at the level of genomic scaffolds. Genomic projects are not limited to                

sequencing and genome assembly. Re-sequencing large populations is becoming an          

important tool to unravel population structure, detect signatures of selection and to map             

quantitative trait loci (QTL) (Atwell et al. 2010). As resequencing costs plummet and             

technology platforms continue to expand throughput (e.g. Illumina NovoSeq), genomics          

communities are now contemplating the possibilities of resequencing entire germplasm          

collections to detect the vast majority of existing alleles and haplotypes. One essential             

requirement to capture allelic diversity is to have high-quality reference genomes that span             

the breadth of genomic diversity for mapping resequencing data.  

Understanding the functional role of a given single-nucleotide polymorphism or a           

structural variant requires knowledge of its location with respect to coding and regulatory             

regions and the elements involved (Li et al. 2015; Mulder 2018),(Tatarinova et al. 2016; Triska et al. 2017). In                   

addition, the regulatory role of a transcription factor binding site (TBFS) has been             

demonstrated to depend on the position of the TFBS with respect to the transcription start site                

(TSS) (Berendzen et al. 2006; Pritsker et al. 2004). Determination of the precise location of               

TSS is an essential preparatory step for motif discovery and reconstruction of gene regulatory              

networks (Troukhan et al. 2009). The interaction of a vast number of proteins, multisubunit              

complexes, and DNA binding sites make eukaryotic transcriptional regulation an extremely           

convoluted process (Eckardt 2014). Therefore, it is vitally important to have reliable            

methods for promoter prediction and analysis of regulatory elements if we are to enhance our               

capacity to engineer crops or to select therapeutic targets.  

Homology-based prediction of coding regions is a relatively straightforward         

procedure (Keilwagen et al. 2018). Multiple tools and pipelines exist for finding positions             

and functions of genes, such as MAKER (Holt & Yandell 2011; Campbell et al. 2014),               

BREAKER (Hoff et al. 2015), Augustus (Stanke & Morgenstern 2005), GeneMarkHMM           
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(Stanke & Morgenstern 2005; Lukashin 1998), FgeneSH (Salamov & Solovyev 2000) , and             

many others. These pipelines achieve remarkably high accuracy in homology-based gene           

finding; however, homology between species does not necessarily extend beyond coding           

regions, and, therefore, accurate prediction of promoters is difficult. It has been reported that              

even state-of-the art modern methods of promoter mapping are incapable of achieving 100%             

accuracy (Alexandrov et al. 2009; Alexandrov et al. 2006) (Troukhan et al. 2009)             

(Alexandrov et al. 2009) (Carninci et al. 2006; Kawaji et al. 2006) (Kawaji et al. 2014;                

Morton et al. 2014; Batut et al. 2013) (Tatarinova, Kryshchenko, et al. 2013; Herbig et al.                

2013) (Tatarinova, Kryshchenko, et al. 2013). For example, current annotations of rice            

(MSU7) and maize (B73, 6a) contain 56K and 63K predicted genes, correspondingly            

(Liseron-Monfils et al. 2013), and for nearly two thirds of those genes, TSS is not identified                

precisely (Liseron-Monfils et al. 2013; Tatarinova et al. 2016). Traditional deterministic           

approaches can predict only ~50% of promoters with one false positive promoter predicted             

every 700 - 1000 nt of the genome (Solovyev et al. 2010),2(Shahmuradov & Solovyev 2015). This                

accuracy is insufficient to make reliable predictions, because we expect one promoter            

occurrence per 10,000-20,000 nt of a genome. More sophisticated tools, such as PromH             

(Solovyev & Shahmuradov 2003; Solovyev 2003) used conservation of promoter functional           

components between orthologous genes to improve prediction of TSS. PromH was able to             

predict TSS within 10 nt for 90% of the TATA+ promoters and for 40% of TATA- genes, but                  

only if there are highly similar homologous sequences from closely related species. The             

TSSer algorithm (Troukhan et al. 2009) that combined positional frequency of 5'            

EST/RNA-Seq matches on genomic DNA with gene models and did not rely on unreliable              

homology arguments was able to accurately predict one transcription start site per locus.             

However, it is now accepted that alternative promoters are associated with differential            

expression in various tissues and chromatin states (Rye et al. 2014). A nonparametric             

maximum likelihood approach, NPEST (Tatarinova, Kryshchenko, et al. 2013), allowed for           

prediction of multiple TSSs per locus if 5’ EST/CAGE/mRNA data are available. Promoter             

sequences predicted by NPEST were demonstrated to be more accurate for the A. thaliana              

genome than sequences identified in several gold standard databases, such as TAIR, Plant             

Prom DB and Plant Promoter Database. However, it is difficult to identify TSS from              

RNA-Seq alone, since only 26% of genes display a maximum of the RNA-Seq coverage in               
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the range [TSS-50, TSS +250], and only 60% of genes display this maximum in the range                

[TSS-50, TSS+550] (Steijger et al. 2013). Sufficient RNA-Seq and CAGE data is not             

available for all genomes of interest, and it therefore imperative to develop alternative             

strategies.  

There are several factors complicating the process of TSS prediction. The first factor             

is existence of multiple TSS per locus. Studies on mammalian and plant genomes have              

revealed that many eukaryotic genes are associated with multiple distinct promoters (Batut et             

al. 2013; Morton et al. 2014; Louzada n.d.; Farrell & Bassett n.d.). Moreover, eukaryotic              

promoters are characterized by multiple TSSs and can be classified based on the distribution              

and utilization of their collective TSSs. Consequently, the association with several distinct            

promoters allows for a single gene to encode various protein isoforms (Sandelin et al. 2007). 

In addition, performance of standard promoter identification in grasses and          

warm-blooded vertebrates is complicated by the existence of two classes of genes in those              

organisms: GC3 –rich and –poor ones (where GC3 is the fraction of Cs and Gs in the third                  

position of codons). Nucleotide composition of GC3 –rich genes differs from GC3 –poor             

ones; they also have higher variability of gene expression levels (resulting in fewer             

full-length mRNA support) (Tatarinova, Elhaik, et al. 2013; Elhaik et al. 2014),(Elhaik & Tatarinova              

2012). Since a majority of the stress-related and tissue-specific genes are GC3-rich (Chan et al.               

2017), refinement of promoter prediction pipeline is an essential task.  

Many genomic features are associated with the location of promoter: positional           

frequency of 5’ ESTs and RNA-Seq matches on genomic DNA, nucleotide distribution, DNA             

methylation, distribution of SNPs, characteristic motifs, etc of tissue/stress specificity, and           

analysis of roles of each alternative promoter. Incorporation of those data types allows             

accurate prediction of TSS. A recently developed tool, TSSPlant (Shahmuradov et al. 2017),             

based on the Expectation Maximization (EM) algorithm, achieves significantly higher          

accuracy compared to state-of-the art promoter prediction programs for both          

TATA-containing and TATA-less promoters. Triska et al. (Triska et al. 2017) presented a             

deep learning approach to characterize regions as promoters and non-promoters, achieving           

99% accuracy in classification of 250 nt long regions. However, the question of the specific               

location of the TSS within these 250 nt long windows remains open.  
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This paper presents a novel, accurate, data-type independent, procedure for TSS           

prediction that can incorporate multiple data types. Our method is based on machine             

learning, that is capable of uncovering intricate properties of promoter regions and achieving             

much higher accuracy than deterministic methods (Umarov & Solovyev 2017),(Triska et al. 2017).             

Our novel method aims to identify the position of the start of transcription with the highest                

possible precision using nucleotide composition alone. It is data-type agnostic and can be             

extended to incorporate additional biological features. 

We present a set of computational tools, a user-friendly public interface and a              

curated database to enable these analyses. 

 

Materials and Methods 
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Selection of genome annotation version 

We selected rice chromosomes and Genome Annotation release 7 (MSUv7,          

http://rice.plantbiology.msu.edu). There are two commonly used annotations of rice: MSU          

(Tatarinova et al. 2016; Kawahara et al. 2013) and Fgenesh (Zhang et al. 2008). The Fgenesh                

gene prediction set contains 18,389 high quality (5′ full, with mRNA support) gene models,              

while the MSU gene prediction set contains 20,367 high quality gene models (Tatarinova et              

al. 2016). We used Fgenesh mRNA-based gene prediction models, since Fgenesh-annotated           

promoters have a more pronounced nucleotide consensus as compared to the promoters            

annotated by MSU (Triska et al. 2017). Fgenesh was successfully used to annotate a number               

of plant genomes (Chan et al. 2017; Ito et al. 2005; Yao et al. 2005; Davis et al. 2010; Sanusi                    

et al. 2018; Sheshadri et al. 2018; Nasiri et al. 2013; Jiang et al. 2015). Therefore, we                 

selected the Fgenesh annotation as the gold standard for our analysis. To obtain the highest               

quality dataset, pseudogenes, transposable elements, and genes with 5′ UTR shorter than            

20 nt or longer than 1000 nt have been excluded.  

Training, validation and test sets 

The procedure consists of two steps: classification (dividing the genome into “promoters” and             

“non-promoters”) and regression (finding the position of TSS inside the sequence identified            

as “promoter”). Out of twelve rice chromosomes, chromosome 2 was used for external             

validation and other chromosomes were used for training. The training set contains three             

files: 

1. Training “non-promoter” dataset contains sequences extracted from random        

genomic positions separated from experimentally validated transcription start sites by          

2000 nt. This dataset contains mostly intergenic regions. All sequences are 2000 nt             

long. 

2. Training “promoter” dataset contains sequences [TSS-1000; TSS+999] from the all          

chromosomes with length 2000 nt. 

3. File with indicators of TSS positions, containing (2000×1) matrices that correspond           

to positions of biologically validated TSS in every training sequence (“1” TSS, “0”             

not TSS position). 
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The same set of files was created for the testing dataset.  Since the procedure has multiple 

steps (classification and regression), training and testing sets were selected at each step of 

the method. 

The following procedure was used to assemble the dataset for the classification model: 

1) “Non-promoters”: ¼ of the examples chosen from the training “non-promoter”          

dataset, randomly selecting 512 long sequences from 2000 nt long regions.  

2) “Promoters sans TSS”: ¼ of the examples were randomly selected from the training             

“promoter” dataset, making sure that the chosen 512 nt long fragment did not overlap              

the region [TSS-50, TSS+50].  

3) “TSS vicinity”: ½ of the examples extracted from the training “promoter” dataset,            

containing only one TSS in a random position within the 512 nt long sequence, with a                

restriction that it should be in the [250, 450] fragment. 

The dataset for the regression model was assembled using sequences that contain one             

validated TSSs in a randomly selected position of the  [250, 450] fragment. 

 

Datasets are the (512×4) nucleotide matrices M with 512 columns and 4 rows. The 1st row                

contains indicator function delta(i,A) - it is equal to 1 if there is nucleotide A in the ith                  

position of the sequence and 0 otherwise. 2nd, 3rd, and 4th rows correspond to nucleotides C,G                

and T. 

 

 1 2 2 3 5    508 509 510 511 512 

A 1 1 0 0 0 ... ... ... 0 0 0 0 0 

C 0 0 0 0 0    0 1 0 1 1 

G 0 0 0 1 0    0 0 1 0 0 

T 0 0 1 0 1    1 0 0 0 0 

 

 

  

 



Model Training 

We implemented the Convolutional Neural Networks (CNN) using the Keras library for            

training (https://keras.io/). 

 

Classification and Regression models training  

The dataset for the classification model contains equal numbers of positive and negative             

examples. The matrices (512×4) described above are input into the model. The CNN             

architecture (Fig.1) started with four parallel convolutional layers (composed of 128 filters            

with 2, 4, 8 and 16 kernel sizes) ReLU, was used as activation function followed by                

concatenation. After concatenation layer we used convolution, batch normalization, max          

pooling layers twice. First convolution had 128 filters and second had 16. There were 1               

kernel size and ReLU activation in both situations. To help regularize the model, we used the                

0.5 Dropout technique. The signal is fed to two standard, fully connected layers with ReLU               

activation functions consisted of 256 and 128 neurons, followed by batch normalization. The             

output layer had a sigmoid activation function. 

We conducted 10-fold cross-validation (dataset was divided into training set and           

validation set in 9:1 ratio; validation set was used to avoid overfitting and find optimal               

number of learning epoch). The ROC curves obtained in 10-fold cross-validation are            

presented in the “Results” section. We determined that 5 learning epoches is optimal. After              

the model training, we tested our model using the test chromosome (chromosome 2) and              

calculated Accuracy, Sensitivity (Se), Specificity (Sp), and Matthews Correlation Coefficient          

(CC): 

 
,p S = T P

T P +F P  

 ,e S = T P
T P +F N  

,ccuracyA = T P +T N
T P +T N+F P +F N  

 

,CC =  T P ×T N+F P ×F N
√(T P +F P )(T P +F N )(T N+F P )(T N+F N )

  

where TP - true positive, TN - true negative, FP - false positive, FN - false negative. 
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The input of the regression model have the same shape. TSS located at a random position in                 

between nucleotides 250 to 450. The regression model had only one difference in output              

layer, where activation function was replaced by linear. 

 

We performed 10-fold cross-validation and calculated average value of mean absolute error            

(MAE) to estimate the accuracy of TSS position prediction (yi - position of TSS in test set, xi                  

- predicted position of TSS). For every fold, we carried out five learning epochs, the               

complete learning time, on average, takes 35 seconds 

AEM = n

yi−xi∑
n

i=1
| |

 

 

Fig 1. CNN architecture that was used in classification/regression model training. 

 

  

 



 

 

The dataset had been divided into test (chromosome 2) and training set. The training set               

contains nucleotide sequences of genes. We trained classification and regression models           

using the Keras Library and performed 10-fold cross validation procedures for them. The             

algorithm for TSS predicting is presented in Fig.2. 

 

 

 

  

 

 

 

 

  

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The algorithm for TSS predicting. 

Classification model 

We performed external validation on the test set (composed of 2000 nucleotide sequences             

with length 512 nt from chromosome 2, where 1000 examples - “non-TSS” sequences and              

1000 - “TSS” sequences) for TransPrize and CNNProm (Solovyev et al, 2017) classification             

models and calculated Matthews correlation coefficient (MCC), Accuracy, Sensitivity (Se),          

Specificity (Sp) and AUC (Area Under the ROC Curve).  The result are presented in Table.1. 

 

Table 1. Comparison of accuracy metrics of TransPrize and CNNProm classification models 

 

Classification 
Model 

MCC Accuracy Sensitivity Specificity AUC 

  

 



CNNProm 0.310 0.603 0.976 0.231 0.603 

TransPrize 0.791 0.895 0.872 0.919 0.952 

 
 
The ROC curve (Receiver Operating Characteristic curve) represents the dependance of a 
sensitivity on the specificity, or alternatively,  is a graph showing the performance of a 
classification model at all classification thresholds.  

AUC-ROC curves for classifier obtained in 10-fold cross-validation is presented in Fig.3. In             

10-fold cross-validation, we randomly divided the original dataset into 10 equal-size           

subsamples. Of the 10 subsamples, a single subsample is retained as the validation data for               

testing the model, and the remaining k-1 subsamples are used as training data. The              

cross-validation process is then repeated 10 times (the folds), with each of the 10 subsamples               

used exactly once as the validation data. Then, we averaged 10 results from the folds. The                

advantage of 10-fold cross-validation is that all observations are used for both training and              

validation, and each observation is used for validation exactly once.  

 

 

Fig. 3. ROC-curves obtained 10-fold cross-validation procedure of classification model.  

  

 



 

 

  

  

 



Also, we performed external validation of classification models on the test chromosome. The             

ROC-curves are presented in the Fig.4.  

 

 

Accuracy = 0.88, Se = 0.84, Sp = 0.92, CC = 0.79, AUC = 0.94               

Fig. 4. ROC-curves obtained in external validation of classification model. 

  

 



Regression model 

 

Fig.5 presents error density curves obtained in the 10-fold cross validation procedure for             

regression models. We splited the dataset into 10 subsets, each of unique subset had been               

selected as testing set, and training dataset constituted based on 9 remaining subsets. In all,               

we trained and evaluated 10 models The mean absolute error (MAE) for regression model              

was 25 nt.     

 

  

 



+

 

Average MAE = 25 nt 

Fig. 5. Error density curves obtained in 10-fold cross-validation of regression models. 

 

We performed external validation of the model on the test chromosome. The mean absolute              

error (MAE) for the regression model was 28 nt. 

 

Results and Discussion 

We have developed an efficient, deep learning approach, for prediction of the position of              

transcription start sites in eukaryotes using nucleotide sequence. The approach is data-type            

independent and allows of incorporation of additional data types (such as RNA-seq and tissue              

specific DNA methylation), refining positions of TSS for tissue-specific and stress-specific           

expressions. We compared TransPrise with the CNNProm approach on an independent test            

set (chromosome 2) composed of 2000 nucleotide sequences. All sequences were 512 nt             

long, and 1000 sequences did not contain TSS (“non-TSS”), and 1000 contained TSS (“TSS”              

  

 



sequences). The Matthews correlation coefficient value for TransPrize is more than twice            

larger than for CNNProm сlassification models (0.79 vs. 0.31), indicating the significantly            

higher efficiency of TransPrize in distinguishing between regions that contain and do not             

contain starts of transcription. Additionally, a regression model was created for precise            

localization of TSS within the sequence classified as a “promoter”. We validated our             

regression model on a test set (composed of 1000 “TSS” sequences selected from             

chromosome 2) and calculated the mean absolute error to be 28 nt. 

 

Another important genome annotation task is identification of functional motifs. The           

architecture of TransPrise is especially designed for that. The first convolution layer is             

composed of four different kernel size filters (ai,j) - 4*2, 4*4, 4*8, 4*16 matrices, where               

[i:[1,0,0,0](A),[0,1,0,0](T),[0,0,1,0](C),[0,0,0,1](G)] and [j:2,4,8,16 - length of motif       

sequence] (in total 128 filters of each type). After model training, the filters correspond to               

PWM (position-specific weight matrix) describing informative sequences in promoters and          

can be visualized as sequence logos. Several of filter motifs correspond to known regulatory              

elements: TGGGCC (Lu et al. 2013), CGATT (Rose et al. 2016), ACTCAT(Chen et al.              

2016), and CGCG box . Мotif TGGGCC is targeted by the TCP transcription factor through               

its interaction with proliferating cell nuclear antigens PCF1 and PCF2(Lu et al. 2013);             

ACTCAT motif(Weltmeier et al. 2006) is a typical binding site of basic leucine zipper (bZIP)               

transcription factor; CGCG cis-elements are found in promoters of stress-related genes, for            

example involved in ethylene signaling, abscisic acid signaling, and light signal perception.            

They are bound by AtSR1 transcription factor  (Yang & Poovaiah 2002). 

Fig. 6 shows filter motifs that correspond to two well-characterized features of            

eukaryotic promoters: Initiator element CA and TATA-box(Troukhan et al. 2009)(Smale &           

Baltimore 1989)(Triska et al. 2017)(Zhu et al. 1995). 

Therefore, we have shown that at least some of the features selected by the model as                

informative for identification of TSS correspond to known, biologically validated regulatory           

elements, over-represented at or near the start of transcription. We hypothesise that other             

features may correspond to unknown regulatory elements. 
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Fig 7. Distribution of CA (peaking at TSS) and TATA (peaking at TSS-30) 

 

Software availability 

We offer a simple and efficient way to deploy our training models for most users’ devices                

without having to install third-party deep learning packages. We have implemented the            

ready-to-use Docker image (https://hub.docker.com/r/zarubinaa/tss-rice/) with all necessary       

packages, models and code. The source code for our program TransPrise is available on              

GitHub (https://github.com/StepanAbstro/TransPrise) and is ready to use for new model          

training. 
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