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We analyze a new type of plasmon systems arising in small metal nanoparticles linked by narrow conductive molecular
bridges. In contrast to the well-known charge-transfer plasmons, the bridge in these systems consists only of a narrow
conductive molecule or polymer in which the electrons move in a ballistic mode, showing quantum effects. The
plasmonic system is studied by an original hybrid quantum-classical model accounting for the quantum effects, with
the main parameters obtained from first-principle DFT simulations. We have derived a general analytical expression for
the modified frequency of the plasmons and have shown that its frequency lies in the near-infrared region and strongly
depends on the conductivity of the molecule, on the nanoparticle - molecule interface and on the size of the system. As
illustration, we explored the plasmons in a system consisting of two small gold nanoparticles linked by a conjugated
polyacetylene molecule terminated by sulfur atoms. It is argued that applications of this novel type of plasmons may
have wide ramifications in the areas of chemical sensing and IR deep tissue imaging.
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I. INTRODUCTION

Surface plasmons (SPs) are delocalized collective oscilla-
tions of free electrons relative to the positive ions at the in-
terface between negative and positive permittivity materials,
like metal-dielectric interfaces. SPs are associated with oscil-
lations of charge density coupled with electromagnetic fields
created by coherent motion of the free charges. These os-
cillations are called surface plasmon polaritons in the case
of planar interfaces or localized surface plasmons (LSPs) in
the case of metal nanoparticles with a closed surface1,2. The
plasmon polaritons are characterized by a specific frequency
(surface resonant frequency, SRF), when the incident electro-
magnetic radiation is resonant with the surface plasmon reso-
nance (SPR) frequency. The SRF is highly sensitive to the per-
mittivity of a surrounding chemical environment, the change
of which due to chemical composition and morphology often
leads to substantial shifts of the SRF3–6.

Since the SRF can be readily measured by different op-
tical techniques3, LSPs are nowadays intensively used for
the creation of nanoscale sensors for chemical and biologi-
cal substances4–7. Moreover, the strong local electromagnetic
field enhancements offered by plasmon excitation has ren-
dered a wide use of plasmonic materials in different fields,
such as high resolution imaging8, plasmon lasers9, chemi-
cal synthesis10, water splitting11, optical waveguiding12–15,
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biomedical and telecom applications16,17 and photovoltaic
cells1,18–21, just to name a few.

Gold is the most known substance for plasmonic applica-
tions due to its light absorption in the visible region. It is of-
ten used in the form of separate nanoparticles (NPs), nanorods
or 3-D materials built from NPs22,23. Besides of Au NPs, sil-
ver and copper nanoparticles are also employed, albeit to a
lesser extent due to their instability1,4,7,8,10,19,21. A variety of
different forms of plasmonic materials is conditioned by the
fact that the LSP is concentrated at the edges of the nanopar-
ticles, that the strength of the electromagnetic field strongly
depends on the interaction and the interparticle distance, and
that small changes are very influential on the measured sig-
nal. From this point of view, the SRF also depends on the size
and shape of the nanoparticles1–6 as well as type of material
that links them5. In the case of conductive materials between
two nanoparticles a new mode, called charge transfer plasmon
(CTP), emerges. Such plasmons, observed in the case of con-
ductively coupled metallic nanoparticles, are expected to ex-
pand their applications from molecular sensing to nanoscale
wave-guiding.

An example of charge transfer plasmons was experimen-
tally observed in Ref.5 in a system consisting of two gold NPs
with diameter D ≥ 40 nm joined by a cylindrical gold bridge
with radius from 10 to 20 nm. The CTP was described by clas-
sical Maxwell’s electrodynamics as quantum effects were not
expected to be significant due to the large system size. Quan-
tum effects of CTPs have subsequently been investigated in
systems consisting of two NPs separated by sub-nanometer
inter-particle gaps5,25–27, where the coupling of the nanoparti-
cles is conditioned by tunneling between them and by screen-
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ing effects. However, CTPs have not been investigated for
systems consisting of NPs connected by narrow conductive
bridges (conducting organic molecules, COMs) where the im-
portance of quantum effects is expected – this is precisely the
topic of the present study. We thus consider here a hybrid
model which exhibits CTPs consisting of two metallic NPs
connected by a thin COM and analyze the implications of such
systems, which thus are novel for plasmonic generation.

II. APPLIED APPROACHES FOR CALCULATING OF
ELECTRON TRANSPORT AND PLASMON OSCILLATIONS

Generally, theoretical descriptions of plasmon resonances
in bulk materials can be based on Maxwell’s equations. At
least, measured plasmon peaks positions and spectral areas in
bulk metals are found to be in good agreement with classi-
cal theory predictions. However, surface plasmon resonance
widths in conductive nanostructures are significantly influ-
enced by quantum confinement effects. Thus, in the case of
small nano-objects, they cannot be reproduced using the di-
electric functions of bulk materials24.

The simplest bulk plasmon description can be obtained in
terms of simple electrostatics and assuming that the electron
is a classical particle having mass m and coordinate x as a
function of time~x(t)

m~̈x(t) = e~E =−4πne2~x(t). (1)

Such an approach can, however, not be used for the here sug-
gested NPs-COM systems, because the nature of the restor-
ing force acting on the electron will be different and because
a COM has a few conducting channels where electrons in
the vicinity of the Fermi level EFermi will conduct current.
Thus quantum effects of free carrier motion are vital in COMs
which calls for a strict treatment by wave function time evo-
lution ψ(r, t)38 in the frame of the real-time propagation ap-
proaches, like real-time TDDFT30. Unfortunately, to avoid the
errors accumulating in this technique the time step needs to be
chosen to be very small (∼0.001 fs), which currently restricts
the system size to ∼250 noble (Au, Ag) atoms while, as it
was mentioned above, an observation of SPRs is possible only
in the case of nanoparticles consisting of hundreds of atoms.
Therefore it is vital to develop a methodology to calculate the
plasmon frequencies in NPs-COM systems where the NP size
is larger than a nanometer, while at the same time the electron
current through the COM narrow bridge should be treated by
a quantum-mechanical approach. The methodology should
make it possible to calculate the longitudinal plasmonic fre-
quencies in dependence of the nanoparticle diameter and also
the conductive properties of the organic molecule connecting
the NPs. As a first step in this methodology it is necessary
to study the electronic conductivity in the systems. The Lan-
dauer method is usually used for this purpose41, according to
which the effective current I at zero temperature between two
electrodes possessing µ1 and µ2 electrochemical potentials,
respectively, can be estimated as a difference of currents from
one electrode to the other one: I = I+− I−, where

I+ =
e
L ∑

k,n

∂E(k)
h̄∂k

f (E,µ1), (2)

I− =
e
L ∑

k,n

∂E(k)
h̄∂k

f (E,µ2). (3)

Herein f (E,µ1) = 1/(exp [(E−µ1)/(kbT )]+1) is the Fermi
function of one electrode with potential µ1; n and k are the
indices of each transverse mode and wave number of electron
state {n,k} moving along the narrow bridge simultaneously.

Usually in the range E(k)∈ [µ1 . . .µ2] a fixed number M(E)
of the channel conducting electrons throughout the bridge is
constant M(E) = ∑n f (E,εn). So, applying (1) and replacing
the summation over k by integration over E the total current I
can be written as:

I = I+− I− =
2e2

h
M
(µ1−µ2)

e
⇒

⇒ G =
2e2

h
M,58

(4)

where G is the system conductivity, and M = M(µ1)−
M(µ2). If we take into account that an electron has some re-
flection rate during its motion from one electrode to the other
at low bias, eq.(4) would be transformed into the well-known
Landauer42 formula G = (2e2)/h ∗ T M, where T = T (E) is
the transmission coefficient at any energy E ∈ [µ1 . . .µ2]. If
the bias [µ1 . . .µ2] is sufficiently large so that T (E) and M(E)
can be varied within the range, this formula can be substituted
by an integral43

e
h

∫ +∞

−∞

T (E) [ f (E,µ1)− f (E,µ2)]dE

which transforms at temperature T = 0 into

e
h

∫
µ1

µ2

T (E)dE.

Unfortunately, the Landauer approach in the original form is
not profitable for a description of the proposed plasmon model
because this approach does not account for the influence of the
electromagnetic field (EMF) on the electron acceleration dur-
ing the motion inside a narrow conductor. It proclaims the
change of total electron energy instead, or, in other words, the
change of electrochemical potential in the electrode. How-
ever a change of electronic state in the COM region due to
the influence of an EMF is essential for the plasmon vibra-
tion description. Another reason why the Landauer approach
is not profitable for our model is the assumed constant bias,
while in the case of plasmon oscillations the bias and cur-
rent are varied according to the harmonic law. In that context
we note that, recently, some progress has been accomplished
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for AC calculations inside narrow channels48–50. For exam-
ple, biased molecular junctions subjected to external time-
dependent electromagnetic fields have been addressed by so-
lutions of coupled Green’s functions of the quantum system
and Maxwell’s equations for electric and magnetic fields50.
Unfortunately, this method is too complicated to use for real
systems, due to the nature of the self-consistent differential
equations for Green functions for electron state calculations.
Also solutions of the simultaneous Maxwell’s equations ob-
tained by sampling in time and space regions using the finite-
difference-time-domain (FDTD) approach is also expensive.
Due to these reasons this method has been used for model
systems only, where the conductive molecule is represented
by a bridge in two-level systems50.

In another example48 the equation of motion for density op-
erator ρ̂(t), projected onto the subspace of molecular degrees
of freedom, was formulated in the weak molecule-leads cou-
pling limit, where this junction has a time-periodic modula-
tion of the chemical potential of the leads. For periodic time-
dependent terms the charge transport kinetics was mapped
onto a static problem of a molecule interacting with multi-
ple leads. The time-averaged current reproduces the results of
scattering approaches to transport through conductance chan-
nels with time-dependent perturbations, as derived using the
Floquet theory51. Unfortunately, this method is also too com-
plicated to be used for real systems and is restricted to model
systems only.

Time-dependent density functional theory (TDDFT) quan-
tum method has been successfully used for description of
quantum effects related to plasmons28–30. It has been shown,
for example, that Ag-Au nanoparticles are very sensitive
to the chemical configuration, and in some cases the po-
sition of the atomic species outweigh the effect of chang-
ing composition31. Density Functional based Tight Binding
(DFTB) methods have been used, for example, for study of
optical properties and electronic structure of Ag nanorods and
nanorod dimers54 and for description of influence of quan-
tum tunneling on the efficiency of excitation energy transfer in
plasmonic Ag NPs chain waveguides55. TDDFT and DFTB,
being quantum methods, are, however, very time-consuming
methods and the possibility of their practical use strongly de-
pends on the size of the NPs, i.e. number of atoms and elec-
trons. Therefore the applications are limited to the considera-
tion of small particles, consisting, in most cases, of maximum
a few hundreds atoms31,34,35.

III. MODELING OF CHARGE-TRANSFER IN A PAIR OF
METAL NANOPARTICLES BOUND BY A CONDUCTING
MOLECULE

To construct the model we have considered a system con-
sisting of two gold nanoparticles of 147 atoms connected by
a poly acetylene molecule C8H8, having conjugated chemi-
cal bonds, where the junctions with the NPs are implemented
by the sulfur atoms to ensure the electric conductivity of the
full NP-COM-NP system. Nanoparticles of such size exhibit
metallic properties due to thermal excitation, see the solid

electronic density of states (DOS) near EFermi in Fig.2, where
the gaussian broadening 0.03 eV was used, which is compara-
ble with the thermal broadening at temperature 300K. The NP
metallic properties are essential for our model, where carriers
move between the two nanoparticles. Herein it must be noted
that the use of sulfur atoms is well-known practice for organic
linker molecules to be attached to gold nanoparticles.

It is assumed that the conductive bridge is actually a one-
dimensional conductor in which electrons or holes move in a
ballistic mode, i.e. the mean free path of the carriers exceeds
the length of the bridge.

The key point of our model is the consideration of elec-
tron dynamics, which is described in the language of the wave
function. Under the applied electrostatic field the conduction
electrons would accelerate, which leads to change in their
quasi-momentum ~k and the band energy E(~k). Changes of
these quantities can easily be calculated from knowledge of
only the band structure and effective electron mass m∗ near
EFermi. On the basis of so-called effective mass theorem the
equation h̄~̇k = ~̇p = e~E is proved36 that is the basic when con-
sidering the dynamics of an electron and establishing the ex-
act relationship between quantum and classical quantities - a
quasi-momentum, momentum and external force. Therefore,
the method that uses the exact relationship between quan-
tum and classical quantities is significantly easier compared
to known methods based on non-equilibrium quantum Green
functions50 or quantum real-time propagation of wave func-
tions in the frame of time-dependent density functional theory
(real-time TDDFT) approaches28–30. These methods can only
be used for sufficiently small systems or model systems. An
important assumption of the proposed model is also that the
conductivity of non-periodical NP-COM-NP systems is simi-
lar to that of the corresponding periodic -(NP-COM)- systems.

This assumption can be justified by that the local dynamics
of an electron inside the COM between two NPs is determined
by the local electric field and that not depends strongly on the
contacts of these NPs with other COMs in periodic systems.
This allows us to simplify the calculations of the electron dy-
namics in NP-COM-NP systems and calculate the effective
electron mass near EFermi only in the corresponding periodi-
cal system.

In this work calculations of the system geometry, electronic
properties and band structure were carried out within density
functional theory with gradient decomposition (DFT-GGA),
using the VASP 5.4 software39,40. The results of these calcu-
lations indicate that the system has metallic properties and can
conduct DC or AC current, see Fig. 1, and Fig. 2.

To confirm the NP-COM-NP system static conductivity, the
transmission coefficient T (E), i.e the probability that an elec-
tron with energy E injected at one electrode will be transmit-
ted to the other one, was calculated in the frame of Landauer
methodology using the method of Non-Equilibrium Green
Functions (NEGF), which was firstly proposed in the sixties
by Keldysh and others44,45 and widely used now46. The T (E)
function of the polyacetylene chain C8H8S2 connected to two
gold electrodes via the sulfur atoms was calculated, see Fig.3,
using the OpenMX package47. The length of the C8H8S2
chain was equal to 11.6 Å. Semi-infinite one-dimensional gold
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FIG. 1. Geometry and electron density of the conductive band for
k ∼= k f of periodic -[Au147-S-C8H8-S]- system.
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FIG. 2. Band structure (left) and DOS (right) of periodic -[Au147-
S-C8H8-S]- system. Fermi level is set to 0. Symbol Ψc denotes the
position of the electronic state in the conductive band, for which the
electron density is shown in Fig. 1

nanorods with a pentagonal section of ∼5 Å radius were con-
sidered as electrodes. T (E) was calculated with zero potential
bias at the electrodes, see Fig.4. The resulting T (E) function
at low voltage is obtained as' 1, which confirms that the elec-
tron can easily transfer from one NP to the other.

IV. PLASMON CALCULATION MODEL

To build the plasmon model, it is desirable to construct
a differential equation of harmonic oscillations, like in the
model for bulk plasmons (1). However, while in the latter
case the source of the restoring force is the homogeneous po-
larization and surface charge density, in NP-COM systems the
restoring force arises due to the electric field between the two
nanoparticles having opposite charges and due to the electro-
chemical potential µ difference of the nanoparticles. In the
proposed hybrid model it is desirable to use the results of cal-
culations of conductive properties of the NP-COM-NP sys-

tems on the basis of the parameters derived from quantum-
chemical calculations. Furthermore, the existence of a few
number of quantum conductive channels in COM and a huge
number of electronic states in the vicinity of EFermi of NPs
must be taken into account.

The model is based on the assumption that the total energy
of the NP-COM-NP system is constant so that

dEtot

dt
=

d(Etot1 +Etot2 +Etot3)

dt
= 0, (5)

where Etot1 ,Etot2 ,Etot3 are the total energies of the first and the
second nanoparticles and the bridge molecule between them,
correspondingly. These energies can be changed with charge
variation in time Etoti = Etoti(Qi(t)), where i = 1 . . .3. We also
assume that the charge distribution inside both nanoparticles
correspond to the ground states, so from (5) follows

dEtoti
dt

=
dEtoti
dQi

dQi

dt
i = 1 . . .2. (6)

Geometry optimization end calculations of electronic prop-
erties of a family consisting of six icosahedron shaped sim-
ilar gold nanoparticles consisting of 55, 147, 309, 561, 923
and 1415 atoms, see Fig.5, were carried out by the DFTB
method52 with use of a parameters set that is appropriate for
the description of bulk gold clusters and bulk material, as
well as AunSCH3 clusters53. A calculation of the band struc-
ture for the periodical structure -[Au147SC8H8S]- was also
made. Furthermore, for using in (6) the total energies Etot of
the isolated gold nanoparticles having different total charges
Q(e) ∈ {−2,−1,0,1,2} were calculated (Table I).

It was found that the total energy of the all considered
nanoparticle is well approximated by quadratic function of the
charge (Fig. 6), i.e.

Etot = aQ2 +bQ+ c (7)

The coefficients of determination R2 in all cases were
higher than 0.9999. In these quadratic functions the coeffi-
cient c is the total energy and the coefficient b is the oppo-
site value of the Fermi energy of the corresponding neutral
nanoparticle correspondingly, see Tables I and II. According
to the well-known formula of the charged sphere electrostatic

FIG. 3. Geometry of NP-COM-NP system for transmission coeffi-
cient calculation.
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TABLE I. Total energies Etot and Fermi levels E f of neutral and
charged gold nanoparticles (everything is in a.u.)

Q Au55 Au147 Au309
Etot E f Etot E f Etot E f

2 -156.810 -0.384 -420.710 -0.313 -885.377 -0.293
1 -157.149 -0.294 -420.988 -0.249 -885.644 -0.243
0 -157.399 -0.204 -421.201 -0.184 -885.861 -0.193
-1 -157.559 -0.113 -421.351 -0.120 -886.029 -0.143
-2 -157.630 -0.022 -421.436 -0.056 -886.147 -0.093
Q Au561 Au923 Au1415

Etot E f Etot E f Etot E f
2 -1608.594 -0.276 -2647.436 -0.260 -4059.262 -0.252
1 -1608.851 -0.235 -2647.677 -0.225 -4059.498 -0.222
0 -1609.066 -0.194 -2647.884 -0.191 -4059.705 -0.192
-1 -1609.241 -0.153 -2648.056 -0.156 -4059.883 -0.163
-2 -1609.374 -0.113 -2648.194 -0.122 -4060.030 -0.133

TABLE II. Coefficients of the quadratic dependence E = f (Q) and
nanoparticles radii (everything is in a.u.)

Cluster a b c rmax rmin
Au55 0.0447 0.205 -157.399 7.55 10.17
Au147 0.0320 0.182 -421.201 11.41 15.49
Au309 0.0249 0.193 -885.861 15.33 20.81
Au561 0.0206 0.195 -1609.066 19.18 26.12
Au923 0.0172 0.190 -2647.884 23.42 31.43
Au1415 0.0149 0.192 -4059.705 27.36 36.78

energy (E = Q2/(2C)) the coefficient a makes it possible to
determine the capacities C of the considered Au clusters as
C = 1/(2a).

In Fig. 7 the dependence of the capacitance C for gold
nanoparticles on their radius is shown. It is obvious that this
dependence is linear. Since it is not clear how to define the
radius of a nanoparticle, two dependencies are presented - on
the maximal rmax and on the minimal rmin radius (Table II).
The first one is taken as a distance to the atom at the clus-
ter vertex; the second is a distance from the cluster central
atom to the cluster faces. The coefficients of R2 were in both
cases were higher than 0.9998. The linear coefficients of the
straight lines (1.13 and 0.84) in Fig. 7 show in both cases that
for some average radius Raver ∈ [rmin . . .rmax] of the particle
its capacitance will coincide with the results of the classical
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FIG. 4. Transmission coefficient spectrum (in units of 2e2/h) of NP-
COM-NP system. The energy is 58 measured with respect to the
Fermi level of the leads.
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FIG. 5. Geometry of Au147-S-C8H8-S-Au147 system.
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electrostatics C = R, i.e. the capacitance of the nanoparticle
is equivalent to that of a conducting sphere and equal to the
average nanoparticle radius Raver. We speculate that the ex-
istence of free terms in both linear dependencies, which do
not change much, is related to the bulk distribution of the ex-
tra charge inside the particle. In any case, this contribution is
significantly smaller than the surface contribution, which sug-
gests that additional charge is almost completely distributed
over the nanoparticle surface.
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FIG. 7. Dependence of the Au nanoparticles capacitance on their
radius.

Equation (7) also assumes that extra-charge in the particle
is distributed according the ground state. Actually, relaxation
of non-equilibrium electrons occurs with a frequency ν ≈ τ−1
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where τ−1 is the reciprocal time between electron collisions.
For small nanoparticles this time is even reduced due to scat-
tering at the nanoparticle boundaries. For gold τ ∼ 29 fs56 and
we assume that the frequency of the plasmons under consider-
ation is much less than this inverse value, so the nanoparticles
having a varying charge can be considered to be in the ground
state under the plasmon oscillations.

The dependency of the total energy of the two isolated
nanoparticles with index i Etoti(Qi) were calculated as de-
scribed in the previous section, see (7), where bi denote the
nanoparticle chemical potentials. Using the fact that the vol-
umes of both nanoparticles are much larger than the volume of
the conductive molecule, most likely the electronic density of
the states (DOS) at the Fermi level E f for the two nanopar-
ticles DOS(E f )NP1 and DOS(E f )NP2 � DOS(E f )COM. It
means that with the change of E f the change of cluster charges
follow ∆QNP1 and ∆QNP2 � ∆QCOM and that during the plas-
mon oscillations the charges Qi(t) of both nanoparticles are
opposite and the conducting molecule would stay neutral. Fol-
lowing this situation and assuming that the two nanoparticles
are identical, one gets

d(Etot1 +Etot2)

dt
= [(b1−b2)+(a1 +a2)2Q1]

dQ1

dt
, (8)

where Q1 = Q1(t) is the charge of the first nanoparticle. Fur-
thermore, by virtue of the argument stated above, this charge
of the nanoparticle will be denoted Q(t) and the derivative
dQ1(t)

dt will be denoted as a current

dQ1(t)
dt

≡ I(t). (9)

This implies that the electron freely moves from one par-
ticle through the conducting molecule to the other particle.
In reality, it is necessary to take into account and determine
the transmission probability T as the probability for an elec-
tron to transmit through the bridge multiplied by the number
of transverse modes, each of which transfers electron through
the bridge. Using the definition data, the total energy of the
two isolated nanoparticles in (8) can be rewritten as

d(Etot1 +Etot2)

dt
= 4aQ(t)I(t). (10)

Unfortunately, in (5-10) it was assumed the two nanoparticles
do not influence each other. In contrast, due to the electrostatic
interaction their total energy is rewritten as

dEtot1−2

dt
= 4aQ(t)I(t)− d

dt

[
F(R,L)

Q(t)2

2R+L

]
=

= Q(t)I(t)
(

4a−2
F(R,L)
2R+L

)
, (11)

where the second term on the right side equation corresponds
to the derivative of the electrostatic interaction of the two op-
posite charges at a distance 2R+ L between the NP centers.
A correction function F(R,L) is introduced to take into ac-
count the difference between the interaction of the two con-
ducting spheres (nanoparticles) and point charges at the po-
larized spheres. The function F(R,L)was addressed in57,58,

where it was shown that this function decreases rapidly from
2.0 when two conducted spheres are touching to 1.0 when
L

2R → ∞ and F(R,L)] ' 1.07 at L
2R = 1.458. Next, the force

acting on the conduction electron(hole) inside the conducting
molecule is obtained as

F(x, t) =−eE(x, t)− e
[
~v~B
]
, (12)

E(x, t) =−∇φ(x, t)− ∂A
∂ t

.

We recall that for one-dimensional carriers moving in the
COM, the Lorentz magnetic force in the second right term
of (12) should be neglected.

Assuming that the characteristic size R̃ of the system is
much smaller than the wavelength of the electromagnetic
wave or R̃� cT , where the T - period of EMF, c - light ve-
locity, the quasistatic approximation (QSA) may be used in
the model. It means that EMF delay effects can be neglected.
In QSA the characteristic speed of electrons are much smaller
then c (v� c) and the bias current is much smaller than the
conduction current:

∣∣∣ ∂D
∂ t

∣∣∣� | j| in QSA ∆ ~A(x, t) =− 4π

c I(x, t),
where I(x, t) is the current at coordinate x passing through the
COM at the time t. By estimation, taking into account the
speed of light in the atomic system of units C ' 137 and the
magnitude of the current I(x, t)≈ e

L vFermi, the second term in
the right part of (12) can be neglected and the force acting on
the carriers can be defined as the gradient of the electrostatic
potential ∇φ(x, t) only. Further, in QSA the current reads

j = σE, div( j)≈ 0, (13)

so it is possible to disregard the inhomogeneity of the current
inside the conductive molecule and I(x, t) = I(t).

Opposite to the Landauer approach, where the free electron
or hole dynamics inside the COM of NP-COM-NP system un-
der EMF is not analyzed, we have to do just that for build-
ing the plasmon differential equation. As it was mentioned
above, it is assumed that this carrier dynamics is similar to the
dynamics in periodical -(NP-COM)- systems under the same
EMF. Assuming that the EMF is sufficiently small for Zener
or avalanche breakdown, the electrons (holes) will be accel-
erated according to the effective mass tensor near the Fermi
level. Due to 1D nature of the carrier movement this tensor
transforms to the carrier effective mass value

m∗ = h̄2
[

d2E
dk2

]−1

k=k f

. (14)

In the following text we will build our model in relation to
the periodic -[Au147-S-C8H8-S]- system. According to Fig.2,
the system is metallic. The calculated effective mass value
m∗ = −0.454 me was calculated for the system using (14).
Due to the system symmetry and the symmetry (k⇒−k), the
total current of the free electrons and holes near E f ermi is can-
celled without any AC electromagnetic field. In other words,
the linear dependence of energy E(k) is insignificant and the
parabolic dependence

E(k) =
(h̄k)2

2m∗
(15)
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should be used for the carriers. We recall that the COM stays
neutral under plasmon generation, so the total number of car-
riers inside the COM does not change under an applied weak
EMF. The COM total energy Etot3 can be written via a sum
of electrons in the conduction band, having different quasi-
momentum (15)

Etot3 = ∑
i

ni
h̄2k2

i
2m∗

,

where ni- occupation degrees of electrons having quasi-
momentum ki.

Taking into account that under the influence of a weak elec-
tric field the carriers are excited only near the Fermi level, we
can write the energy derivative

dEtot3
dt

= n f
h̄k
m∗

[
d(h̄k)

dt

]
k=k f

, (16)

where n f - occupation degrees of electrons having Fermi
quasi-momentum k = k f . Due to spin degeneracy and gen-
eration of holes with the same effective mass upon excitation
of electrons near the Fermi level, in the future we will consider
only electrons for which n f = 4.

Following Ref.43 and equations (2, 3, 15), the current and
its derivative can be expressed as

I(t) =
−en f

L
1
h̄

∂E(k)
∂k

= (17)

=
−en f

L
h̄k
m∗
|k=k f

dI(t)
dt

=
−en f

Lm∗
d(h̄k)

dt
|k=k f , (18)

where L- length of COM.
Combining (16-18), the Etot3 derivative is equal to

dEtot3
dt

= I(t)
dI(t)

dt
m∗L2

ne2 . (19)

Using (9,11,19), equation (5) is transformed into

dEtot

dt
= Q(t)I(t)

(
4a−2

F(R,L)
2R+L

)
+ (20)

+I(t)
d2Q(t)

dt2
m∗L2

ne2 = 0.

Dividing by I(t) one can get a differential equation of the har-
monic oscillations having the square of modified plasmonic
frequency ω̃2

pl

d2Q(t)
dt2 =−ω̃2

plQ(t) (21)

ω̃2
pl =

(
1
C
− F(R,L)

2R+L

)
2ne2

m∗L2 . (22)

Here substitution C = 1/(2a) is used again. From this equa-
tion one can see that the square of modified plasmonic fre-
quency ω̃2

pl is similar with expression of conventional plasma

frequency ω2
pl = 4πne2/(m∗Ω), where n denotes the number

of electrons occupying the volume Ω. Under the assumption
of R� L, remembering that C ∼= R (NP radius) and replacing
the expression in parentheses of (22) by 1/R, one gets

ω̃2
pl ≈

2ne2

m∗L2R
=

4πne2

m∗Ω̃
, (23)

where Ω̃ = 2πRL2 - effective volume per n electrons. Com-
paring ω̃2

pl and ω2
pl we can verify that the modified plasma fre-

quency resides in the infrared (IR) region. For example, in the
bulk gold one electron has a volume of 16.85 Å3 and the plas-
monic frequency ωpl is ≈ 9.1 eV. Using the parameters of the
investigated system containing the nanoparticle of 147 gold
atoms (〈R〉 ∼= 14.0Å, L ∼= 14.3Å, the estimation of the modi-
fied plasma frequency is ω̃pl ≈ 0.35 eV.

In order to show the influence of system geometric pa-
rameters (R,L) on the plasmon frequency, we plotted ω̃pl as
a function of the nanoparticle radius R for three conducting
molecules -[S-CnHn-S]- (n=6,7,8), having different length L
(see Fig.8 and legend there). The electron effective mass was
here taken again as m∗ = 0.454me.
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FIG. 8. The dependence of plasmon frequency of nanoparticle on its
radius R for three conducting molecules -[S-CnHn-S]- (n=6,7,8).

One can see that in the proposed NP-COM-NP systems the
plasmonic frequencies are expected to lie in IR region and
are very significantly changed with a change of the system
geometric parameters.

V. CONCLUSION

In this work the possibility of generating specific plas-
mons due to charge transfer in a couple of metal nanoparti-
cles bridged by conductive molecules is investigated. To de-
scribe the properties of such plasmons, an original quantum-
classical model was developed based on a description of the
time dependence of the ballistic current through the conduc-
tive bridge and which includes quantum effects. For the test
system, consisting of two gold nanoparticles bridged by the
conjugated poly-acetylene molecule C8H8 terminated by sul-
fur atoms, an analytical expression for the frequency of the
plasmons was derived. Our approach can be qualified from
the fact that although approaches based on calculations of
non-equilibrium Green functions or real-time propagation of
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wave functions in principle can be applied to describe ballis-
tic transport, their complexity disallows the description of real
sophisticated systems of the kind considered here. The model
proposed in this work resolves this problem since it uses only
band structure information which can be easily obtained from
the calculations of corresponding periodical system, whose
unit cell consists of the connected nanoparticle and the con-
ductive molecule. It was shown that for the systems under
study the plasmon frequency is determined by the expression
(23), which is similar to the one for bulk materials. Herewith,
the effective density of the conduction electrons becomes in
the present case significantly lower than the density of con-
duction electrons in the bulk material. It results in shifting
the modified plasmon frequency to the IR region. The strong
dependence of the modified plasmon frequency on the system
conductivity makes it possible to use such NP-COM-NP sys-
tems to build different chemical sensors which can be based
on a change in the conductivity of the conducting molecule
during its chemical interaction with external molecules. Such
an interaction can thus significantly change the conjugated
character of the π-bonding in the molecule and, therefore, its
conductivity. The conductivity directly changes the effective
mass and, according to (22), the plasmon frequency, that can
be easily measured. We believe that this new type of plas-
mons can have a unprecedented impact on the field of deep
tissue chemical sensing.
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