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Abstract - This article describes the electromagnetic field 

analytical model of magnetohydrodynamic (MHD) stirrer 

with nonsinusoidal current, built with the account of the 

longitudinal edge effect. The solution is obtained in the form 

of a Fourier series in a comprehensive way. Differential and 

integral properties of the system have been defined. There 

have been received differential and integral characteristics, 

which are the basis for building the power supply source and 

control systems for the liquid metal stirring process. 
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I. INTRODUCTION 

N RECENT YEARS there have increased production 

and consumption of aluminum-based alloys. The 

technology of multicomponent alloys preparation 

implements an important operation, which is the 

homogenization of chemical composition and temperature 

of the melt (liquid metal) in the full volume of the alloying 

furnace bath [1].   The use of MHD stirrers enables to 

automate the homogenization process, to reduce the 

preparation time and decrease the power consumed for the 

production of high-quality alloys [2-5]. 

Normally, the power of MHD stirrer is supplied through   

the low frequency sinusoidal voltage [2, 3].   However, 

currently, the development of power conversion equipment 

raises interest to the use of non-sinusoidal periodic voltage 

as power source for MHD stirrer. The non-sinusoidal 

voltage can take the form of a single-pole rectangular 

pulses, alternating rectangular pulses, triangular pulses or a 

sequence of pulses of a sinusoidal voltage. 

Currently, a number of studies have been completed on 

the effectiveness of using the non-sinusoidal pulse 

electromagnetic fields in the units designed for liquid metal 

stirring. In [6, 7]   there have been carried out numerical 

and experimental studies on the heat transfer of conductive 

liquid in low frequency pulse periodic electromagnetic 

field. In addition, a number of works are dedicated to the 

numerical [8, 9]   and experimental [10, 11]   study into 

ingot solidification process as exposed to the pulse periodic 

magnetic field. 

These works showed a specific advantage of using non-

sinusoidal periodic fields in the units designed for the 

electromagnetic stirring of melt. However, no theoretical 

study of the energy conversion process and the nature of 

electromagnetic fields distribution has been performed. 

This paper presents the analytical solution to the problem 

of the electromagnetic field distribution in MHD stirrer 

with nonsinusoidal periodic current, taking into account the 

longitudinal edge effect and the discrete distribution of 

linear current load. There have been identified differential 

and integral characteristics, which are the basis for building 

the power supply source and control systems. 

II. PROBLEM STATEMENT 

The sketch of the holding furnace with MHD stirrer 

installed under the bath bottom is presented in Fig. 1. 

Fig. 1 displays: 1 is alloying furnace bath; 2 is liquid 

metal (melt); 3 is electric heaters; 4 os polyphase winding 

of the inductor; 5 is inductor core; 

The length of the core 2 indL  , where   is the 

number of poles pairs; 
ind  is a polar pitch.  

When the multiphase (m-number of phases) winding is 

connected to the source of periodic sinusoidal or non-

sinusoidal voltage the inductor generates a travelling 

magnetic field. The speed of movement of the magnetic 

induction amplitude in the direction of the axis x  is equal 

to 
1 2u f , where f  is the current frequency in the 

winding of the inductor. Exposed to the travelling magnetic 

field, the melt starts to move with speed u  also in the 

direction of the axis x  performing the stirring of melt. 

 

Fig. 1. Sketch - alloying furnace with MHD stirrer 

I 
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Having adopted similar [4]   assumptions, we obtain the 

design model of the MHD stirrer presented in Fig. 2. 

 

Fig. 2. Design model of MHD stirrer 

Linear current density in the current sheet is defined as 

follows 

 
 

2

m m

m

m

W i t
j t




 ,                             

where  mi t ; mW  is the instantaneous current and a 

turning number in m  th seam. 

To obtain a travelling magnetic field in the inductor it is 

required to install in the inductor two or more windings that 

are supplied from the source with the same shape, 

frequency and voltages, phase-shifted relative to each 

other. Suppose that the inductor has M  seams and linear 

current load of each subsequent phase is phase-shifted 

relative to linear current load of the previous seam by the 

angle Т/М. Then, for the m th seam the linear current load 

will be determined in the range of 

2 2
m m

T T
t t t  ,                            

where 
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M
   . 

Thus, linear current density in the mth seam is defined as 

follows 
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Here 

22

T

A J Je 


  ;               

/L R  ;                              

2

U W
J

R 
  ;                           

where J is an amplitude of linear current density, A/m; T  -

period, s; L is the inductivity, H; R is the copper resistance, 

Ω; U  is the voltage amplitude, V ; W  -number of turns in 

the seam; 2  is the width of current sheet, m. 

Figure 3 displays graphs of voltage and linear current 

density at various  . 

 

Fig. 3 Graphs of instantaneous value of voltage and current linear density 

III. THEORY 

A. Electromagnetic field equations and boundary condition 

This model of electric- and magnetic -fields vector have 

the following elements:  

 , , y yЕ z x t e E ;  1,2 1,2 1,2, , x x z zH z x t e H e H  .    

Electric-field vector yE  satisfies the functions of 

equations [4]   (index “ y ” is omitted):  

in area 1, 0 z     
2 2

1 1

2 2
0

E E

z x

 
 

 
;                       (1) 

in area 2 
2 2 2

1 1 2 2
0 02 2

0
E E E E

u
t xz x

   
   

   
  

;  (2) 

where   is specific electrical conductivity of melt, 

1 1
Ohm m

 
 ; u  is the speed of melt movement, /m s ; 

7
0 4 10  
  H/m; t  is time, s. 

Below are the area boundary conditions that are found true: 

  01
,

0, ,

0

m
m m m m

j
 x x xE

x t t
z

  


  
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 


; (3) 

   1 2, , , ,E x t E x t   ;                     (4) 

   1 2, , , ,
E E

x t x t
z z

 
 

 
 

;                   (5) 

 2 , , 0E x t  .                           (6) 

B. Solving electromagnetic field equations 

The required functions  1,2 , ,E z x t  are periodical in 

time t  with the period T , thus, the solutions shall be 

searched as Fourier series of a complex form [12] 
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k
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where 
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T
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2
k

k

T
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We convert the differential equations (1), (2) and the 

boundary conditions (3) to (6) in compliance with (7) and 

(8). We multiply these expressions by function  
1

ki t
e

T


 

and integrate the resulting expressions by t  from 0  to T , 

in the result we obtain  
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Assuming that the required functions are periodical also 

in the coordinate x  with the period X , we can have the 

following 
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Similarly, we convert equations (9), (10) and the 

boundary conditions (11) to (14) in compliance with (15) 

and (16), in the result we obtain  
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2 2
kn n k 0 0 ni i u          ;                

02 k
kn kn

n

J
i N

X

 



 ;                       

   1 2

1

ˆ ˆ sin n m

M
i x

kn km km n m

m

N I I e
  



  ; 

Common solutions and are as follows 

1 1 2
n nz z

knE C e C e
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2 3 4
kn knz z

knE C e C e
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  .                (24) 

Having defined constant integrations 
1 4C C  from the 

boundary conditions (19) to (22) and having input them in 

(23) and (24), we make some simple transformations and 

obtain 
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 
 
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e
E z

Q
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

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Here 

     kn n n kn nG z ch z sh z          ;  

kn n n kn nQ sh ch        . 

Given (7) and (15), we apply Euler formula and 

determine the real part. We obtain the following for area 1 
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   
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C. Differential and integral properties 

Maxwell equation allows to define the vertical 

component of magnetic induction 

 
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   
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.     

Instantaneous electromagnetic (EM) power generated in 

the inductor winding is equal to 
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where 

   ˆ /j t j t J ; 
knm n m knx    .               

Instantaneous EM force acting on the winding of the 

inductor is defined by expression 

     
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We find the average values for the period of EM force 

and power in the relative units, taking the following as 

basic values 
2 2

0

2

4
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l J
P

T

 


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2
0

2
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The average EM power and force for the period are 
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    

 
;              

ˆ /X X  .                                  

IV. DISCUSSION OF RESULTS 

Fig. 4 shows the graph of instantaneous value 

distribution for the relative magnetic induction density 

within the slot (πBz1/4μ0J). Tooth and slot ripples emerge 

on the inductor surface, however, their manifestation on the 

melt surface is reducing. In addition, the non-sinusoidal 

supply voltage affects the dynamics of distribution for the 

travelling magnetic field but does not affect the nature of 

its distribution in the gap. 

Fig. 5 shows the graphs of instantaneous EM force and 

power for the period. The force and power modify with a 

double frequency, but their form is not sinusoidal and is 

characterized by moments of sharp decline and increase in 

the amplitude. Such a character of EM force change makes 

it possible to generate the impulse mechanical effect in the 

melt, which allows to perform stirring and homogenization 

at the level of microinhomogeneities. 
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Fig. 4 Graph of distribution for the instantaneous relative magnetic 
induction in the gap taking into account the longitudinal edge effect for 

t=0, τ=0.05T, s=1, ε=3.6 

 

Fig. 5 Graph of instantaneous relative EM force (solid line) and power 
(dotted line) during the period taking into account the longitudinal edge 

effect τ=0.05T, s=1, ε=3.6 

Fig. 6 and 7 give the relations of the average values for 

the period of EM power and force obtained from sliding at 

different values of Q factor ε. As can be seen from Figure 

6, the non-sinusoidal nature of the supply voltage has a 

minor impact on the energy characteristic, while the curves 

shape is close in nature to the case of MHD stirrer with a 

classic sinusoidal power supply [4].   The nature of the 

mechanical characteristics curves in Fig. 7 differs 

substantially from the case of sinusoidal power supply. 

During the metal acceleration (s≤0.2), the EM force 

changes its direction at specific values of Q factor ε. This 

nature is due to the interaction of the induced current of 

moving melt with the higher harmonics of the inductor 

magnetic field. 

 

Fig. 6 Relation of relative EM power from sliding average for the period 
taking into account the longitudinal edge effect for τ=0.05T 

 

Fig. 7 Relation of relative EM force from sliding average for the period 

taking into account the longitudinal edge effect for τ=0.05T 

VI. FINDINGS AND CONCLUSIONS 

1. The 2D design model has been built to analyze the 

electromagnetic field and electromagnetic characteristics of 

MHD stirrer of liquid metal with non sinusoidal current.  

2. The application of double integral conversions using 

Fourier series with complex coefficients enabled to obtain 

analytical expressions for electromagnetic fields vectors 

and electromagnetic characteristics of MHD stirrer. 

3. The analysis has been completed on the magnetic 

induction distribution in the device gap, instantaneous EM 

power and force for the period non sinusoidal current. The 

results obtained can be used to eliminate inhomogeneities 

in the process of multi-component aluminum alloys 

production. 

4. The obtained integral characteristics for power and 

force can be used to develop a power source and stirring 

process control systems. 
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