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Abstract: Nanocomposite membranes have been actively developed in the last decade. The involvement
of nanostructures can improve the permeability, selectivity, and anti-fouling properties of a membrane for
improved filtration processes. In this work, we propose a novel type of ion-selective Glass/Au composite
membrane based on porous glass (PG), which combines the advantages of porous media and promising
selective properties. The latter are achieved by depositing gold nanoparticles into the membrane pores
by the laser-induced liquid phase chemical deposition technique. Inside the pores, gold nanoparticles
with an average diameter 25 nm were formed, which was confirmed by optical and microscopic studies.
To study the transport and selective properties of the PG/Au composite membrane, the potentiometric
method was applied. The uniform potential model was used to determine the surface charge from the
experimental data. It was found that the formation of gold nanoparticles inside membrane pores leads
to an increase in the surface charge from −2.75 mC/m2 to −5.42 mC/m2. The methods proposed in
this work allow the creation of a whole family of composite materials based on porous glasses. In this
case, conceptually, the synthesis of these materials will differ only in the selection of initial precursors.

Keywords: porous glass; membrane; gold nanoparticles; laser synthesis; ion transport; modelling

1. Introduction

Due to development of modern technologies, the number of studies of ion transport in membranes
has increased significantly in recent years. In turn, membrane technologies have found applications
in important fields of science and industry, such as water treatment [1,2]; separation of mixtures
and production of pure substances [3,4]; electrochemical energy conversion and storage devices [5,6];
chemical sensors and biosensors [7]; microfluidics and bioengineering [8,9]; etc. Despite the huge
potential of membrane applications, there is a number of factors limiting their use, for example, separation
capability (rejection), fouling, and flux decline. Therefore, it is necessary to control the transport and
selective properties of a membrane in order to preserve it from any influence caused by these limitations.
There are two main ways to affect the membrane’s selective properties: changing the structure of
pores (the geometry and physico-chemical properties of the surface) [10,11], including using composite
membranes [12]) or external exposure (transmembrane potential, external electric fields [13–15], pH of
the solution [16], temperature, radiation, etc.).
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Nanocomposite membranes have been actively developed in the last decade [17]. The involvement of
nanostructures can improve the permeability, selectivity, and anti-fouling properties of a membrane for
improved filtration processes. One of the most promising approaches to producing such composite materials
is the formation of nanoparticles inside the porous structure of a membrane. As with nanotechnology in
general [18], there are two main methods [17] for the formation of nanoparticles inside the membranous
pores: “top down”—bulk modification through blending (called mixed-matrix membranes) and “bottom
up”—surface modification. In the fabrication of bulk-modified nanocomposite membranes, the nanoparticles
are dispersed in a homogeneous polymeric precursor solution before the final formation process [19].
However, this method is difficult to use, for example, in the synthesis of inorganic solid membranes.
The surface modification technique is the most convenient method in this case [11]. The surface modification
technique deals with deposition of nanoparticles onto a membrane.

Silicate (high silica) porous glasses (PGs) are channel-type nanostructures [20] with thermal, chemical
and microbiological stability, in combination with controlled surface structural characteristics [21–23].
Special attention is worth paying to the PG application for the separation of liquid mixtures by reverse
osmosis. This method has found application in water desalination, sanitary household water cleaning,
water regeneration from vital function products in space, radioactive salt concentrations, etc. The use of
PG materials appears to be rather efficient in medical applications [24,25] (for instance, PG membranes
can be used as hemofilters and in an artificial kidney apparatus). PGs can be filled in with different
substances, including metal nanoparticles or nanostructures, and/or exposed to laser radiation to ensure
their application in optics, microelectronics, microfluidics, sensorics, solar engineering, ecology, etc.
(see [26–32] and the reviews in them).

One of the main advantages of PG materials is their transparency in the visible range of the optical
spectrum [33]. This property can be successfully used in various applications related to laser methods,
for example, the method of laser-induced chemical liquid-phase deposition of metals from solution on
the surface of different dielectrics (LCLD) [34]. Indeed, in this simple and reliable method, the metal
reduction reaction proceeds in the local volume of a solution within the focus of the laser beam, resulting
in the formation of catalytically and electrocatalytically active micro- and nanostructured metallic and
bimetallic materials with a highly developed surface area. In this regard, the high catalytic activity
of the manufactured metal structures can be explained by their highly porous nature. Moreover, in
contrast to many other analogs, LCLD makes it possible to synthesize metal nanoparticles continuously
from a solution containing a salt of the metal of interest, directly in the reaction mixture, almost without
changing its composition. Thus, it is possible to produce different micro- and nanostructures based on
copper, nickel, cobalt, iridium, gold, platinum, ruthenium and other metals of nanoparticles of various
types (monometallic, bimetallic and metal oxides) by changing physical parameters (laser power, laser
pulse duration, laser wavelength, scanning speed, etc.) along with the composition and structure of the
solution components [35–38]. Another merit of LCLD is the opportunity to form metal nanoparticles
on the dielectric surfaces, for example, glass or glass-ceramics [39]. In this way, one can fabricate
composite membranes with unique properties, combining PG materials and the LCLD technique.

In the present work, gold is chosen as the metal that we deposit into the membrane pores by
LCLD. First, gold, like silica, is a biologically and chemically inert material, so there is the prospect of
applying our results in medical applications. Second, Au nanoparticles have plasmon resonance in the
visible part of the optical spectrum, which opens up possibilities for using the obtained materials in
the field of supersensitive sensors [40].

The main goal of this work is to synthesize porous glass composite membranes with Au nanoparticles
inside the pores (PG/Au composite membrane) by the laser-induced method and to study their ionic
transport properties in the model solutions. These studies will provide better understanding of how
the composition of composite membranes affects their properties.
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2. Materials and Methods

2.1. PG Material Synthesis

Porous glass (PG) samples (in the form of plane-parallel polished plates 10 × 10 × 1.0 mm3 in size)
have been prepared by chemical etching of phase-separated sodium borosilicate glass of the following
composition (as-analyzed, wt.%): 6.74 Na2O, 20.52 B2O3, 0.15 Al2O3, 72.59 SiO2, with two-frame
structure in 3 M HCl and 0.5 M KOH solutions consistently, with subsequent washing in distilled
water and drying at 120 ◦C in an air atmosphere, as described in [41,42]. For studying the porous space
parameters, the classical method of equilibrium adsorption and desorption isotherms of nitrogen at
77 K was used. The PG samples’ porosity and average pore diameter were ~0.5 (cm3/cm3) and 25 nm
respectively [43]. Figure 1a shows a typical scanning electron microscopic (SEM) image of a porous
glass microstructure, which is a system of tortuosity channels, the material porosity in this case was
52–56%. The porous glasses were manufactured at the Grebenshchikov Institute of Silicate Chemistry
of the Russian Academy of Sciences (State Assignment, project no. 0097-2019-0015).
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Figure 1. (a) Scanning electron microscope image of a porous glass surface; (b) Experimental setup
for LCLD.

2.2. Laser-Induced Liquid Phase Chemical Deposition Process

The experimental scheme shown in Figure 1b was used to form gold nanoparticles by the method
of laser-induced chemical liquid-phase deposition of metals from solution (LCLD). The laser beam,
reflected in collimating mirrors, enters the beam splitting cube, travels through the focusing system,
and is focused on the boundary region between the solution and the sample in the experimental cell,
where the photochemical reaction takes place. Then, a portion of the beam reflected from the cell
surface is returned to the beam splitter, and subsequently enters the web camera, which controls the
focusing process and the reaction in real time. The sample and working solution are placed on the
computer-controlled motorized stage. To obtain a homogeneous distribution of the deposition on
the sample, a scattering lens with a focal length of 50 mm was used as the objective. The samples
were irradiated using a MATRIX pulsed laser (Coherent, Inc. Santa Clara, California, USA) with a
diode pump with a wavelength of 355 nm, operating in the single-mode regime, which allows the
generation of radiation in a wide power range [44]. The duration of the optical pulses was 25 ns, and the
frequency was 2000 Hz. The laser radiation power on the sample was 0.3 watts. For the synthesis of
gold nanoparticles, a solution of hydrochloric acid (HAuCl4 3H2O, Sigma-Oldrich, St. Louis, Missouri,
USA) in water was used as a working solution. Typical concentration values were 1–5 mM.

The diagram (Figure 1b) shows the “solution side” irradiation geometry of the sample. In this
case, there are several millimeters of solution above the surface of the sample. However, as our research
has shown, this is not the most optimal option for placing the sample. Here, some energy is lost to
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photochemical reactions in the bulk of the solution. In the case of a heterogeneous photochemical
reaction, it is much more efficient to apply the “sample side” lighting geometry (see insert Figure 1b).

2.3. Microscopic and Optical Measurement

Scanning electron microscopy (SEM) was used to investigate the morphology of the obtained PG
membrane samples. A Merlin (Zeiss, Oberkochen, Gemany) scanning electron microscope with field
emission cathode, GEMINI-II electron optics column and oil-free vacuum system was used to get surface
images. In addition to the In-lens SE and SE2 secondary electron detectors, the microscope is equipped
with a four-quadrant back-scattered electron (AsB) detector and an energy-filtered back-scattered
electron (EsB) detector. To determine the elemental composition of the obtained samples, the INCAx-act
X-ray microanalysis system (Oxford Instruments, Abingdon, United Kingdom) was used. This method
makes it possible to qualitatively determine the composition of the investigated surface from the
microscopic region.

The optical properties of the obtained samples were studied on a Lambda 1050 instrument
(Perkin Elmer, Waltham, Massachusetts, USA). This spectrophotometer is a dual-beam scanning
spectrophotometer with a double monochromator. It allows precision measurements in the 175–3300-nm
wavelength range of the following optical characteristics: optical density; reflection and transmission
coefficients of liquid and solid substances and materials, including light-scattering inorganic, organic
and biological objects.

2.4. Ionic Selectivity Measurement

The ion perms electivity of the prepared membranes was studied by measuring the potential
difference between two electrolyte solutions with different concentrations separated by a membrane
at zero current. The scheme of the experimental setup is shown in Figure 2. The laboratory-made
electrochemical cell consists of two compartments, between which the membrane is clamped with
the help of connection rods and nuts. The cell is made of optically transparent epoxy-based plastic.
The sides of compartments facing the membrane are equipped with rubber gaskets. In each of the
half-cells, an agar salt bridge connected to the reference 4.2 M Ag/AgCl electrode is located. Salt bridges
are necessary for preventing changes of salt concentration in the working solutions. Electrodes are
connected to the input of a potentsiostat, which is used as a millivoltmeter in the present configuration
(see Figure 2). The potentiostat P-20X (Electrochemical Instruments Ltd., Chernogolovka, Russia)
measures the electromotive force (EMF) of the cell in “broken circuit potential measurement” mode.
The input impedance of this device is 1011 Ω. To prevent the electrical noise, the cell and electrodes are
shielded in a metallic box. The system has a common ground closed on the box. In order to eliminate
the effect of concentration polarization, in both half-cells, the working solution was pumped using
a BT300 (LeadFluid, Baoding, China) peristatic pump with two-channel head (DT15-24, LeadFluid).
The flow rate was 10–30 mL/min. The total volume of pumped solution for each of the half cells is
500 mL. The volume of each half-cells was 8 cm3.

The measurements were performed in KCl aqueous solution. First, the solution with fixed
concentration was placed in both half-cells. The system was kept at a room temperature of 25 ◦C
during 1 h. The measurements were performed by increasing the concentration of KCl in one of the
half-cells by consecutive addition of the KCl concentrate (1 M or 3.5 M). The cell EMF was measured
continuously throughout the experiment. After each series of experiments, the membrane was placed
in deionized water for 24 h to remove the rest of the electrolyte solution from the pores. Measurements
for a number of membrane samples produced under the same synthesis conditions demonstrated
good reproducibility.
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2.5. Mathematical Model

The theoretical description of experimental results for ion transport through the membranes
is performed with the help of the uniform potential model, which is based on the Navier–Stokes,
Nernst–Planck, and Poisson equations [45,46]. The main assumptions of the model, problem statement,
and calculation procedure are described below.

Let us consider a membrane, which separates two reservoirs with different concentrations CL and
CR of symmetric and monovalent (1:1) aqueous electrolyte (CL ≥ CR). The electrolyte diffuses from the
reservoir with a higher concentration to that with a lower concentration. The reservoirs are maintained
at equal constant pressures (PL = PR), and there is no electric current between them. It is assumed
that the membrane surface is charged, and the surface charge density is denoted by σ.

The potential difference between the reservoirs, which develops due to selective ion transport through
the pore at zero current, is denoted by ∆Φ = ΦR −ΦL. The magnitude and sign of ∆Φ characterizes the
ionic selectivity of the membrane. The case ∆Φ > 0 corresponds to the cation-selective membrane, while
∆Φ < 0 is related to the anion-selective membrane (strictly speaking, this is valid when the ions have
the same diffusion coefficients; otherwise, the diffusion potential can contribute the total membrane
potential) [11,47]. The value of membrane potential for the case of an ideally selective membrane is
given by the formula [48]:

∆Φ±I = ±
RgT

F
ln

CL

CR
, (1)

where Rg is the universal gas constant, T is the temperature, and F is the Faraday constant. The “+” sign
corresponds to the cation-selective membrane, and the “–” sign corresponds to the anion-selective membrane.

The membrane is considered as an array of unidirectional cylindrical pores with radius R and
length L. Within this approach, it is sufficient to construct a mathematical model of ion transport in a
single pore. When such a model is applied to a porous membrane, the average radius calculated from
the pore size distribution can be taken as the pore radius in the model. Further, it is assumed that the
electric potential Φ, ion concentration C±, and pressure P are uniform in each cross-section of the pore,



Materials 2020, 13, 1767 6 of 16

so they are functions of coordinate zdirected along the pore. This assumption is valid when the pore
radius is comparable or less than the Debye length determined by

λ =

√
εε0RgT

2S′F2 , (2)

where CR ≤ C′ ≤ CL is the electrolyte concentration, ε0 is the dielectric constant, and ε is relative
dielectric permittivity.

Let us define the solvent volume flux (velocity) U, the ion fluxes J±, the total ion flux J = J+ + J−,
and the ionic charge flux I = J+ − J−. The dimensionless variables are introduced as follows

Z = Lz, Φ =
RgT

F φ, C± = C0 c±, P = C0RgT p,
U =

D+
L u, J = D+C0

L j, I = D+C0
L i.

(3)

Here, D+ and D− are the diffusion coefficients of the cation and anion, respectively, and C0 is the
characteristic concentration value (hereafter, it is assumed to be 1 mol/m3). The dimensionless volume
charge density equivalent to the surface charge density σ is defined by

X =
2σ

C0FR
. (4)

The latter is equal in magnitude and opposite in sign to the ionic volume charge density c = c+ − c−
due to the electroneutrality condition

X = c− − c+. (5)

The equations of the homogeneous potential model have the form [45,46]

u =
1

8α

[
−

dp
dz

+ X
dφ
dz

]
, (6)

j = cu +
1
2

[
−(D + 1)

dc
dz

+ (X(D + 1) + c(D− 1))
dφ
dz

]
, (7)

i = −Xu +
1
2

[
(D− 1)

dc
dz
− (c(D + 1) + X(D− 1))

dφ
dz

]
. (8)

Here, c = c+ + c− is the total concentration of cations and anions; D = D−/D+ is the ratio of ion
diffusion coefficients, and α = µD+(C0RgTR2)

−1 is the dimensionless parameter determined by the
viscosity of the solution. Equations (6)–(8) can be solved with respect to the derivatives dp/dz, dc/dz,
dφ/dz to obtain a system of three differential equations. These equations are derived from full 2D
Navier–Stokes, Nernst–Planck, and Poisson equations, which are simplified by taking into account the
pore geometry (R << L) and assuming that all quantities are uniform in the pore cross-section, see [46]
for the details. Equations (6)–(8) relate the volume flux u, total ion flux j, and ionic charge flux i to the
pressure, concentration, and potential gradients.

Consider the case of zero ion current through the pore (i = 0). Without loss of generality, we assume
that the potential in the left reservoir with higher concentration is zero, so the potential in the right
reservoir with lower concentration coincides with the membrane potential at zero current ∆Φ (at the
same time, ∆φ is the corresponding dimensionless value). Further, the pressure in both reservoirs is
considered to be zero. We write the conditions inside the pore at the inlet from the side of the reservoir
with a higher concentration (at z = 0) [45,46]:

p(0) = c(0) − 2cL, (9)

c(0) =
√

X2 + 4c2
L, (10)
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φ(0) = φ0. (11)

Here, φ0 is the Donnan potential jump at the pore inlet. The corresponding concentrations and
osmotic pressure jumps are described by conditions (9) and (10). Given that c±(0) = cL exp(∓φ0),
and substituting these equations in (5), we obtain the equation to determine the potential φ0

X = 2cLsinhφ0. (12)

We now write the conditions inside the pore at the outlet from the side of the reservoir with a
lower concentration (at z = 1):

p(1) = c(1) − 2cR, (13)

c(1) =
√

X2 + 4c2
R, (14)

φ(1) = φ1. (15)

The difference between osmotic pressure jumps, just at the pore outlet (z = 1) and pore inlet
(z = 0), results in an osmotic pressure gradient (first term in the right-hand side of Equation (6)), which
drives the osmotic flow from the reservoir with lower salt concentration to the reservoir with higher
salt concentration. The flow can be also driven by electroosmosis, which results from the impact of the
electric field on the uncompensated ionic charge (second term in the right-hand side of Equation (6)).

The relation similar to Equation (12) at z = 1 has the form

X = 2cRsinh(φ1 − ∆φ).

and allows us to determine the membrane potential at zero current:

∆φ = φ1 − arcsinh
( X

2cR

)
. (16)

The problem is solved numerically as follows. First, the initial approximations for fluxes u and j
are set. Then, the potential φ0 is determined from (12), and boundary conditions (9)–(11) are set at
z = 0. Then, differential Equations (6)–(8) are integrated numerically using the Runge–Kutta–Merson
method of 5th order from z = 0 to z = 1. The values of fluxes u and j are corrected in order to satisfy
boundary conditions (13) and (14) and used for integration of equations at the next step. The iterations
are performed until the values of fluxes converge to some constant values with required accuracy.
Finally, the membrane potential is calculated from (16).

It should be noted that, when the pore radius is larger than the Debye length (2), the assumption
of uniform potential and ion concentrations in the pore cross-section is no longer valid. However, the
increase in pore radius decreases the effective volume charge (4), thus the pore size effects can still be
described by the presented uniform potential (UP) model. Comparison between values of membrane
potential between uniform potential (1D) and space charge (2D) models [11,49] shows good agreement,
even when the pore radius exceeds the Debye length.

The described model is valid when the concentrations CL and CR are maintained just at the
membrane surface. Experimentally, it is provided by pumping the solutions through half-cells
separated by the membrane (see Figure 2). However, at high concentration differences between the
cells, the enhanced diffusion flux leads to the formation of concentration boundary layers (BL) near the
membrane surface. At the high (low) concentration side, the concentration just near the membrane
decreases (increases), so the effective concentration difference is reduced. In this work, we will employ
the presented model for describing the experimental data at relatively low concentration differences
between half-cells (i.e., when the effect of boundary layers on the membrane potential is weak; see
Section 3.2).



Materials 2020, 13, 1767 8 of 16

The fitting of the measured experimental data to the theoretical model is performed by minimizing
the sum of squared errors between the theoretical and experimental points. For a one-parameter
fitting, the golden section method is used, while for multi-parameter fitting the Nelder–Mead method
is employed.

3. Results and Discussion

3.1. Glass/Au Composite Membranes Synthesis and Analysis

In the first stage of the study, experiments were carried out to synthesize gold nanoparticles on the
smooth surface of the cover glass to better understand the processes of laser synthesis. For this reason,
an aqueous solution of chloroauric acid (HAuCl4 + H2O) was prepared. It is known that chloroauric
acid completely dissociates in water into ions H+ and [AuCl4]−. This working solution is quite stable
and can be stored in a dark place for a long time. Our studies have shown that the absorption spectrum
of this solution in the visible region of the optical spectrum remains unchanged for at least a month.
This means that photochemical reactions with the formation of complexes do not take place in solution.
Thus, the concentration of ions remains constant. It is also known [50] that the addition of acetone to a
solution can lead to a more ordered synthesis of nanoparticles. However, in our case, the addition
of even a small amount of acetone (100 µL per 100 mL of solution) led to rapid degradation of the
solution. The solution was dark, and precipitate was observed within 5–10 h. All further experiments
were carried out only in aqueous solution.

Typical SEM images of gold nanoparticles obtained by LCLD method on the surface of the cover
glass are shown in Figure 3. From the presented images, it can be seen that at low concentrations
of the precursor (1 mM) triangular, round and wire single crystal gold nanoparticles are formed.
Characteristic particle sizes correspond to 50 nm (in one direction). When the exposure time is increased,
the particles are “collected” into a new type—stars (Figure 3c) indicating some level of mobility of the
particles on the surface during synthesis. Increasing the concentration of the precursor to 5 mM and the
synthesis time leads to the formation of irregular precipitates and loss of crystal structure (Figure 3d).

The mechanism of nanoparticle formation from an aqueous gold tetrachlorourate solution is well
studied [51–53]. It can be described by several simple equations:

(HAu3+Cl4)→(HAu3+Cl4) under hν, (17)

(HAu2+Cl4)→(HAu2+Cl3···Cl), (18)

(HAu2+Cl3···Cl)→HAu2+Cl3 + Cl, (19)

2HAu2+Cl3→HAu3+Cl4 + HAu+Cl2, (20)

HAu+Cl2→Au0 + HCl + Cl under hν, (21)

nAu0
→(Au0)n, (22)

During irradiation by UV light (353 nm), the excited Au3+ forms the caged Au2+ complex
(Equations (17) and (18)). This complex then dissociates (Equation (19)) and the unstable Au2+ quickly
disproportionates to form Au+ and Au3+ (Equation (20)). Au+ absorbs another photon to form Au0

(Equation (21)). Au0 associates to form nuclei and the AuNPs (Equation (22)). We assume that, at
the final stage of the particle formation process, Au+ is adsorbed onto the glass surface and particle
formation occurs. It is important to note that the glass surface is charged negatively in an aqueous
solution [54]. On the other hand, in contrast to works [55,56] where complex, multicomponent
mixtures are used as precursors, we use a simple two-component working solution in the nanoparticle
synthesis technique.
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At the next stage, the described nanoparticle synthesis technique was applied to form gold
particles inside the pores of PG membranes. Initially, the synthesis was carried out in “solution side”
irradiation geometry. It was assumed that particle synthesis would occur uniformly throughout the
membrane when the membrane was immersed in in a cell with a working solution. However, the
microscopy studies of the membrane cross-section (see Figure 4a) showed that with this configuration of
the experimental setup, particles are formed predominantly in the near-surface layers of the membrane.
This fact is explained by the intensity of the chemical reaction, and, as a result, the significant absorption
of laser radiation in the near-surface layer. In other words, all light flux energy is absorbed at the front
edge of the membrane.

In order to obtain samples with a homogeneous distribution of gold particles within the PG - membranes,
the following synthesis procedure was proposed. Initially, the PG membrane was impregnated with
1 mM aqueous solution of chloroauric acid (HAuCl4 + H2O) for 20 min. The impregnation time
may vary, but long-term impregnation has been shown to improve the result. Next, the membrane
was placed on a glass slide, which was fixed on an object stage. It is important to note that the use
of metal devices and tweezers in the process of transporting and manipulating the membrane is
impossible, because the metal surface has a high chemical activity in the working solution. The stage
was located 4 cm from the objective lens, which scattered the laser radiation reflected from beam
splitter (see Figure 1b). The laser spot was pre-tuned on an empty stage, after which a shutter blocking
radiation was placed. After positioning the sample, the shutter opened, and the sample was illuminated
by laser irradiation for 1 min. Optimal parameters of optical radiation: wavelength 355 nm; pulse time
20 ns; pulse frequency 2000 Hz; radiation power 0.3 watts. After irradiation, the sample was again
immersed in the working solution for impregnation for 20 min. The whole procedure was repeated
15 times. It should be emphasized that the sample was turned over with respect to radiation every
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two stages of synthesis. Thus, the membrane was irradiated on both sides. An important difference
between such a synthesis scheme and the one described above is that in this case the sample does
not sink to the bottom of the cell filled with the solution. The entire solution is contained within the
membrane. There is no radiation-absorbing solution layer above the membrane surface. Thus, the
formation of particles in the near-surface layer is not observed. Figure 4a shows typical images of the
cross-section of the PG membrane obtained by this procedure. Gold nanoparticles look like bright
white dots (see Figure 4c,d). There is a uniform distribution of particles over the membrane volume.
The resulting PG/Au composite membrane acquires a purple color (Figure 4b), which is explained by
the plasmonic properties of gold nanoparticles.Materials 2020, 13, x FOR PEER REVIEW 10 of 17 
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To determine the qualitative composition of the synthesized composite, an X-ray surface microanalysis
was performed. A typical spectrum of membrane cross-section is shown in Figure 5a. Pronounced
peaks corresponding to silicon, oxygen and gold can be observed on the spectrum, which proves the
golden nature of the nanoparticles. Additionally, optical absorption spectra of the obtained composites
were recorded. The absorption spectra show a broad peak with a maximum at a wavelength of about
580 nm. According to published data [57,58], such absorption is characteristic of particles with an
average diameter of 20–30 nm, which confirms the SEM data. It should be noted that the average pore
size in the PG membrane is 25 nm, so the average size of gold nanoparticles cannot exceed this value.
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3.2. Study of Ion Transport Properties of the Glass/Au Composite Membranes

We have studied the ionic selectivity of PG membrane and PG/Au composite membranes by
measuring the potential difference between two half-cells with different KCl concentrations at zero
current (Figure 2). The concentration (CR) in one half-cell was fixed at 1 mM, while the concentration
in another half-cell (CL) was varied from 1 mM up to 3.5 M. Thus, the dependence of the membrane
potential on the logarithm of the ratio of solution concentrations on both sides of the membrane was
measured (see Figure 6). The black line in Figure 6 is related to (Equation (1)) and describes the case of
an ideal cation-selective membrane.
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The contact of a PG membrane with an electrolyte leads to the formation of surface charge by
adsorption of ions to the membrane surface. As a result, the membrane acquires ionic selectivity
provided that the pore radius is comparable with the Debye length (the latter is 9.6 nm for concentration
of 1 mM). The PG membranes prepared in this work consist of SiO2, the surface charge of which is
determined by the solution pH. The latter was 6–7 during the measurements. In this case, the negative
charge should accumulate on the surface of silica due to adsorption of anions [54,59]. Therefore, one
can expect that PG membranes would be cation-selective.

The results for the PG membrane presented in Figure 6 show that the potential difference between
half-cells with low and high electrolyte concentration is positive. It means that the membrane is cation
selective. The absolute value of the membrane potential first increases with the increase in concentration
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ratio, then reaches maximum, and finally decreases. The decrease of membrane potential at high
concentration differences can be explained by the strong diffusion, which leads to the formation of
concentration boundary layers near the membrane, and, consequently, a decrease in the effective
concentration difference. Due to non-linear dependence of PG membrane potential on the logarithm of
concentration ratio, the transference numbers for cations and anions strongly depend on concentration.
To calculate the membrane surface charge density, the 1D UP model (6)–(16) was used. In all calculations,
the following parameter values were used: pore radius 12.5 nm; pore length 500 µm; temperature
298.5 K; solution viscosity 0.89 mPa s. The remaining parameters are reference data. The surface
charge determined for the PG membrane was −2.38 mC/m2. It should be noted that the 1D UP model
describes experimental data only at low concentrations (logCL/CR < 1.5) (see the blue line in Figure 6),
where the influence of concentration boundary layers is weak. To an adequately describe the entire
data set, a modified model with boundary layers should be used. The surface charge values for all
membranes are shown in Table 1.

The deposition of Au nanoparticles into the PG membranes pore changes the interaction of membrane
surface with the electrolyte solution. It is known that chlorine ions are adsorbed on the surface of gold
in aqueous solutions of potassium and sodium chlorides [60]. Thus, due to the formation of gold
nanoparticles, the value of the negative charge of the double electric layer inside the pores of the PG/Au
composite membrane should increase, and the membrane should become more selective. We observed
this result in the experiment (see Figure 6). The maximum value of the membrane potential for the
PG/Au composite membrane was near 58 mV, while for the PG membrane it was only 30 mV. For the
theoretical description of the experimental data, the 1D UP model was used. As in the case of the PG
membrane, a considered model works only in the low concentration range for a PG/Au composite
membrane (logCL/CR < 2.0). The calculated surface charge in this case was −5.42 mC/m2. Thus, we
can conclude that the synthesis of gold nanoparticles inside the pores of the PG membrane leads to
the increase in membrane surface charge density by about two times, and, consequently, enhances
their selectivity.

Table 1. Surface charge and diffusion boundary layer thickness calculated by different models for the
studied membranes.

Membrane Type Model Surface Charge

PG membrane 1D UP model −2.36 mC/m2

PG/Au composite membrane 1D UP model −5.42 mC/m2

4. Conclusions

In this work, we have proposed a novel type of ion-selective Glass/Au composite membrane
based on porous glass, which combines the advantages of porous media and promising selective
properties. The latter are achieved by depositing gold nanoparticles into the membrane pores by
the laser-induced liquid phase chemical deposition technique. It was shown that it is possible to
deposit gold nanoparticles on a glass surface using a simple set of reagents and a simple experimental
technique. For the synthesis of PG/Au composite membranes, we used PG materials with porosity
of 0.5 (cm3/cm3) and average pore diameter of 25 nm. Inside the pores, gold nanoparticles with an
average diameter of 25 nm were formed, which was confirmed by optical and microscopic studies.

To study the transport and selective properties, the potentiometric method was applied using
an electrochemical cell separated by a membrane into two halves. The membrane potentials of the
synthesized samples were measured. The maximum value of the membrane potential for the PG/Au
composite membrane was near 58 mV, while for the PG membrane it was only 30 mV. The theoretical
description of experimental results on ion transport through the membranes was performed with
the help of 1D Uniform potential (UP) model, which is based on the Navier–Stokes, Nernst–Planck,
and Poisson equations. It was calculated that the formation of gold nanoparticles inside the membrane
pores leads to an increase in the surface charge from −2.75 mC/m2 to −5.42 mC/m2.
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The methods proposed in this work allow the creation of a whole family of composite materials
based on porous glasses. In this case, conceptually, the synthesis of these materials will differ only in
the selection of initial precursors. The potential applications of produced PG/Au composite membranes
include nano- and ultrafiltration as well as separation of charged species.
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Notation List

Dimensionless quantities are given brackets along with the corresponding dimensional ones.

Φ (φ) electrical potential, V
C (c) ion concentration, mol/m3

P (p) pressure, Pa
Z (z) space coordinate, m
U (u) volume flux (velocity), m/s
J ( j) ion flux, mol/m2 s
I (i) charge flux, mol/m2 s
∆Φ (∆φ) potential difference, V
F Faraday constant, C/mol
T temperature, K
Rg universal gas constant, J/kg K
ε relative dielectric permittivity
ε0 vacuum permittivity, F/m
λ Debye length, m
σ surface charge, C/m2

X volume charge, mol/m3

D± ion diffusion coefficients, m2/s
D ratio of ion diffusion coefficients D = D−/D+

C0 characteristic concentration, 1 mol/m3

R pore radius, m
L pore length, m
α dimensionless parameter
Subscripts
+ cation
– anion
L left reservoir
R right reservoir
I ideal
0 pore inlet
1 pore outlet
Superscripts
+ cation selectivity
– anion selectivity
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