

* Corresponding author. Tel.: +7-963-958-9649

E-mail address: msaramud@sfu-kras.ru

Peer review under responsibility of xxxxx.

xxxx-xxxx/$ – see front matter © 2014 xxxxxxxx. Hosting by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.aebj.2014.10.012

Simulation environment for the choice of the decision making algorithm

in multi-version real-time system

Igor V. Kovalev
a,b

, Mikhail V. Saramud
a,b*

, Vasiliy V. Losev
b

aSiberian Federal University, 79 Svobodny avenue, Krasnoyarsk, 660041, Russian Federation
bReshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy Av. 31, Krasnoyarsk, 660037, Russian Federation

A R T I C L E I N F O

Article history:

Received 00 December 00

Received in revised form 00 January 00

Accepted 00 February 00

Keywords:

Multi-version

Fault tolerance

Quality assurance

Reliability

Voting algorithms

Simulation modeling

A B S T R A C T

Context: Nowadays the most effective way to improve the reliability of software is an approach with the

introduction of software redundancy - multi-version programming. The reliability of a multi-version

system is determined not only by the reliability of the versions that make it up, but to a greater degree by

the decision making algorithm.

Objective: Our objective is evaluation and selection of the most reliable voting algorithms in multi-version

environments. In order to get this objective there is a need to check all the algorithms in the execution

environment, simulating characteristic of the developed system. Thus, we obtain the characteristics of the

quality of the algorithm operation in precisely those conditions in which it will work in the system that is

developed.

Method: The article suggests weighted voting algorithms with a forgetting element, as well as

modifications of existing voting algorithms. To be able to check the quality of their work, the simulation

environment has been implemented that simulates the operation of the software multi-version execution

environment.

Results: The article substantiates the use of the most reliable decision making algorithms in the decision

block of the real-time operating system. A comparative analysis of decision making algorithms for the

operation of the decision making block of the multi-version real-time execution environment has been

carried out.

Conclusions: The software implementation of the simulation environment that implements the

simulations of versions with given characteristics is considered, not only classical decision making

algorithms, but also the author's modifications are investigated. The environment allows to obtain the

quality characteristics of all implemented decision making algorithms with given system characteristics.

The modeling results are considered, the dependence of the system reliability indicators on its input

parameters is shown, a comparative analysis of various decision making algorithms based on the modeling

results is made.

1. Introduction

Nowadays the most effective way to improve the reliability of

software is an approach with the introduction of software redundancy -

multi-version programming [1]. The reliability of a multi-version system

is determined not only by the reliability of the versions that make it up,

but to a greater degree by the decision making algorithm. Errors contained

in separate versions are permissible, since they will be isolated by a

correctly working decision making algorithm and will not lead to a system

failure [2]. In their turn, the algorithms of the decision block will lead to

the emergence of an erroneous exit of the designed system, which can

lead to the failure of the entire system. Thus, it is necessary to pay

maximum attention to improving the reliability of the algorithms used in

the decision block of the multi-version environment (NVX).

To guarantee the quality of a complex system as a whole, we need to

guarantee the quality of its component parts. In the case of fault-tolerant

software based on software redundancy, we need to guarantee not so

much the quality of the versions, but the decision block. This block selects

the correct exit from the version answer collection. It is the quality of its

*Manuscript
Click here to view linked References

 M. Saramud, I. Kovalev, V. Losev Information and Software Technology 00 (2019) 000–000

work that is most critical for the fault tolerance of the designed system.

Therefore, the main task of the system developers is to guarantee the

quality of the decision block. At the same time, ensuring the quality of

versions will mostly be the task of third-party developers, since the

creation of a version to ensure diversification is transferred to various

groups of developers [3].

2. Execution environment of the fault tolerant software

Considering the life cycle stage of fault-tolerant software design, we

need to decide on the algorithms that form the basis of the decision

making block. Currently, there are many algorithms that are used to

determine the correct exit from the set of version responses. Most often,

these are different voting algorithms, we will consider the most common

ones: voting by an agreed majority, weighted voting by an agreed

majority, fuzzy weighted voting by an agreed majority, median voting.

We will also consider the t/(n-1) decision making algorithm and propose

modifications of the existing voting algorithms and t/(n-1) decision

making algorithm.

Fig. 1. Life cycle stages.

If you develop a system without evaluating the quality of the system

at the early stages of the software life cycle (Figure 1), then assessing the

quality at the testing stage of the resulting system, you can find that its

quality indicators do not reach the required values. The reason for this is

that the algorithms inherent in it will not allow the system to provide the

required reliability characteristics for any software implementation.

This is a very dangerous situation, since it leads to reject the already

developed product and return to the stage of system analysis to replace the

algorithms with those that allow the system to achieve the required quality

indicators. As it can be seen from Figure 1, this will actually lead to the

repetition of all the work done.

Therefore, it is most reasonable to evaluate the characteristics of the

system starting from the earliest stages of the life cycle [4], so that those

which are surely able to fulfill the quality requirements for the decision

system are always transferred to the next stage. Thus, we will get rid of

the risk to reject the developed system due to the error in the choice of the

algorithm in the early stages of the life cycle. This will not only guarantee

the quality of the developed system, but also reduce the risks of material

and temporary loss during its implementation.

We propose the guaranteeing method of the component quality of a

fault-tolerant software - decision block in a multi-version execution

environment at the design stage. This is achieved by choosing the known

optimal algorithm with known characteristics of the system. Different

decision making algorithms have their own strong and weak points. Some

are more resistant to related faults, but do not work adequately with a

large percentage of “inaccuracies”. Others, on the contrary, are resistant to

both “inaccuracies” and relatively unreliable versions, but they make

mistakes for each related fault, etc. Therefore, it is necessary to check all

the algorithms in the environment simulating the characteristics of the

developed system. Thus, we will obtain the characteristics of the

algorithm operation quality in precisely those conditions in which it will

work in our system.

In the case of development for embedded systems and controllers, all

device software, from the operating system to the application software, is

in fact one executable file. If an incorrect choice of algorithm is found at

the operational stage, replacing even a small software component is a

problem, since it leads to the need to recompile the entire project and

replace the firmware on the device. This is not always possible, either

because of the hardware features of the device, or its inaccessibility, in

case when it is already put into operation.

In order to decide which way out of the multiple versions to

recognize true and send to the output, different algorithms are used [5, 6].

The most common voting algorithms are:

Voting algorithm by an absolute majority - it is necessary that the

absolute majority of versions vote for one option. For example - with 5

versions it is necessary that at least 3 versions vote for one option,

otherwise we will assume that the correct answer cannot be chosen.

Voting algorithm by an agreed majority - it is necessary that more

versions vote for one option than for others. Unlike the voting algorithm

by an absolute majority, it is not necessary that the number of votes are

more than half of the versions number. To make a decision it is enough

that more versions vote for one option than for the others. In case that the

same number of versions have voted for several options, any of them is

chosen, since it is considered that they are equally “correct”.

The algorithm of fuzzy voting by an agreed majority - in contrast to

the clear version, elements of fuzzy logic are added. A parameter such as

the belonging coefficient equal to from 0 to 1 and the tolerance E is

presented. In case the value of the version is equal to the value of the

class, the coefficient is 1. If the version response differs from the class

value by more than the E tolerance, then the coefficient is 0. If the version

value is not equal to the class value, but is no further than the E tolerance

from it, then the coefficient is in the range from 0 to 1. Thus, the

coefficients of occurrence of all versions are added to the weights of

classes, that is, one version can vote for several classes if their values

differ by no more than tolerance E. The response (class) with the highest

number of votes is recognized as correct.

Median voting - with this voting, the outputs of all versions are taken

as erroneous, and their average value is taken as the output. This approach

is used in cases when it is impossible to compare directly the outputs of

versions, for example, when the outputs are the direction of movement,

vectors, etc. There are various implementations of median voting. In our

case, all the answers are sorted and the middle element is taken as the

response.

 M. Saramud, I. Kovalev, V. Losev Information and Software Technology 00 (2019) 000–000

Fig. 2. Diagram of the execution environment of multi-version real-time

software.

Figure 2 shows the structure of the real-time environment for multi-

version software. It is exactly for the decision block of this system that it

is necessary to choose the optimal decision algorithm. This execution

environment and the technical solutions used in it are described in detail

in the article [7].

3. Modifications of existing algorithms

The most dangerous type of fault is related [8]. The related fault is

not a correct, but coinciding in value output of several versions. This error

is the most dangerous, since it is extremely difficult to identify a failed

version response if several votes are received for it. In order to increase

the resistance to this type of error, we have proposed modifications of the

voting algorithms by an agreed majority and fuzzy voting by an agreed

majority. Modifications are in the introduction of a dynamic assessment of

the reliability of each version or its “weight”, as well as the forgetting

element. For the first time, weighted voting algorithms with forgetting

were presented at the European Conference on Electrical Engineering and

Computer Science [9].

The weight is calculated as the sum of the correct answers of the

version divided by their number. Technically it is implemented as follows

- for each software version, a boolean queue of a given depth is created in

the system. “0” is added to the queue in case if the decision block decides

that the version gave the wrong answer and ”1” if it gave the correct one.

In case of fuzzy voting, if the version belonging coefficient to the winning

class is > 0. That is, all versions that added weight to the class that won

the vote will be marked as correct. Since the queue depth is fixed within

the simulation, the new data will replace the old ones. That is, the queue

works on the FIFO principle. This allows you to enter the forgetting

element to the depth of the queue. For example, if the queue depth is 100,

then the results of the version older than 100 votes will not be taken into

account. The element of forgetting is needed to ensure the rapid response

of the system to changes in versions behavior. In case when the versions

significantly change their reliability when the input data stream changes, it

is necessary to change quickly their rating for the most correct weighted

voting [10].

The weight is determined by summing all the items in the queue. For

example, if in queue of 1000 elements long 986 values “1” and 14 values

“0” are written, the weight of this version will be 0.986.

With the software implementation one limitation is introduced - the

weight of the version can not be equal to one. This situation may occur in

practice - fairly reliable versions give the right response 100, 1000, 10000,

etc. once in a row and without limitation, they would receive the entire

queue of ”1” (or TRUE), which would give them a rating of 1. Such

situations should not be allowed, since in case of an incorrect response

with this version, it will receive weight 1, while the correct response to the

rest N-1 versions according to weight will only approach to 1 and lose the

vote. In addition, analytically, the version reliability rating equal to 1 does

not make sense. Since if we have an absolutely reliable software module,

the sense of a multi-version system is lost.

4. T/(n-1) algorithm

It is also necessary to consider the decision making algorithm in

multi-version systems proposed by Jie Xu from University of Newcastle

upon Tyne, based on t/(n-1) diagnosability [11]. For simplicity, we will

call it

t/(n-1) decision making algorithm. The main point of the algorithm is not

in the voting of all the versions outputs, but only when comparing some of

them sufficient for making a decision. We will consider the example of a

system with the number of versions N = 5 and the maximum number of

errors t = 2, that is, we will consider the 2/(5-1) option. When the number

of errors does not exceed t, the algorithm guarantees the choice of the

correct variant from the N outputs of the versions. However, even with a

larger number of incorrect version outputs, the system will not necessarily

choose the wrong one. With a certain probability, the choice of the correct

exit will occur, though this is no longer guaranteed [12]. We will consider

the algorithm in more detail on the example of 2/(5-1) option. Outputs of

four versions are compared in pairs - 1st with 2nd, 2nd with 3rd, 3rd with

4th, we get three results of comparisons ω12, ω23, ω34, equal to 0 if the

outputs are the same and 1 if they differ. Based on only these three

outputs of the comparators, the algorithm decides on switching the output

between outputs 1, 4 and 5 versions. That is, versions 2 and 3 are used

only for comparison, the values of their outputs are never used as a system

output. More visually the scheme of work can be studied in Figure 3.

Fig. 3. The architecture of the t/(n-1) algorithm with n = 5 and t = 2.

As can be seen from Figure 3, the decision making flow in the t/(n-1)

algorithm is relatively not complicated. In case of five multi-versions,

 M. Saramud, I. Kovalev, V. Losev Information and Software Technology 00 (2019) 000–000

only the results of three pairwise comparisons of four versions outputs are

necessary for making a decision (proper control of the output selector).

The output value of the fifth version is not used for making a decision.

The control logic of the output switch based on the results of comparisons

with n = 5 is presented in Table 1.

Table 1

Possible kinds of choice based on comparator outputs for n = 5.

ω12 ω23 ω34 Conceivably correct versions

0 0 0 1, 2, 3, 4

0 0 1 1, 2, 3

0 1 0 5

0 1 1 1, 2

1 0 0 2, 3, 4

1 0 1 5

1 1 0 3, 4

1 1 1 5

Based on Figure 3 and Table 1, it can be concluded that with

relatively reliable versions, in most cases comparators will return (0; 0; 0)

and the execution value of the first version will be submitted to the output.

It is also possible to conclude that there is no need to execute the fifth

version each time. And do it only in case of corresponding values of the

comparisons results when it is necessary to submit to the output exactly

the result of the fifth version ((0; 1; 0), (1; 0; 1), (1; 1; 1)) to the output.

This fact reduces the average load required by the execution environment

of multi-version software for operation, since in most cases 4 out of 5

versions will be calculated. The decision making algorithm itself is also

less resource-intensive compared to voting, especially with its weighted

modifications where with each vote all versions are executed, classes are

created and weights are calculated for each of them. For t/(n-1) with n = 5,

only three simple comparison operations with binary output are necessary.

Then an unambiguous, a priori given choice of output for one of eight

possible values combinations of the comparators outputs is performed

(Table 1).

Fig. 4. The architecture of the t/(n-1) algorithm with n = 6 and t = 2.

We will consider the impact on the algorithm operation by adding

another version up to N = 6. The new scheme of the algorithm operation is

presented in Figure 4 and Table 2. As it can be seen from the presented

data, when adding an additional version, you need to add a comparator.

Consequently, we have already 4, not 3 boolean outputs, necessary for

making a decision. Accordingly, the number of possible combinations of

comparators is doubled from 8 to 16. It can be concluded that the

computational complexity of the t/(n-1) algorithm is extremely sensitive

to the number of versions. With each additional version added,

computational complexity doubles. Accordingly, with 2 versions 4 times,

with 3 additional versions 8 times, etc. Since the main advantage of the

t/(n-1) algorithm is precisely its low resource intensity, its application is

most justified when the number of versions does not exceed N = 5.

Table 2

Possible choice options based on the comparators outputs for n = 6.

ω12 ω23 ω34 ω45 Conceivably correct versions

0 0 0 0 1, 2, 3, 4, 5

0 0 1 0 1, 2, 3

0 1 0 0 3, 4, 5

0 1 1 0 6

1 0 0 0 2, 3, 4, 5

1 0 1 0 6

1 1 0 0 3, 4, 5

1 1 1 0 4, 5

0 0 0 1 1, 2, 3, 4

0 0 1 1 1, 2, 3

0 1 0 1 6

0 1 1 1 1, 2

1 0 0 1 2, 3, 4

1 0 1 1 6

1 1 0 1 3, 4

1 1 1 1 6

5. The software implementation of the simulation

environment

The program implements simulations of the required number of

versions, which operate in accordance with the parameters specified on

the form. The main window sets the number of versions from 3 to 9, the

probability of error-free operation of each version for three consecutive

data streams, the length of each data set (respectively, the total number of

iterations is equal to three lengths), the probability of an related fault, the

probability of inaccuracy, and the tolerance E for fuzzy logic.

At the beginning of the simulation, the function fills in an array of

input values — version responses at each iteration. Data is generated in

accordance with the specified parameters. Next, from this array, the

generated version responses are transferred to the input of each algorithm.

This solution is necessary to compare all algorithms on the same input

data set. Since error generation occurs with given probabilities, in the case

of generating version responses for each algorithm separately, they will

receive for input data with different numbers of errors and the comparison

will not be correct.

Changing the parameters of the versions operation in the simulation

process for the three sets of input data is used to study the system reaction

to a sharp change of the reliability of the versions. For example - version

number 1 may have a reliability of 0.98 in the first set, in the second one

the reliability drops to 0.61, and in the third one it increases again to 0.97.

In the environment 6 decision making algorithms are implemented,

this is a classical voting by an agreed majority, a weighted voting by an

agreed majority with forgetting, its fuzzy variant, t/(n-1) algorithm, its

fuzzy modification with modified comparators and median voting.

 M. Saramud, I. Kovalev, V. Losev Information and Software Technology 00 (2019) 000–000

 We will consider the process in more detail. When voting by an

agreed majority, the decision block receives the responses of the version

simulations. If the output value does not coincide with the previously

received ones, a new class is created with this value. If the value coincides

with the value of the existing class, then the weight of this class is

recalculated using the formula

Ptotal= Pclass + (1- Pclass) * Pversion (1)

where Ptotal is the final weight of the class, Pclass is the weight of the

class before recalculation, Pversion is the weight of the version.

After the responses of all versions are processed, the weights of the

created classes are compared. The class with the greatest weight is

recognized as the winner and its value is sent to the exit. This is not

always the class for which the largest number of versions voted. The

weights of each version that voted for this class are important. After

determining the class of the winner, the versions that voted for it get the

weight “1” in the queue, and the versions that voted differently get “0”.

In this model, there is no limit on the versions response time, since

simulations run on the same algorithm and there is no point in comparing

their resource intensity. In the case of the implementation of real software

versions, rather than their simulations, as well as the well-known

hardware limitations and requirements for the system reaction time, it

makes sense to introduce such a restriction. This is necessary to make it

possible to take into account the probability that resource-intensive

versions will not have time to respond by the time of the vote, and will not

be taken into account. These data are essential in the case of systems

operating in real time [13]. In the case of time limits, even an absolutely

reliable version that did not “have time” to provide a response in time will

be considered as a failed one.

For fuzzy voting by an agreed majority after creating and evaluating

all classes based on the outputs of the versions, the algorithm performs

another iteration. Versions whose output value did not coincide with the

value of the class, but differ from it no more than the tolerance E

(therefore, class membership is > 0) also adds weight to the class. Class

weights are recalculated using the formula.

Ptotal = Pc lass + (1- Pclass) * Pversion * Kbelonging (2)

where Kbelonging = 1- (|Xclass-Xversion|/E), X-values of the class and the

version that gave the response not equal to the value of the class, but

fitting into the tolerance E.

Simulations of versions in this software implementation generate 3

types of errors. In case of a random error, a failure is simulated in the

module. Related fault - an admitted algorithmic miscalculation in several

versions that will give errors with the same value for the same input.

Inaccuracy - the response close to the correct one, removed from it not

more than tolerance E, but not equal to it. This type of error simulates

rounding errors with the lack of capacity, inaccuracy in digitizing the

outputs of analog sensors, etc. That is, a situation where, algorithmically,

the version worked correctly, but gave an inaccurate answer due to

rounding errors, digitization, and lack of capacity. An error is generated

with the probability specified for each version and each data stream. If an

error is generated, a series of controls occurs. If this is not the first error in

the current voting, then a related fault is generated with a given

probability. The value returns that matches the value of the past error, this

error simulates a coherent error. After that, with a given probability, an

"inaccuracy" is generated - the output that does not match the value with

the correct one, but differs from it by no more than the tolerance E returns.

Fig. 5. Interface of simulation environment (t /(n-1) graphs are disabled)

* Corresponding author. Tel.: +7-963-958-9649

E-mail address: msaramud@sfu-kras.ru

Peer review under responsibility of xxxxx.

xxxx-xxxx/$ – see front matter © 2014 xxxxxxxx. Hosting by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.aebj.2014.10.012

Fig. 6. Interface of simulation environment (all graphs are enabled)

If the described probabilities do not work, then a random error returns. It

simulates a random failure in the current software version. According to

the simulation results, it can be concluded that in the absence of

“inaccuracies” there is no difference in the work of clear and fuzzy voting

options. Random error is always different from the correct response by

more than the value of the tolerance E. Therefore, it does not change the

weight of classes during the second iteration of fuzzy voting. From these

results, we can conclude that if there are no possible places of

“inaccuracies” in the system (digitization of analog signals, lack of

capacity in mathematical operations, etc.), then using a more resource-

intensive fuzzy voting algorithm will not give advantages. But, if there is

a probability that "inaccuracies" will occur, then a fuzzy algorithm will

increase the reliability of the system. The only drawback of the work of

the fuzzy algorithm is the same assigned weight to both the versions,

which gave the ideally correct output, and the versions that are

algorithmically correct, but have “inaccuracies”.

For the possibility to debug algorithms, the form displays information

about the last error in the output of the decision block - the iteration

number, the output value and the weight of this class. Software

implementation has the ability to build graphs of the weights of each

version and the winning classes. The axes are iteration numbers and

weight. For clarity, the ability to change the scale is implemented. For

example, when studying weights of winning classes, their values do not

fall below 0.9. On a scale from zero to one, graphs are a practically flat

line in the area of one. For better perception in this case, the scale changes

to a range from 0.9 to 1 along the axis of weight.

To be able to compare the weights sums of the t/(n-1) algorithm with

weighted voting algorithms, we have introduced weights estimates for the

t/(n-1) algorithm. They are based on the output of the comparators, since

these are not real weights, but only an estimate. The estimate accepts one

out of 4 discretely defined options (0.999; 0.985; 0.970; 0.950). For the

 t/(n-1) algorithm, the graphs are not informative and greatly complicate

the perception of the graphs of the other algorithms. For this reason, the

graphs of the t/(n-1) algorithms are made turned off for more convenient

study of the remaining graphs. However, when turning off the graphs,

stop of the counting of the sum weights (or their estimate) during the

 M. Saramud, I. Kovalev, V. Losev Information and Software Technology 00 (2019) 000–000

simulation does not happen. You can compare graphs kind in Figures 5

and 6.

According to the simulation results for each algorithm, the sum of

errors for all iterations, the number of made “inaccuracies” for fuzzy

algorithms, and the sum of the occurred related faults are displayed. If

basing on the simulation results, there is a uniquely superior algorithm,

the system displays a message about the selected optimal algorithm

(Figure 7).

Fig. 7. The system's message about the selected optimal algorithm.

6. The simulation results

We will study the simulation results in the software implementation

and consider the reaction of the algorithms to changes in the input

parameters of the simulation.

To begin with, we will study the graphs of the versions weights

introduced in Figures 8-10. Graphs are introduced for a queue with a

depth of 100 and three consecutive data streams of 100 votes for each. In

Figure 8, we can observe the operation of the system with all reliable

versions (versions reliability in all data streams from 0.9 to 0.99). As you

can see, the versions weights also vary within the minimum limits,

without falling below the value of 0.9. The graphs also show the weight of

the class that won the vote.

Fig. 8. The operation results of the simulation model of the

implementation of the voting algorithm by an agreed majority (high

reliability of all versions 0.9-0.99).

In Figure 9 we can observe the operation of the system with an

average version reliability (version reliability in all data streams from 0.7

to 0.96). As you can see, the versions weights already vary within wide

limits, but do not fall significantly below 0.7.

Fig. 9. The operation results of the simulation model of the

implementation of the voting algorithm by an agreed majority (the

average reliability of all versions is 0.7-0.96).

Fig. 10. The results of the simulation model of the implementation of the

voting algorithm by an agreed majority (failure was found out in the first

version of the first and second data sets and in the second version of the

second data set with a 50% probability).

The graphs (Figures 9-10) show the reaction of the system to the

changing of versions behavior when a reliable version begins to give

errors. Or on the contrary, the low-weight version ceases to make

mistakes (at the beginning of the experiment, all versions weights are

relatively high). In Figure 10, the first version mistakes with a probability

of 50% in the first and second data stream, in the third one it ceases to

make mistakes. It can be concluded that the system responds fairly

quickly to changes in the versions behavior. In the number of votes equal

to the depth of the queue, the versions will receive estimated weights,

which quite accurately correspond to their probabilities of a correct

response.

Table 3

The results of the system performance at different amounts of

multi-versions for unreliable versions with P = 0.7.

N 3 4 5 6 7 8 9

Clear

weighted

Number of

errors
48 27 14 6 3 1 0

Amount of

weights
268,40 281,96 293,40 295,82 298,47 298,74 299,71

Fuzzy

weighted

Number of

errors
45 28 15 8 4 2 0

Amount of

weights
280,92 288,74 296,66 298,28 299,19 299,61 299,91

Agreed

majority

traditional

Number of

errors
89 36 16 13 5 3 2

Related fault 30 40 39 64 65 89 101

 M. Saramud, I. Kovalev, V. Losev Information and Software Technology 00 (2019) 000–000

Table 3 shows the simulation results with different number of multi-

versions - from 3 to 9 (reliability of all versions in all streams equal to P =

0.7, queue depth 100, tolerance E = 0.1, inaccuracy probability P = 0.2,

probability of related fault P = 0.1. Such a low reliability index of all

versions as 0.7 is taken for clarity of the simulation results since with

sufficiently reliable versions (P> 0.95) even with the number of multi-

versions N = 3, the proposed voting algorithms do not pass to the output

any single error 300 voting iterations [14]. The data obtained show how

the reliability of the system as a whole increases, despite the use of

extremely unreliable software modules. Despite the fact that each version

generates an error in 30% of cases, in a system with 9 versions all 300

responses are correct. The algorithm of clear voting by an agreed majority

always selects the correct response from the versions response pool. The

fuzzy algorithm makes more mistakes, because sometimes the vote wins a

class with a value close to the correct one (not more than E from it) but

not equal to it. By simulating such a response is counted as erroneous,

however, versions that add weight to the winning class still get 1 into

queue, increasing their own weights. For this reason, despite the greater

number of errors, the sum of the weights of the fuzzy algorithm is higher.

Not all considered decision algorithms are able to work with an

arbitrary number of versions. For this reason, only voting algorithms are

presented in this table, since they have the ability to work with any

number of versions N≥3.

We will compare the reliability indicators of the t/(n-1) algorithm as

compared with proposed by us weighted modifications of the voting

algorithm by an agreed majority, its clear and fuzzy version and other

algorithms. We will perform simulation in the simulation environment.

The following model parameters are used: the number of iterations = 300,

the same reliability of all five versions in all 300 runs, queue depth = 100

(for weighted algorithms), tolerance E = 0.1 (for fuzzy algorithms),

inaccuracy probability P = 0.2, probability of related fault P = 0.1. We

will change the version reliability value from 0.65 to 0.95 with a step of

0.05 and get the number of errors per 300 iterations for each algorithm.

The simulation results are presented in table 4.

From the results presented in Table 4, it can be concluded that with

relatively reliable versions, all algorithms provide error-free operation for

300 iterations. While each of the 5 versions gives in average 15 erroneous

outputs per 300 iterations (with a reliability of 0.95 an imitation version

will produce in average 5 errors per 100 iterations). The exception is a

fuzzy modification of the t/(n-1) algorithm. The simulation results show

that the fuzzy modification has extremely low resistance to inaccuracies

occurrence. It did not miss a single failure. However, when generating

inaccuracies in the first or fourth versions, fuzzy comparators return a

match with neighboring versions, which gave an ideally correct answer

and the system sends the result with inaccuracy to the output. When the

reliability of versions decreases, the algorithms begin to miss errors on the

system output, however, in different quantities. The most reliable was a

weighted modification of the algorithm of agreed voting with forgetting.

More errors of the fuzzy algorithm are explained by the cases when

“inaccuracy” is chosen as the response (the value that is far from the

correct one is not more than the E tolerance, but not equal to it). Similar

responses are also counted as erroneous by the system. The t/(n-1)

algorithm begins to yield significantly in reliability to the weighted voting

algorithm by an agreed majority with relatively unreliable versions, since

situations more often happen when more than t = 2 versions give the

wrong answer. In such cases, the correct operation of the algorithm is not

guaranteed. The results also show that the fuzzy version of the t/(n-1)

algorithm gives more errors in general. However, the number of failures is

even less than that of the basic algorithm, and most of the errors are

inaccuracies.

After analyzing the obtained data, it can be concluded that the

application of the t/(n-1) algorithm is possible with relatively reliable

versions, when there will not be situations of simultaneous failure more

than t versions. Its application will be justified in situations when it is

necessary to reduce the computational load on the system.

Table 4

Simulation results for different versions of reliability.

Specified version reliability 0,65 0,7 0,75 0,8 0,85 0,9 0,95

Clear voting by an

agreed majority

Number of errors 19 13 7 4 2 1 0

Amount of weights 285,02 292,16 296,53 298,70 299,68 299,92 299,99

Fuzzy voting by an

agreed majority

Number of errors 21 14 10 4 3 1 0

Of which failures 14 7 7 2 2 0 0

Inaccuracies 7 7 3 2 1 1 0

Amount of weights 291,99 295,76 298,05 299,30 299,81 299,97 299,99

t/(n-1) algorithm Number of errors 43 25 17 6 4 1 1

Amount of weights 286,71 288,56 290,55 292,55 293,87 295,96 297,78

Fuzzy modification

of the t/(n-1)

algorithm

Number of errors 58 32 31 11 8 8 5

Of which failures 29 11 12 3 4 0 1

Inaccuracies 29 21 19 8 4 8 4

Amount of weights 289,07 290,83 292,49 293,74 295,19 296,51 298,35

Agreed majority

traditional
Number of errors 29 27 10 6 4 0 0

Median voting Number of errors 43 27 19 9 4 1 2

Related fault 58 50 39 38 20 16 8

 M. Saramud, I. Kovalev, V. Losev Information and Software Technology 00 (2019) 000–000

Table 5

Simulation results with different probability of inaccuracy
occurrence.

Especially in cases where the comparators are simple to execute, and

creating many classes each time and calculating their weights is too

laborious. An example is pneumatic logic in hazardous industries.

Comparators, logic, and an output switch can be assembled on pneumatic

components. While implementing the voting algorithm will be almost

impossible on pneumatic elements. However, in cases where relatively

unreliable versions are used, or there is a high probability of related fault,

its application is not desirable, since in such situations it shows less

reliability in comparison with voting algorithms. As for the fuzzy

modification - there is a sense in its application in systems where there is a

probability of inaccuracies, passing of which is not critical for the system.

Since the algorithm often allows the passing of inaccuracies, however,

cuts failures better than the basic algorithm.

We will investigate the reaction of the system to changes in the

probabilities of inaccuracies occurrence, we will take the reliability P =

0.8 for all versions in all data streams.

We will study the results introduced in Table 5. They show that with

an increase in the probability of inaccuracy occurrence, fuzzy

modifications of the decision making algorithms remain resistant to

failures, although they allow these inaccuracies to pass [15]. For a

reasonable choice of the most suitable algorithm, it is necessary to know

how critical for the system the passing of exactly inaccuracies is. For

example, for course correction systems with constant adjustment of

inaccuracy with a slight deviation from the correct value will not

adversely affect the operation of the system as a whole. While with the

passing of failures, the system will significantly change the direction that

can lead to disastrous consequences. In the case of systems that are

unstable to inaccuracies, it is preferable to use classical variants of

decision making algorithms. Since they better screen out inaccuracies,

considering them equally incorrect, regardless of their proximity to the

correct response, in contrast to fuzzy algorithms.

We will investigate the reaction of the system to a change in the

probability of a related fault occurrence. This is of the most interest

because it will show the stability of all studied algorithms to the most

dangerous type of errors. We will take the reliability P = 0.8 for all

versions in all data streams.

Table 6

Simulation results with different probability of related fault

occurrence.

The probability of

occurrence of a related

error

5% 10% 20% 50% 100%

100%

P=0.95

Clear voting

by an agreed

majority

Number of errors 1 4 7 8 13 0

Fuzzy voting

by an agreed

majority

Number of errors 2 4 7 9 13 0

Of which failures 2 4 7 8 13 0

Inaccuracies 0 0 0 1 0 0

t/(n-1)

algorithm

Number of errors
9 7 10 17 13 1

Fuzzy

modification

of the t/(n-1)

algorithm

Number of errors 13 8 11 21 13 13

Of which failures 9 7 9 17 13 0

Inaccuracies 4 1 2 4 0 13

Median voting Number of errors

21

15

15

20

13

0

Agreed

majority

traditional

Number of errors 11 7 16 28 37 5

Related fault 31 38 64 164 308 61

The simulation results are introduced in Table 6. They show that the

voting algorithms are much more resistant to related faults than the t/(n-1)

algorithm. An additional column has also been added to the table, in

which the behavior of the system with reliable versions (P = 0.95) is

considered. This is done to demonstrate that with sufficiently reliable

versions even 100% of the related faults do not affect the reliability of the

system with the proposed modified voting algorithms. However, this is

not the case with the t/(n-1) algorithm, which permits failures even with

reliable versions. It is interesting to note that related faults do not affect

the operation of the median voting algorithm, since it does not compare

version responses for class weights change, and the collection of

responses is simply sorted by the magnitude of the values. For median

voting there is no difference whether versions give coinciding errors or

not. We will consider an example - if 5 versions gave responses (3; 3; 6;

19; 19) and the responses “3” and “19” are related faults, it will still

choose the response “6” as the average. The same feature of its work

makes it resistant to ejections. Unlike the implementation of voting

algorithms with averaging outputs, if one or several versions gives a

Probability of inaccuracy

occurrence
 5% 10% 20% 50% 100%

Clear voting

by an agreed

majority

Number of errors 4 2 2 2 3

Amount of

weights
298.15 299.10 298.63 299.07 298.85

Fuzzy voting

by an agreed

majority

Number of errors 5 3 3 4 6

Of which failures 4 2 1 3 0

Inaccuracies 1 1 2 1 6

Amount of

weights
298.63 299.41 299.32 299.78 299.99

t/(n-1)

algorithm

Number of errors 10 6 8 9 11

Amount of

weights
291.69 293.23 292.10 292.49 292.48

Fuzzy

modification

of the t/(n-1)

algorithm

Number of errors 12 7 14 34 48

Of which failures 9 4 3 4 0

Inaccuracies 3 3 11 30 48

Amount of

weights
292.16 293.94 293.80 295.75 299.48

Median

voting
Number of errors 16 9 7 6 0

Agreed

majority

traditional

Number of errors 9 9 16 7 13

Related fault 33 24 37 38 30

 M. Saramud, I. Kovalev, V. Losev Information and Software Technology 00 (2019) 000–000

response that differs by several rates in any direction, this will not affect

the operation of the algorithm.

7. Conclusion

The article gives recommendations on increasing the reliability of

software at various stages of the life cycle, describes the specifics of a

multi-version real-time execution environment. The scalability of

the t/(n-1) algorithm for a different number of versions (N = 6) is shown.

The dependence of the complexity of the algorithm on the number of

versions is investigated.

The results of all simulations show a significant advantage of the

proposed weighted voting algorithms with forgetting in comparison with

the classical voting by the agreed majority. The data obtained using the

developed simulation environment confirm the effectiveness of

introducing version weights and the forgetting element.

The weighted voting algorithms with forgetting investigated in the

article were tested in a multi-version real-time execution environment.

The results show the effectiveness of the proposed modifications of

voting algorithms, as well as prove the possibility of creating the reliable

system of unreliable software modules. Concerning the t/(n-1) algorithm,

which is of interest as an alternative to the voting algorithms, its use is

justified only in systems with significant limitations for computing

resources (or other limitations, for example, the use of pneumatic logic in

an explosive environment) and the use of fairly reliable versions. Since

the algorithm shows the worst resistance to unreliable versions and

different types of errors.

The algorithms investigated in the article can be used in real-time

fault-tolerant control systems in various areas: autonomous unmanned

objects, hazardous production, etc., where increased requirements are

applied to reliability and safety parameters.

The proposed simulation environment is a useful tool for designing of

a multi-version system, since it allows to obtain the characteristics of a

decision block under the conditions in which it will work in the real

system. This result is important for software development, especially for

complex fault-tolerant systems, since it allows to obtain an assessment of

the quality characteristics of the decision block at an early stage of

development. This allows to choose obviously appropriate decision

making algorithms. The choice of the decision making algorithm with

guaranteed satisfying the requirements qualitative characteristics excludes

the case of system

redeveloping due to the fact that only at the testing stage it turns out that

the chosen algorithm is not able to meet the established requirements.

This does not only guarantee the quality of the software product being

developed, but also makes its implementation time more predictable.

Acknowledgements

This work was supported by Ministry of Education and Science of

Russian Federation within limits of state contract № 2.2867.2017/4.6.

REFERENCES

1. Eckhardt, D.E., and Lee, L.D. (1985). A Theoretical Basis for the Analysis

of Multi-version Software Subject to Coincident Errors, IEEE Transactions

on Software Engineering, vol. SE-11, no. 12, pp. 1511-1517.

2. Eduardo Liebl, Cristina Meinhardt, Paulo F. Butzen (2016). Reliability

analysis of majority voters under permanent faults, 17th Latin-American

Test Symposium (LATS), pp.180-180.

3. Luping Chen, John May (2016). A Diversity Model Based on Failure

Distribution and Its Application in Safety Cases, 2014 Eighth International

Conference on Software Security and Reliability (SERE) , pp.1-10.

4. Alberto A. Avritzer, André B. Bondi (2014). Developing Software

Reliability Models in the Architecture Phase of the Software Lifecycle,

2014 IEEE International Symposium on Software Reliability Engineering

Workshops, pp.22-23.

5. G. Latif-Shabgahi; S. Bennett (1999). Adaptive majority voter: a novel

voting algorithm for real-time fault-tolerant control systems Proceedings

25th EUROMICRO Conference. Informatics: Theory and Practice for the

New Millennium, pp.113 - 120 vol.2

6. A. Karimi, F. Zarafshan, S.A.R. Al-Haddad, and A.R. Ramli (2014). A

novel n-input voting algorithm for x-by-wire fault-tolerant systems, The

Scientific World Journal, vol. 2014.

7. Saramud M.V., Kovalev I.V., Losev V.V., Kuznetsov P.A. (2018)

Software interfaces and decision block for the execution environment of

multi-version software in real-time operating systems, International Journal

On Information Technologies And Security, № 1 (vol. 10), pp.25-34.

8. Luping Chen ; John H. R. May (2016). A Diversity Model Based on

Failure Distribution and its Application in Safety Cases, IEEE Transactions

on Reliability, vol. 65 , Issue 3, pp. 1149 – 1162

9. I. Kovalev, A. Voroshilova, V. Losev, M. Saramud, M. Chuvashova and A.

Medvedev (2017). Comparative Tests of Decision Making Algorithms for

a Multiversion Execution Environment of the Fault Tolerance Software,

2017 European Conference on Electrical Engineering and Computer

Science (EECS), Bern, pp. 211-217.

10. Kovalev I.V., Zelenkov P.V., Losev V.V., Kovalev D.I., Ivleva N.V.,

Saramud M.V. (2017). Multi-version environment creation for control

algorithm implementation by autonomous unpiloted objects [Electronic

resource] // IOP Conf. Series: Materials Science and Engineering 173

012025.

11. J. Xu (1991). The t(n-1)-diagnosability and its applications to fault

tolerance, Digest of Papers. Fault-Tolerant Computing: The Twenty-First

International Symposium, pp. 496 – 503.

12. Jie Xu; B. Randell (1997). Software fault tolerance: t/(n-1)-variant

programming, Software fault tolerance: t/(n-1)-variant programming,

IEEE Transactions on Reliability, Volume: 46, Issue: 1, pp. 60 – 68.

13. Jebin V Thomas, R Ranjith, Radhamani V Pillay (2017). Guaranteeing

fault tolerance in real time systems under error bursts, 2017 International

Conference on Intelligent Computing, Instrumentation and Control

Technologies (ICICICT), pp.1480-1484.

14. Brilliant, S.S., Knight, J.C., and Leveson, N.G. (1990). Analysis of Faults

in an N-Version Software Experiment, IEEE Transactions on Software

Engineering, vol.16,no.2, pp.238-247.

15. McAllister, D.F., Sun, C.E., and Vouk, M.A. (1990). Reliability of Voting

in Fault –Tolerant Software Systems for Small Output Spaces, IEEE

Transactions on Reliability, vol. 39, no. 5, pp. 524-534.

