Measuring the Imaginary Part of the Complex Magnetic Permeability of Thin Films Using Resonant and Non-resonant Automated Measuring Systems

Anton V. Burmitskikh
Institute of Engineering Physics and Radio Electronics
Siberian Federal University
Laboratory of Electrodynamics and Microwave Electronics
Kirensky Institute of Physics
Krasnoyarsk, Russian Federation
aburmitskikh@icloud.com

Boris A. Belyaev
Institute of Engineering Physics and Radio Electronics
Siberian Federal University
Laboratory of Electrodynamics and Microwave Electronics
Kirensky Institute of Physics
Krasnoyarsk, Russian Federation
belyaev@iph.krasn.ru

Nikita M. Boev
Institute of Engineering Physics and Radio Electronics
Siberian Federal University
Laboratory of Electrodynamics and Microwave Electronics
Kirensky Institute of Physics
Krasnoyarsk, Russian Federation
nik88@inbox.ru

Sofya A. Kleshnina
Institute of Engineering Physics and Radio Electronics
Siberian Federal University
Laboratory of Electrodynamics and Microwave Electronics
Kirensky Institute of Physics
Krasnoyarsk, Russian Federation
sofya.antipckina@yandex.ru

Abstract—This paper considers resonant and non-resonant methods for measuring magnetic characteristics of Ni$_{80}$Fe$_{20}$ thin films with 1000 Å thickness. The imaginary part of complex magnetic permeability was measured by using resonant and non-resonant measuring cells. The resonant measuring cell included: a micro-strip line, a lumped capacitance, and an amplitude detector. The non-resonant measuring cell included a short-circuited micro-strip line. The studied sample of thin magnetic film is placed under the short-circuited micro-strip line. The self-resonant frequency of the non-resonant measuring cell is higher than the frequency of the ferromagnetic resonance (in field, equal 14 Oersteds). Ferromagnetic resonance method was used to study the change of measuring cell resonant frequency. The angular dependences of resonant frequency were achieved by the change of angle between constant magnetic field and high-frequency field of excitation, the hard axis of magnetization in thin magnetic film. The measurements were carried out using automation units. A numerical comparison of the obtained results showed that the difference between measurements does not exceed 5%.

Keywords—thin magnetic films, magnetic permeability, ferromagnetic resonance.

I. INTRODUCTION
Thin magnetic films (TMF) made from soft magnetic materials have been widely used as active medium for the construction of various electrically-operated microwave devices, including tunable filters, delay lines, phase shifters, amplitude and phase modulators and nonlinear devices [1–2]. TMF are sensitive elements of magnetometers with weak quasi-stationary and high-frequency magnetic fields [3, 4]. Comparison of the results obtained when measuring the imaginary part of the complex magnetic by the methods presented in this paper will allow determining of the magnetic characteristics of thin magnetic films more accurately. This will lead to the improved TMF based technical characteristics of devices.

II. MEASUREMENT TECHNIQUES
One of the most informative methods to study physical properties of magnetic materials is ferromagnetic resonance method (FMR) [5]. FMR is used to examine different ferromagnetics, including thin magnetic films. The FMR method is highly sensitive. It provides measurements of the magnetic characteristics in TMF with high precision. In practice, they usually conduct integral measurements of TMF samples by the FMR method, using the resonance and non-resonance measuring systems [6, 7]. The directions of the magnetic fields in measuring systems are shown in Fig. 1.

![Fig. 1. The direction of the magnetic fields in the measuring system](image)

The reported study was funded by RFBR, project number 19-32-90066/19.
The resonance measuring cell (Fig. 2) includes: a microstrip line (MSL), a lumped capacitance, and an amplitude detector.

The resonance method uses a short-circuited microstrip line [8–9]. The sample of TMF is placed under the MSL. The MSL is the inductive part of resonant measuring cell (Fig. 2). The measurements in the resonant cell are carried out with the fixed amplitude constant magnetic field and the change of angle φ.

In the non-resonant method, the studied TMF sample is placed under the short-circuited microstrip line [10–12]. The self-resonant frequency of the non-resonant measuring cell (Fig. 3) is higher than FMR frequency (in fields up to hundreds of Oersteds) [13–15]. The measuring system is the load of the vector network analyzer, which operates in the required frequency range.

Measurements in the non-resonant measuring cell (Fig. 3) were carried out using a vector network analyzer [16]. Frequency sweep of the microwave field change in the range from 50 to 2000 MHz. The angle φ varied from 0° to 90° with 1° step. The directions of the fields in the measuring system corresponded to the circuit shown in Fig. 1. Automated measuring unit that allows measurements to be made by the non-resonant method using a vector network analyzer (R&S ZVL) is shown in Fig. 6.
IV. RESULTS

The Q-factor of the resonance measuring cell at the frequency of 540 MHz was measured when angle φ was changed from 0° to 90° (Fig. 7).

The measured inductance value of the resonant measuring cell without a TMF sample was \sim 10 nH, and the capacitance value was \sim 8 pF. The distribution of the value active resistance losses in the resonant measuring cell is shown in Fig. 7 (considering the value of losses in a system without TMF). The automated unit of the resonant measurement system searches for the resonant frequency by tuning the frequency of the microwave excitation generator and measuring the voltage value at the amplitude detector output. Using the method of the golden section and parabolic interpolation, the algorithm of the automated complex determines the maximum amplitude at the amplitude detector output. The system repeats operation algorithm for each angle φ. The resonant frequency value of the measuring cell from the angle of rotation φ obtained by the automated system is shown in Fig. 8.

V. CONCLUSION

The imaginary part of the complex magnetic permeability was calculated considering the measured value of the complex reflection coefficient S_{11} of the measurement system. Fig. 9a shows the distribution of the imaginary part of the complex magnetic permeability μ'', measured using a non-resonant measuring cell. Fig. 9b shows the dependence of μ'' on the angle φ at the frequency of 530 MHz.

Before taking measurements using the non-resonant method the vector network analyzer was calibrated. During the calibration the measuring cell with the study sample (the sample was held by MSL without the use of fixing materials) was placed into a strong magnetic field. Strong magnetic field orientates domains in one direction. At this time the vector network analyzer is being calibrated. This allowed reducing the measurement error.
According to the results of experimental data presented in Fig. 9b it can be concluded that the imprecision between the data obtained using the resonant and non-resonant measuring cells does not exceed 5%. In this case measurement time of one sample using resonant measuring cell at the fixed frequency and constant amplitude of magnetic field, sweep angle φ - from 0 ° to 90 °, with 1 ° step, is not more than 20 minutes. Under the conditions given for the resonance measurement method, the measurement time for one sample by the non-resonant method did not exceed 5 minutes.

Thus, the resonance measurement method exhibited its high sensitivity, no need for calibration and matching of the measuring cell, narrow bandwidth of the measurements. The non-resonance method demonstrated a wide range of functions.

REFERENCES

