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Abstract. This paper presents the implementation of the immersed boundary method (IBM) for 
grids consisting of arbitrary cells. This approach allows to combine the IBM with the body-
fitted method (BFM). The implementation is based on the combination of the "ghost-cell" 
method and penalization method. The paper presents the IBM to determine the basic design 
parameters and the results of the verification of the method for laminar and turbulent flow 
regimes for both  Newtonian and viscoplastic fluids. In the last test, the method was used to 
simulate a flow in an annular channel with the orbital motion of the inner cylinder.

1.  Introduction 
The immersed boundaries method (IBM) allows to spend less time to prepare the numerical model and it 
requires fewer grid cells for bodies of complex shapes than the body-fitted method (BF). The 
disadvantages of the IBM include a significant number of additional operations required to determine the 
calculated geometric parameters; however, this approach effective to simulate the flow of a moving 
body.  

When the IBM is applied a solid body is “immersed” in the existing computational grid, and 
divides the grid into several subdomains – 1) the area of the liquid, 2) the area of the body,  and  3) the 
boundary of the body. In the cells that intersect the boundary of the body a volume force which leads 
the liquid velocity in the cell to the velocity of the body boundary is introduced. The IBM was first 
proposed by Peskin in 1972 to simulate flow around a heart valve in Cartesian coordinates [1]. The 
essence of the proposed method is to combine the Eulerian and Langrangian approaches: turbulent 
fluid flow is described by a system of Reynolds equations on a fixed Cartesian grid, and the movable 
"submerged" boundary is given in the form of massless Langrangian points. The interaction between 
the wall boundaries and the flow is given as a volume force in the momentum conservation equation, 
which is given as a δ-function of the distance from the center of the Euler cell to the Langrangian 
point. Works [2–4] present a review of IBM and fluid-structure interaction. 

The immersed boundary method is mostly used for Cartesian grids, but in our research, the IBM for 
grids with arbitrary cells is implemented. This approach will allow the BF method (fixed body or 
channel wall of a complex shape) with IBM (moving body). In our version of the method, we used a 
combined approach of the “ghost-cell” method [5] and the penalization method. 

2.  Methodology 

2.1.  Governing equations 
The simulation of a viscous incompressible flow is described by the Navier-Stokes equations: 
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where v  is the velocity vector, ρ is the density, p  is the pressure, and τ is the total stress tensor, f  is the 
force acting on the border and inside the body, which leads the velocity of the fluid to the speed of the 
border. The turbulent characteristics are determined by two-equation SSTk − ω  model by Menter [6]. 

2.2.  Body motion definition 
The rigid body is determined by a closed surface. The body can move in space at a linear speed linv , 
and also rotate around a given center with angular velocity ω . Thus, the speed sv  of a point of the 
body is determined by the following equation: 

  ,s s lin= × +v r vω                                                                        (3) 

where sr  is the radius vector from the point to the center of rotation. 

2.3.  Definition of the interaction force. 
To define f , we use the combination of the “ghosts-cell” method and the penalization method. The 
immersed boundary divides all cells into three groups (figure 1): 1) cells that are completely outside 
the body, where 0≡f ; 2) cells that are completely inside the body, where iner=f f , 3) cells that are 
crossed by the border where, bound=f f . 

 
Figure 1. The division of the calculation 
domain by an immersed boundary. 

 IB liq
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where liqv  is the velocity value in the cell obtained by solving the momentum conservation equation, 

t∆  is the time step,χ  is the penalization parameter, IBv  is the velocity in the cell IB as shown in 
figure 1, which is determined by the interpolation between points C and W. The penalization 
parameter has to be specified in the simulation, which could be beneficial since with proper tuning 
accuracy could be improved. However, the parameter should not be too large, it can had to a linear 
system with a very large stiffness. The Positions of points C and W are defined by the following 
approach. Point W is the projection of point IB on the boundary. Point C lies in a neighboring cell (A) 
on a straight line which goes through points W and IB. The velocity value at point C is determined as 
follows:  

A dC = + ∇ ⋅v v v r                                                                 (5) 

where Av is the velocity in point A, ∇v is the gradient velocity in the cell, C Ad = −r r r  is the distance 
from A to С. The linear interpolation is suitable for laminar and low Reynolds flow conditions [7]: 
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where 1h is the distance between W and IB, 2h  is the distance between W and C. It should be noted 
that point IB can be located both outside the solid body and inside it; in this case, 1h  is taken with a 
negative sign. Value Wv  is determined by the equation (3). The force acting on the inner cell innerf  is 
calculated same boundf  with the difference IB s=v v . The specific dissipation of the kinetic energy of 
turbulence is set for the version of a low-Reynolds model of the turbulence at point IB: 

2

6
 ,

nС yβ ⋅
⋅µω =
ρ⋅

                                                                   (7) 

where µ  is the molecular viscosity, Сβ  is constant 0.075, 2
2n

hy = . The turbulent parameters in the 

cells that are inside the body are equal to null. 

3.  Testing 
The IBM was vivificated follow tests: test 1 – non-stationary laminar flow past a two-dimensional 
cylinder; test 2 – turbulent flow in a channel with a backward step; test 3 – fluid flow in an annular 
channel, with a rotating inner cylinder; 4) test 4 – fluid flow in an annular channel, with orbital motion 
of the inner cylinder. For the first and second tests, a comparison will be made with the experimental 
data and the calculation data obtained by the BFM method. For the third one only with the calculations 
data obtained by the BFM, and fourth with the calculations dataobtained by other researchers. 

3.1.  Non-stationary laminar flow around a two-dimensional cylinder. 
Two-dimensional unsteady flow around a cylinder was simulated. The Reynolds number was set to 
100. Instant velocity magnitude is shown in figure 2.  

 

Figure 2. Velocity magnitude. 
The calculations show the vortex shedding frequency deviates from the experimental data [8, 9] at 
about 2%St < . The time averaged drag coefficient coincide the experimental date with an accuracy 
about 4%DC < . The evolution of the forces acting on the cylinder over time is shown in figure 3. 

a) b) 

 

Figure 3. The time dependence of the pressure and friction forces acting on the cylinder: a) the 
transverse pressure component; b) transverse friction component. 1 – BFM, 2– IBM. 
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3.2.  The flow of a non-Newtonian fluid in the annular channel, with a rotating inner cylinder 
The most advantageous use of the method of immersed boundaries is simulation of moving bodies. An 
example of such a problem is the calculation of the drill string rotation in a well. The flow of a non-
Newtonian fluid in an annular channel with a rotating inner cylinder is considered. For Herschel–
Bulkley fluid, the effective viscosity is determined by the ratio:  

( )0
n

vk= + ɺ ɺµ τ γ γ                                                                 (8) 

where 0τ  is a yield stress ɺγ  is the mean shear rate, vk  is the consistency parameter, and n  is the 

power-law index. The algorithm for calculating the steady-state flow of viscoplastic fluids in the 
annular channel is described in [11]. Two versions of the 2D model BFM and IBM with the ratio of 
the diameters of the inner and outer cylinder 0.5k =  and eccentricity 0.5ε =  was built. The grid in the 
cross section was constructed using the octo-tree method (see figure 4). Three grids consisting of 
12000, 36000 and 120000 cells were later built. The pressure drop deviation between BFM and IBM 
for the three options of grids was 6%, 2% and 1%, respectively. The flow rate was based on the axial 
Reynolds number Re 344=  and the angular velocity of rotation was set for the value of the Taylor 
number Ta 8100= . Figure 4 presents the fields of axial velocity and effective viscosity for the two 
variants of the test. 
 

a) 
b) 

c) 

   
 

/m s Pa s⋅  

Figure 4. a) Computational grid; b) axial velocity; c) viscosity fields for BFM (above), IBM (below). 

3.3.  Simulation of the flow in an annular channel with orbital motion of the inner cylinder 
A more complex type of movement of the inner cylinder is the combination of rotation around its own 
axis with angular velocity ω  and orbital motion around the center of the outer cylinder with angular 
velocity Ω  (see figure 5). A series of calculations was carried out for different ratios of the angular 
velocities of the internal cylinder with Newtonian fluid. The geometry of the test is the same as in the 
previous test.  
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Figure 5. Instant distribution of the velocity vector magnitude in the annular channel  
at different time instances. 

 
The ratio of the velocities was set by the ratio of the Reynolds number relative to the orbital motion 

and the Reynolds number relative to the rotation of the inner cylinder around its own axis: 
22Re ReΩ ; Re ; ,Re

O I
O

I

Riρ⋅ω⋅ρ ⋅ ⋅ =δλ = = µ µ                           (9, 10, 11) 

where δ  is the mean annular gap (O IR R− ) the difference between the radii of the outer and inner 
cylinder), µ  is the dynamic viscosity, IR  is the inner cylinder radius, OR  is the outer cylinder radius. 
The calculation results were compared with the results were obtained by Feng[12], which are obtained 
in a rotating reference frame. Comparison was made by means of dimensionless forcesFx , Fy where 

Fx is the force directed along the radius of the orbital motion to the center of rotation, Fy is the force 
directed tangentially to the path of the inner cylinder center, 

( )
( )

( )
( )2 2

;      
p s p s

x x y yF F F F
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Ri z Ri z

+ +
= =
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where , , ,p p s
y yx x

sF F F F  are the projections of pressure and friction forces on the corresponding direction, 

( )2
Ri zρ ω⋅ δ ⋅ ∆  is the dimensionless complex, z∆ is the length of the channel. The calculation results 

are shown in figure 6. They show that with increasing λ , radial and tangential forces monotonously 
increase. Radial force Fx  at small λ  has a centrifugal direction, and vice versa, it has centripetal 
direction with large λ . The similar situation is with tangential force Fy  – at 0.2λ <  the forces acting 
on the inner cylinder coincide with the orbital rotation direction, and vice versa. 

a) b) 

Figure 6. The value of the radial Fx  and tangential Fy  forces relative to the orbital motion  
1 – feng, 2 – calculation. 
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Conclusion 
The numerical method of immersed boundaries has been implemented, which makes it possible to 
effectively method the interaction of a fluid with a complex rheology and a body moving in it. The test 
results show good agreement with the experimental data an the results obtained in other modeling 
methods. Further development of the method will be aimed at modeling a two-phase medium. 
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