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Abstract. This paper presents the implementation of the immersed boundary method (IBM) for
grids consisting of arbitrary cells. This approach allows to combine the IBM with the body-
fitted method (BFM). The implementation is based on the combination of the "ghost-cell"

method and penalization method. The paper presents the IBM to determine the basic design

parameters and the results of the verification of the method for laminar and turbulent flow
regimes for both Newtonian and viscoplastic fluids. In the last test, the method was used to
simulate a flow in an annular channel with the orbital motion of the inner cylinder.

1. Introduction

The immersed boundaries method (IBM) allows to ddess time to prepare the numerical model and it
requires fewer grid cells for bodies of complex pg#sa than the body-fitted method (BF). The
disadvantages of the IBM include a significant nemiif additional operations required to determiree t
calculated geometric parameters; however, thisoggpr effective to simulate the flow of a moving
body.

When the IBM is applied a solid body is “immersdd”the existing computational grid, and
divides the grid into several subdomains — 1) tiea af the liquid, 2) the area of the body, andha
boundary of the body. In the cells that intersketthoundary of the body a volume force which leads
the liquid velocity in the cell to the velocity tfie body boundary is introduced. The IBM was first
proposed by Peskin in 1972 to simulate flow aroarfteart valve in Cartesian coordinates [1]. The
essence of the proposed method is to combine theri&u and Langrangian approaches: turbulent
fluid flow is described by a system of Reynoldsaqns on a fixed Cartesian grid, and the movable
"submerged" boundary is given in the form of massleangrangian points. The interaction between
the wall boundaries and the flow is given as a m@uorce in the momentum conservation equation,
which is given as a@-function of the distance from the center of thdeEwell to the Langrangian
point. Works [2—4] present a review of IBM and fitstructure interaction.

The immersed boundary method is mostly used foreSian grids, but in our research, the IBM for
grids with arbitrary cells is implemented. This eggech will allow the BF method (fixed body or
channel wall of a complex shape) with IBM (movingdlp). In our version of the method, we used a
combined approach of the “ghost-cell” method [5§ #me penalization method.

2. Methodology

2.1. Governing equations
The simulation of a viscous incompressible flowéscribed by the Navier-Stokes equations:
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wherev is the velocity vectom is the density,p is the pressure, ands the total stress tensdr,is the

force acting on the border and inside the bodyckwieads the velocity of the fluid to the speedhef
border. The turbulent characteristics are detemnoyetwo-equatiok - w SST model by Menter [6].

2.2. Body motion definition

The rigid body is determined by a closed surfade hody can move in space at a linear speed
and also rotate around a given center with angudocity @. Thus, the speed, of a point of the
body is determined by the following equation:

Vs :wxrs+vlin’ (3)

wherer, is the radius vector from the point to the cenfemotation.

2.3. Definition of the interaction force.

To definef , we use the combination of the “ghosts-cell” metlamd the penalization method. The
immersed boundary divides all cells into three gso(figure 1): 1) cells that are completely outside
the body, whereg =0; 2) cells that are completely inside the body, sehie=f__ , 3) cells that are
crossed by the border wheffes f

iner ?

bound *

Flllid :
° AQ?'C °
.n.".nrﬁ.nmn ;:IB B °
o .
S‘olid * ° Figure 1. The division of the calculation
domain by an immersed boundary.
Vg =V,
fbound :p lBAt i X (4)

where v, is the velocity value in the cell obtained by sofvthe momentum conservation equation,
At is the time stepy is the penalization parameter, is the velocity in the cell IB as shown in
figure 1, which is determined by the interpolatibetween points C and W. The penalization
parameter has to be specified in the simulatiorichvbould be beneficial since with proper tuning
accuracy could be improved. However, the paransdteuld not be too large, it can had to a linear
system with a very large stiffness. The Positiohpaints C and W are defined by the following
approach. Point W is the projection of point IBtbe boundary. Point C lies in a neighboring cell (A

on a straight line which goes through points W HhdTl he velocity value at point C is determined as
follows:

Ve =V, +0vidr 5)

where v, is the velocity in point AOvis the gradient velocity in the celly =r. -r, is the distance
from A to C. The linear interpolation is suitable for lamirenrd low Reynolds flow conditions [7]:
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Vg =———— — tVy (6)
where h is the distance between W and IB, is the distance between W and C. It should bednote
that point IB can be located both outside the sbbdy and inside it; in this casg, is taken with a
negative sign. Value,, is determined by the equation (3). The force gctin the inner celf, .. is

calculated samé,  , with the difference, =v_ . The specific dissipation of the kinetic energy of
turbulence is set for the version of a low-Reynatasdel of the turbulence at point IB:

Q):G—mz, (7)
G POy,

wherep is the molecular viscosity, is constant 0.075y, = % The turbulent parameters in the
cells that are inside the body are equal to null.

3. Testing

The IBM was vivificated follow tests: test 1 — netationary laminar flow past a two-dimensional
cylinder; test 2 — turbulent flow in a channel witbackward step; test 3 — fluid flow in an annular
channel, with a rotating inner cylinder; 4) test #luid flow in an annular channel, with orbital tiam

of the inner cylinder. For the first and secondsea comparison will be made with the experimental
data and the calculation data obtained by the BRthod. For the third one only with the calculations
data obtained by the BFM, and fourth with the claitons dataobtained by other researchers.

3.1. Non-stationary laminar flow around a two-dims@nal cylinder.

Two-dimensional unsteady flow around a cylinder wasulated. The Reynolds number was set to
100. Instant velocity magnitude is shown in fig@re

.I
T -

Figure 2. Velocity magnitude.
The calculations show the vortex shedding frequateyiates from the experimental data [8, 9] at
about St<2%. The time averaged drag coefficient coincide theeemental date with an accuracy
aboutC, <4%. The evolution of the forces acting on the cylindeer time is shown in figure 3.
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Figure 3. The time dependence of the pressure and fricoose$ acting on the cylinder: a) the
transverse pressure component; b) transversefricomponent. 1 — BFM, 2— IBM.
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3.2. The flow of a non-Newtonian fluid in the aanwehannel, with a rotating inner cylinder

The most advantageous use of the method of immémaadaries is simulation of moving bodies. An
example of such a problem is the calculation ofdhk string rotation in a well. The flow of a nen
Newtonian fluid in an annular channel with a ratgtinner cylinder is considered. For Herschel—
Bulkley fluid, the effective viscosity is determuhéy the ratio:

p=(z,+k ")y (8)

where 7, is a yield stresg/ is the mean shear ratk, is the consistency parameter, amds the

power-law index. The algorithm for calculating theady-state flow of viscoplastic fluids in the
annular channel is described in [11]. Two versiohthe 2D model BFM and IBM with the ratio of
the diameters of the inner and outer cylinder0.5 and eccentricity = 0.5 was built. The grid in the
cross section was constructed using the octo-trethod (see figure 4). Three grids consisting of
12000, 36000 and 120000 cells were later built. pilessure drop deviation between BFM and IBM
for the three options of grids was 6%, 2% and 18spectively. The flow rate was based on the axial
Reynolds numbeRe= 344 and the angular velocity of rotation was set fog value of the Taylor
number Ta=8100. Figure 4 presents the fields of axial velocityd affective viscosity for the two
variants of the test.

1.61.280.960.640.320 0.80.650.490.340.180.29

m/ s Palsk

Figure4. a) Computational grid; b) axial velocity; c) visty fields for BFM (above), IBM (below).

3.3. Simulation of the flow in an annular chanwih orbital motion of the inner cylinder

A more complex type of movement of the inner cyins the combination of rotation around its own
axis with angular velocityw and orbital motion around the center of the outdinder with angular
velocity Q (see figure 5). A series of calculations was edriout for different ratios of the angular
velocities of the internal cylinder with Newtoniélnid. The geometry of the test is the same asién t
previous test.
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Figure5. Instant distribution of the velocity vector magmie in the annular channel
at different time instances.

The ratio of the velocities was set by the ratithef Reynolds number relative to the orbital motion
and the Reynolds number relative to the rotatiothefinner cylinder around its own axis:

_Re, / . _pMm@F*/.R :pm)EIRV
A =R/ i Re, =P /“,GF . ©, 10, 11)

where & is the mean annular gaf{- R) the difference between the radii of the outer ameer
cylinder), p is the dynamic viscosityR is the inner cylinder radiusz, is the outer cylinder radius.

The calculation results were compared with theltesuere obtained by Feng[12], which are obtained
in a rotating reference frame. Comparison was nigdeeans of dimensionless forées Fywhere

Fxis the force directed along the radius of the athitotion to the center of rotatiofyis the force
directed tangentially to the path of the inner gér center,
(F2+5) (F+5)

PX=———F—"—; Fy=——F5—— 12
p(wlRi)* 3(Az Y p(wlRi)* 3Rz (12)

where F”,Ff,F?,F> are the projections of pressure and friction ferae the corresponding direction,

p(wlRi)* 8z is the dimensionless compleazis the length of the channel. The calculation fissul
are shown in figure 6. They show that with incregsi, radial and tangential forces monotonously

increase. Radial forc&X at smallA has a centrifugal direction, and vice versa, & bantripetal
direction with largex . The similar situation is with tangential for¢g — atA <0.2 the forces acting

on the inner cylinder coincide with the orbitalatibn direction, and vice versa.
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Figure 6. The value of the radigx and tangentiaFy forces relative to the orbital motion
1 —feng, 2 — calculation.



TPH-2019 IOP Publishing
Journal of Physics: Conference Series 1359 (2019) 012073  doi:10.1088/1742-6596/1359/1/012073

Conclusion

The numerical method of immersed boundaries has breplemented, which makes it possible to
effectively method the interaction of a fluid wahcomplex rheology and a body moving in it. The tes
results show good agreement with the experimeratd dn the results obtained in other modeling
methods. Further development of the method wilhinged at modeling a two-phase medium.
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