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ABSTRACT
The present study addresses the herbicidal activity and biological effects of the metribuzin (MET)
and tribenuron-methyl (TBM) herbicides used to control various weed species (Amaranthus retro-
flexus, Sinapis arvensis, and Leucanthemum maximum). The effects of the free herbicides and the
herbicides embedded in granules of degradable polymer poly-3-hydroxybutyrate [P(3HB)] blended
with birch wood flour were compared. Metribuzin, regardless of the form, caused 100% mortality
of the three weeds by day 21. The herbicidal activity of tribenuron-methyl was lower than that of
metribuzin, but the embedded TBM was superior to the free herbicide in the length and strength
of its action on the weeds. Both metribuzin forms dramatically decreased the main parameters of
fluorescence: maximum quantum yield of photosystem-II [Y(II)max], maximum quantum yield of
non-photochemical quenching [Y(NPQ)max], and maximum rate of non-cyclic electron transport
[ETRmax] and concentrations of chlorophyll a and b. The effect of the embedded TBM on the
photosynthetic activity of the weeds was lower in the first two weeks of the growth of herbicide-
treated plants but lasted longer than the effect of the free TBM and increased over time.
Embedding of metribuzin in the matrix of degradable blend did not decrease its herbici-
dal activity.
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Introduction

Herbicide applications inevitably result in excessively high
levels of chemicals in soil, posing health risks, causing some
plant species to develop resistance to the herbicides applied,
presenting threat to agroecosystems, disturbing their stabil-
ity, and endangering long-term soil fertility. Because herbi-
cides are used at enormous scale, playing a substantial part
in agriculture, the development and application of new-gen-
eration environmentally safe herbicide formulations is a pri-
ority for agrochemists, biotechnologists, and horticulturists.
A current research focus is to develop less toxic and more
selective pesticides and reduce application rates.

Much research effort has been devoted recently to
decreasing the risk of uncontrolled distribution and accumu-
lation of pesticides in the biosphere by developing environ-
mentally safe new-generation controlled release pesticide
formulations in which the active ingredient is either coated
by a layer or embedded in a matrix of a biodegradable
material. The main condition for constructing such formula-
tions is the availability of appropriate materials with the fol-
lowing properties:

1. compatibility with the environment and global bio-
sphere cycles, i.e. degradability;

2. safety for living organisms and their nonliving
environment;

3. long-term presence (for weeks and months) in the nat-
ural environment and controlled degradation followed
by formation of nontoxic products;

4. chemical compatibility with pesticides;
5. processability by available methods compatible with

processes of production of agrochemicals.

Materials investigated as candidates for constructing a
matrix for embedding pesticides include synthetic, non-
degradable polymers such as polystyrene, polyacrylamide,
polyethylene acrylate, polyamide, polyurethane, and polycya-
noacrylate. Studies published in recent years reported inves-
tigations of degradable materials that can be decomposed by
soil microflora without producing more contaminants, with
release of chemicals occurring gradually. These are such
materials as cellulose, agarose, dextran, carrageenan, starch,
chitosan, alginate, protein-containing gelatin, and albu-
min.[1] The shortcomings of these natural polymers are their
low mechanical strength and rapid hydrolysis in liquid
media, which is an obstacle to preparing sustained-release
formulations of agrochemicals.

Among biodegradable materials, special attention is given
to biopolymers synthesized by microorganisms in biotechno-
logical processes such as polyhydroxyalkanoates (PHAs).
These polymers are thermoplastic, mechanically strong, and
slowly degradable in biological media.[2] As these polymers
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decompose via truly biological degradation and do not
undergo hydrolysis in liquid media, the products made from
them may function, e.g. in soil, for months. The rates of
release and delivery of the active ingredient can be varied
within a wide range by controlling the degradation rate of
the PHA matrix, by using products of different shapes that
contain different amounts of preparations. The available lit-
erature data on using PHAs to construct environmentally
safe pesticide formulations are limited. However, poly-3-
hydroxybutyrate [P(3HB)] – the best studied and most com-
monly used PHA – has been successfully used to construct
slow-release pesticide formulations.[2] Metribuzin formula-
tions were prepared in the form of films, microgranules, and
microparticles based on P(3HB).[3] Those formulations were
found to be effective herbicides in experiments with
weed model.[4]

They were also used to control weeds in the wheat
stands.[5] In order to make PHA polymers, whose cost is
rather high now, more easily accessible and less expensive,
research was conducted in which fungicides were embedded
in matrices of degradable P(3HB) blended with natural
materials (peat, clay, and birch wood flour).[6,7]

One of the challenges in developing slow-release pesticide
formulations is maintaining the biological efficacy of the
active ingredient loaded into the matrix. Therefore, it is
necessary not only to develop the process of constructing
slow-release herbicide formulations but also to study their
biological activity in weed control relative to the herbicidal
activity of the free active ingredient. Plants affected by herbi-
cides and suffering photosynthetic stress should be investi-
gated to estimate the state of their photosynthetic apparatus,
chlorophyll fluorescence parameters, and the content of
chlorophyll-protein complexes. Herbicides were found to
slow down photosynthesis rate, decrease the contents of
green pigments and carotenoids, inhibit CO2 assimilation,
and impair plant nutrition and growth.[8]

These damages are caused not only by herbicides aimed
at photosynthesis (atrazine, metribuzin, etc.),[9] but also, as
reported in recent studies.[10] By such herbicides as glypho-
sate and imazethapyr, whose main targets are acetolactate
synthase and reactions of synthesis of branched-chain
amino acids.

The purpose of the present study was to investigate the
biological efficacy of the slow-release metribuzin and tribe-
nuron-methyl herbicides loaded into the matrix of degrad-
able poly-3-hydroxybutyrate blended with birch wood flour
in controlling different weed species, taking into account
weed mortality dynamics and inhibition of photosyn-
thetic activity.

Materials and methods

Herbicides

Two herbicides with different modes of action were studied:
metribuzin (MET) and tribenuron-methyl (TBM).

Metribuzin [4-amino-6-tert-butyl-3-methylthio-1,2,4-tria-
zin-5(4H)-one] is a systemic selective herbicide of the class
of 1,2,4-triazines, having a broad spectrum activity against

some dicots and grass weeds. MET has a long-lasting effect,
acting via both leaves and soil. The mode of action is based
on inhibiting the Hill reaction (water photolysis) and photo-
synthetic electron transport between primary and secondary
electron acceptors in Photosystem II. MET effectively pro-
tects soybean, maize, cereal, potato, and tomato crops from
annual dicots and grass weeds.

Tribenuron-methyl [methyl ester of 2-(6-methyl-4-
methoxy-1,3,5-triazin-2-yl(methyl) carbamoylsulfamoyl)
benzoic acid] is a systemic selective herbicide of the sulfony-
lurea family. The mode of action is based on inhibiting ace-
tolactate synthase, which takes part in biosynthesis of
branched-chain amino acids (valine, leucine, and isoleucine),
causing a decrease in the levels of these amino acids in plant
tissues followed by disruption of protein and nucleic acid
synthesis. TBM effectively protects cereal crops from dicots
and grass weeds.

The metribuzin and tribenuron-methyl herbicides used in
experiments with plants were supplied by Xi’anTai Cheng
Chem Co., Ltd (China); the content of the active ingredient
in metribuzin was 97.2% and in tribenuron-methyl � 95.5%

Materials for embedding herbicides

P(3HB) polymer samples were synthesized using the
Cupriavidus eutrophus B10646 strain and proprietary tech-
nology.[2] Polymer was extracted from cells with chloroform,
and the extracts were precipitated using hexane. The
extracted polymers were re-dissolved and precipitated again
3–4 times to prepare homogeneous specimens. The polymer
had the following properties: degree of crystallinity 75%,
melting point 176 �C, thermal decomposition temperature
287 �C, molecular weight (Mw) 590 kDa, and polydispersity
index 5.8.

A natural material, wood flour, was used as filler. Wood
flour was produced by grinding wood of birch (Betula pen-
dula Roth) using an MD 250-85 woodworking machine
(“StankoPremyer” Russia). Then it was dried at 60 �C for
120 h until it reached constant weight, and 0.5mm mesh
was used to separate the particle size fraction; degree of
crystallinity 26%; onset of thermal decomposition 220 �C.

Experimental herbicide formulations

The polymer and wood flour were pulverized by impact and
shearing action in ultra-centrifugal mill ZM 200 (Retsch,
Germany). To achieve high fineness of polymer grinding,
the material and the mill housing with the grinding tools
were preliminarily cooled at �80 �C for about 30min in an
Innova U101 freezer (NEW BRUNSWICK SCIENTIFIC,
U.S.). Grinding was performed using a sieve with 2-mm
holes at a rotor speed of 18000 rpm. The fractional compos-
ition of the polymer and filler powders was determined
using vibratory sieve shaker AS 200 control (Retsch,
Germany). Then, polymer powder was mixed with the filler
powder in benchtop planetary mixer SpeedMixer DAC 250
SP (Hauschild Eng., Germany); the blend time was 1min,
and the speed was 1000 rpm.
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Herbicide granules were prepared using polymer paste
wetted with ethanol and mixed with birch wood flour and
the herbicide in screw granulator Fimar (Italy). The formu-
lations contained the following percentages of the compo-
nents: P(3HB)/wood flour/herbicide � 50/30/20 (wt.%). The
solid granules were 3mm in diameter and 4 to 6mm long.
In the positive control, herbicides were applied to the soil as
solutions at concentrations equal to the concentrations
applied with granules.

Weeds

The following plant species were used as weeds: red-root
amaranth (Amaranthus retroflexus) – a widespread annual
spring herb, infesting tilled crops and grain crops (wheat,
rye, oat, barley, and corn) and occurring in kitchen gardens;
field mustard (Sinapis arvensis) – an annual plant, heavily
infesting spring grain fields; max chrysanthemum
(Leucanthemum maximum) – a perennial taproot herb,
growing 80 cm tall, infesting perennial grasses and various
annual crops, mainly grain crops.

Metribuzin is a broad-spectrum herbicide, effective
against red-root amaranth and field mustard. Tribenuron-
methyl suppresses broadleaf weeds, including various mus-
tard varieties.

Cultivation and evaluation of parameters of weeds
affected by herbicides

Weeds were grown in laboratory soil microecosystems in a
35-day experiment. The soil was collected at the field labora-
tory of Krasnoyarsk State Agrarian University, in the vicinity
of Krasnoyarsk (Russia). It was meadow-chernozem soil,
whose soil profile was similar to the profile of chernozem
soils with a thick humus-rich layer and loose granular struc-
ture. The soil was neutral, with low hydrolytic activity and
high contents of nitrogen, labile phosphorus, and exchange-
able potassium (Table 1).

The soil was collected from a plot that had not been
treated with pesticides, including metribuzin and tribe-
nuron-methyl. The seeds for the experiments were taken
from the collection of the Department of Terrestrial
Ecosystems of the Siberian Federal University. Seeds had

been collected in the vicinity of the city of Krasnoyarsk, in a
natural forest (mixed birch-pine forest), 20 km away from
the city. This area has never been used as agricultural land
and no pesticides have been used there. Agricultural land is
30–40 km away from the seed collection site. Thus, the
plants grown in the experimental systems could not have
developed resistance to these herbicides, and the effect of
the herbicides was their true biological effect.

Soil was placed into 500-cm3 plastic containers (400 g soil
per container), and plant seeds were sown in the soil (150 g
seeds per 1m2). Granules with embedded herbicides were
placed in close-meshed gauze bags and buried in the soil at
a depth of 1.5–2.0 cm simultaneously with sowing. The
application rates of MET and TBM corresponded to the rec-
ommended application rates of these herbicides: 400 g/ha
and 20 g/ha, respectively.[11] In the positive control, solu-
tions of unembedded herbicides were added to soil at rates
recommended for field application and corresponding to
herbicide concentrations in granules. The herbicides were
preliminarily dissolved in distilled water at room tempera-
ture on a shaker until complete dissolution was achieved,
and 100ml of the solution was added to the soil in each
container before seed sowing. The target concentrations of
herbicides embedded in the matrix were achieved by varying
the amounts of the granules buried in the soil. Plants were
grown in an environmental chamber (Fitotron-LiA-2,
Russia). The temperature, lighting, and soil moisture content
were controlled in the six-step mode: “night – early morning
– late morning – early afternoon – late afternoon – eve-
ning”. The temperature was varied between 10 �C by night
and 18 �C by day in the first seven weeks of the experiment
and between 14 �C by night and 22 �C by day in the follow-
ing five weeks. Lighting was varied between 0 and 300mmol/
m2/s, in 100mmol/m2/s increments. The lowest soil moisture
content was 50%.

Samples for analysis were collected weekly. Other indica-
tors of the state of the weeds were the time when the high-
est mortality rate was achieved and plant density (the
number of plants per 1m2). Weed plant mortality was
monitored by counting the number of the dead and living
weed plants in a container. At each time point, plants in
three containers were counted in each experiment. To study
photosynthesis reactions and determine pigments, three
leaves per plant were collected from at least three plants
per container.

Biological efficacy of the embedded herbicides was esti-
mated using corrected percent mortality, Ccor, derived from
modified Abbot’s formula,[12] which shows the decrease in
the number of weeds caused by application of herbicides
(percent of the initial infestation or the control) corrected
for the control:

Ccor ¼ 100�
B0
A0
�ak
bk

�100 (1)

where:
A0 is the number of weed plants per m2 to determine the
initial infestation rate in the treatment;
B0 – the same in the second and following counts;
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Table 1. Chemical characterization of soil (0–20 cm).

Parameter Value

pHH2O 7.2
Humus, % 10.7
Hydrolytic acidity, mmol/100 g 0.75
Total absorbed bases, mmol/100 g 71.0
Cation exchange capacity, mmol/100 g 71.8
Base saturation, % 99.0
Nitrate nitrogen, mg/kg 16.0
Ammonium nitrogen, mg/kg 10.1
Labile phosphorus, mg/kg 239.0
Exchangeable potassium, mg/kg 110.7
Exchangeable calcium, mmol/100 g 27.2
Exchangeable magnesium, mmol/100 g 4.3
Silt and clay content, % 64–65
Including: sand, % 35–36
Silt fraction, % 36–39
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ak – the number of weed plants per m2 to determine the ini-
tial infestation rate in the control;
bk – the same in the second and following counts.

Study of the effect of herbicides on plant
photosynthesis parameters

The effect of herbicides on the photosynthetic activity of
plants was studied using leaves of the weeds: rapid chloro-
phyll fluorescence was measured employing pulse amplitude
modulated fluorometers (PAM) (Walz, Effeltrich, Germany).
Before measurements, the leaves were dark adapted for
30min. Actinic light intensity was increased stepwise (0, 66,
90, 125, 190, 285, 420, 625, and 820� 10�6 M photo-
ns�m�2�s�1) at 10 s intervals. Fluorescence parameters were

measured at ambient temperature and humidity. The following
fluorescence parameters were measured: Y(II)max – maximum
quantum yield of Photosystem-II (PSII); Y(NPQ)max – max-
imum quantum yield of non-photochemical quenching;
ETRmax – maximum rate of non-cyclic electron transport.

Quantification of chlorophyll-protein complexes

To extract pigments of photosynthesis from fresh plant
material, a 40–60mg leaf sample (without midrib) was
placed into a 15-ml test tube. Five ml 95% ethyl alcohol
and 10mg CaCO3 powder were added, and the test tube
was plugged with a PE foam stopper. Pigments were
extracted in water bath at a temperature of 60 �C until the
leaf was completely bleached (usually for 20–30min).
Then, the test tubes were placed into a refrigerator for
12 h (þ4 �C) and left in the dark until pigment extraction
was completed and solution clarified. Pigments were
quantified by spectrophotometry. Optical density was
measured using a Specol-1300 spectrophotometer
(Germany). Concentrations of Ca and Cb chlorophylls and
total xanthophylls and carotenes Cxþc (mg/ml) were calcu-
lated using conventional formulas.[13] Pigment contents
were expressed as mg� g�1 fresh mass.

Statistical analysis

Results were expressed as the average from three parallel
experiments performed with triplicates and presented as the
mean ± SE. Statistical comparisons of the means between
each treatment and the control were performed using ana-
lysis of variance. Statistical probability (P) was set at 0.05.

Results and discussion

The effect of herbicides on weed mortality dynamics

Experimental formulations of both MET and TBM showed
herbicidal activity toward the weeds comparable or even
superior to the herbicidal activity of free MET and TBM
(Fig. 1).

The experiment with red-root amaranth, field mustard,
and max chrysanthemum showed that both herbicides inhib-
ited the growth of the three weeds. The herbicidal activity
was detected at day 7, and metribuzin was more effective
than tribenuron-methyl. The highest mortality rate of the
weeds was achieved earlier in the MET treatment than in
the TBM treatment (at day 14), when the abundance of
plants treated with MET was no more than 25%–30% of the
initial abundance; at day 28, all plants died.

A search of the literature on the efficacy of metribuzin
revealed that research mainly focused on biological effects of
different concentrations of this herbicide on various weed
species, but no comparison was made between the efficacy
and properties of the free and embedded herbicide.
Metribuzin is effective against various broadleaf weeds and
grasses, and traditional pre-emergence soil applications of
this herbicide in potato fields proved that it effectively
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Figure 1. Weed mortality dynamics (weeds as % of seedlings): Amaranthus ret-
roflexus, Sinapis arvensis, Leucanthemum maximum. Negative control (intact
plants without herbicide treatment); positive control (free metribuzin and tribe-
nuron-methyl); embedded herbicides: P(3HB)/wood flour/MET and P(3HB)/wood
flour/TBM.
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controlled Amaranthus retroflexus and Chenopodium album
without reducing potato yield.[14] The effects of different
metribuzin doses (105 to 525 g/ha) on red-root amaranth
(Amaranthus retroflexus L.) and field mustard (Sinapis
arvensis L.) were investigated in this study, showing that the
biomass of red-root amaranth was reduced by 90% when
MET was applied at the BBCH 12–15 and BBCH 16–19
growth stages, respectively, at a concentration of 525 g/ha.
The decrease in the biomass of S. arvensis in the same
growth stages, BBCH 12–15 and BBCH 16–19, occurred at
lower metribuzin concentrations (263 g/ha). Metribuzin was
used in maize fields to test its efficacy against the Portulaca
oleracea, Amaranthus retroflexus, and Echinochloa colonum
weeds, and the biomass of the weeds was reduced by 97.7%,
96.9%, and 97.2%, respectively.[15] These results were con-
sistent with the data reported by Medd et al.,[16] suggesting
that herbicide efficacy varied depending on the weed species.
In addition, weeds at the BBCH 12–15 growth stage were
found to be more sensitive to the effects of herbicides. This
finding is consistent with the conclusion made by
Riethmuller-Haage et al.,[17] suggesting that the metribuzin
dose necessary to control weeds varied depending on the
leaf area and number of leaves and that the effect of herbi-
cides became weaker as the plants were growing. A few
studies addressed the relationship between the herbicidal

activity and the form of herbicide delivery. Experiments
with polycaprolactone nanocapsules with the atrazine herbi-
cide, whose mode of action is similar to that of metribuzin
– inhibition of plant photosynthesis, showed higher efficacy
of encapsulated atrazine compared to the free herbicide used
for post-emergence treatment of Amaranthus viridis and
Bidens pilosa.[18]

Experiments with tribenuron-methyl showed that, regard-
less of its form, its herbicidal action toward field mustard
and max chrysanthemum was weaker than the effect of
MET (Fig. 1). Only the mortality rate of red-root amaranth
reached its peak at the same dates as in the MET experi-
ment. The highest mortality rates of the other weed species
(field mustard and max chrysanthemum) were achieved
later. At day 21, the abundances of both weed species were
reduced to 50%–60%; a week later (day 28), weed mortality
did not reach 100%, in contrast to the MET treatments. The
abundance of the remaining weed plants was rather high,
between 25%–35% and 40%–50%. A significant difference
was noted between the herbicidal activities of the embedded
TBM and the unembedded herbicide. The embedded TBM
was more effective, killing all weed plants by day 35. At the
same time point, in the ecosystems with the free TBM,
5%–10% field mustard and max chrysanthemum plants still
remained alive.
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Figure 2. Photographs of laboratory ecosystems with different forms of metribuzin and tribenuron-methyl: 1 – negative control (intact plants, with no herbicides);
free herbicides (positive control): 2 – metribuzin and 3 – tribenuron-methyl; experimental formulations: 4 – P(3HB)/wood flour/MET and 5 – P(3HB)/wood
flour/TBM.
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The latest literature data suggest that the effect of tribe-
nuron-methyl, like the effect of metribuzin, varies depending
on the target weed species and the time and rate of herbi-
cide application. Gherekhloo et al.[19] described the dose-
dependent effect of TBM on different generations of Sinapis
arvensis and showed that as plants became more resistant,
the standard dose of TBM (15 g/ha) needed to be increased
by 2.2–16.8 times. Similar results were obtained in another
study of TBM effect on Sinapis arvensis.[20] TBM was found
to be less effective in weed control than triazine and chloro-
triazine herbicides.[21] However, the ability of embedded or
free sulfonylurea herbicides to inhibit growth and develop-
ment of various weeds was confirmed in a number of stud-
ies,[22] including studies performed with such weeds as
Amaranthus tuberculatus, Amaranthus palmeri, and
Amaranthus spp.[23]

Biological efficacy of embedded herbicides

The herbicidal efficacy of different forms of herbicides and
the dissimilarities between the effects of MET and TBM and
their embedded and unembedded forms are clearly seen in
the photographs of the weed stands taken at different time
points of the experiment (Fig. 2). In the MET treatments,
no weeds can be seen at the end of the experiment while in
the TBM treatments, some of the field mustard and max
chrysanthemum plants remained alive, and their abundances
were different in the ecosystems with the free and embedded
TBM.

Results are summarized in Table 2, which shows the
dynamics of biological efficacy determined for the experi-
mental formulations of metribuzin [P(3HB)/wood flour/
MET] and tribenuron-methyl [P(3HB)/wood flour/TBM]
compared to the effects of the free herbicides and relative to
the abundance of weed plants in the negative control. At
day 28, the biological efficacy of the embedded MET was
100% in the red-root amaranth, field mustard, and max
chrysanthemum stands. The biological efficacy of the
embedded TBM was generally somewhat lower than the effi-
cacy of the embedded MET: 97.1% for red-root amaranth,

70% for field mustard, and 63% for max chrysanthemum at
day 28. The herbicidal activity of free TBM was inferior to
that of the experimental formulations, and at day 28, the
biological efficacy of free TBM was 88.0% for red-root amar-
anth and slightly above 40% for field mustard and max
chrysanthemum. The somewhat lower herbicidal activity of
TBM may be associated with the well-known ability of this
herbicide to be metabolized in higher plant tissues to yield
compounds that are not toxic to plants. Thus, it is very
important to be able to prolong and enhance its effects by
loading it into a degradable matrix.

Experiments showed that embedding of the herbicides
enhanced their activity toward the weeds rather than
decreased it.

Functional activity of the photosynthetic apparatus of
weeds affected by herbicides

The study of the effect of the free and embedded metribuzin
on chlorophyll fluorescence parameters in different weed
species showed that both MET forms considerably inhibited
the photosynthetic apparatus of the three weed species com-
pared to the negative control (Fig. 3). At day 14, the values
of the fluorescence parameters (Y(II)max and ETRmax) in dif-
ferent species dropped by a factor of 2 to 8 relative to the
negative control. Then, both parameters continued declining,
and at day 21, they reached almost zero level. The reason
for such dramatic inhibition of plant photosynthetic activity
by metribuzin is the well-known negative effect of this
herbicide on photosynthesis reactions.[10, 24]

The decrease in the photosynthesis parameters, Y(II)max

and ETRmax, of the weeds affected by MET may be directly
related to the increase in concentration of hydrogen perox-
ide, which is a strong inhibitor of photosynthesis: even low
H2O2 concentrations inhibit CO2 fixation by oxidizing thiol
groups of some enzymes in the Calvin cycle.[25] The
decrease in ETR may be associated with the decrease in the
ascorbate pool, which in turn impairs antioxidant protection
of cells.[10]

The maximum quantum yield of non-photochemical
quenching, Y(NPQ)max, in the plants decreased insignifi-
cantly at day 14, approaching zero at day 21, similar to
parameters Y(II)max and ETRmax (Fig. 3). NPQ is directly or
indirectly related to light harvesting by photosynthetic
antenna complexes, their structure, transfer of the captured
energy to reaction centers, electron transport, proton trans-
port across the membrane, ATPase activity, and carbon
assimilation.[26–28] Thus, metribuzin, regardless of its deliv-
ery form, interrupted the key processes of photochemistry in
the weeds, as evidenced by the dynamics of parameters of
photosynthetic activity – Y(II)max, ETRmax, and Y(NPQ)max.
A similar decrease in the photosynthesis variables was
observed in the experiments with MET-treated wheat
plants.[8] Qien et al.[29] reported the effects of sublethal
doses of atrazine (Atr) and methyl viologen (MV) on the
photosynthetic electron transport in Arabidopsis thaliana.
Four herbicides (paraquat, norflurazon, flazasulfuron, and
atrazine) used in experiment with Lemna minor inhibited
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Table 2. Biological efficacy (Ccor) of the P(3HB)/wood flour/MET and P(3HB)/
wood flour/TBM experimental formulations compared to the efficacy of free
metribuzin and tribenuron-methyl.

Treatment/control

Biological efficacy Ccor (%)

14 day 21 day 28 day

Amaranthus retroflexus
Control MET (400 g/ha) «þ» 66.7 ± 5.2 95.0 ± 4.2 100.0
Control TBM (20 g/ha) «þ» 44.8 ± 3.6 64.0 ± 4.0 88.0 ± 4.2
P(3HB)/wood flour/MET 57.1 ± 4.3 90.0 ± 3.7 97.5 ± 2.1
P(3HB)/wood flour/TBM 53.3 ± 4.7 67.0 ± 5.4 92.0 ± 3.4
Sinapis arvensis
Control MET (400 g/ha) «þ» 60.5 ± 5.0 71.4 ± 3.3 100.0
Control TBM (20 g/ha)«þ» 11.6 ± 1.2 38.1 ± 2.6 45.0 ± 2.1
P(3HB)/wood flour/MET 65.1 ± 5.6 83.3 ± 4.0 100.0
P(3HB)/wood flour/TBM 18.6 ± 1.8 52.4 ± 3.7 70.0 ± 3.4
Leucanthemum maximum
Control MET (400 g/ha) «þ» 64.3 ± 5.3 70.4 ± 3.8 100.0
Control TBM (20 g/ha) «þ» 28.6 ± 1.7 33.3 ± 2.2 40.7 ± 2.5
P(3HB)/wood flour/MET 71.4 ± 5.9 85.2 ± 3.0 100.0
P(3HB)/wood flour/TBM 42.9 ± 3.8 55.6 ± 3.3 63.0 ± 3.9
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carotenoids, and interrupted protein biosynthesis, blocking
electron transport of PSII.[30] Maximum quantum yield
decreased when the B. pilosa weed and soybean (Glycine
max) were treated with a commercial formulation of atra-
zine and the herbicide encapsulated in nanocapsules of
poly(e-caprolactone).[31] An ETR decrease was detected after
atrazine treatment of maize, weeds, and Calophyllum brasi-
liense.[32] Application of nanocapsules with atrazine

decreased Y(II) and ETR in the Amaranthus viridis and
Bidens pilosa weeds.[33]

The effect of tribenuron-methyl on photosynthetic activ-
ity of weeds is more complex and controversial. Herbicides
based on sulfonylurea, containing TBM as the active ingredi-
ent, do not directly affect the photosynthesis system but
rather impact the function of acetolactate synthase (ALS).
The adverse effects of sulfonylureas, inhibiting ALS, such as
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Figure 3. Changes in chlorophyll fluorescence parameters of weeds affected by different forms of metribuzin: Control (þ) – positive control (free MET); MET
(Granules) – experimental herbicide formulation, P(3HB)/wood flour/MET; Control (�) – negative control (intact plants).
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chlorosis, necrosis, and inhibition of growth of plants were
described by Agostinetto et al.[8] Relatively recent research
showed that many of the effects produced by ALS inhibiting
herbicides were associated with biogenesis of ribosomes, sec-
ondary metabolism, cell wall modification, and cell
growth.[34,35] For instance, the glyphosate can affect other
physiological processes in the plant.[34] Numerous studies
demonstrated decreases in the photosynthetic rate of plants

following treatment with glyphosate.[36,37] Moreover, glypho-
sate can indirectly affect photosynthesis by inhibiting chloro-
phyll biosynthesis or inducing chlorophyll degradation,[38]

decreasing stomatal conductance,[39] and provoking nutri-
tional disturbances.[40] Measurements of chlorophyll fluores-
cence parameters in weeds are shown in Figure 4.
Experiments with field mustard and red-root amaranth
demonstrated a considerable inhibitory effect of tribenuron-
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Figure 4. Changes in chlorophyll fluorescence parameters of weeds affected by different forms of tribenuron-methyl: Control (þ) – positive control (free TBM); TBM
(Granules) – experimental herbicide formulation, P(3HB)/wood flour/TBM; Control (�) – negative control (intact plants).
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methyl on photosynthesis and a decrease in Y(II)max and
ETRmax. The photoactivity of the field mustard plants was
the least stable when affected by tribenuron-methyl: the
Y(II)max and Y(NPQ)max of this plant considerably
decreased, in contrast to ETRmax, at day 14 in the positive
control (with free TBM). At the same time, Y(II)max,
Y(NPQ)max, and ETRmax in experiments with red-root amar-
anth and max chrysanthemum did not change significantly
during the experiment. The reduction in Y(II)max suggested
substantial damage to the photosynthetic apparatus of red-
root amaranth and, especially, field mustard. There are lit-
erature data suggesting that in some plants, e.g., in Radix
isatidis, TBM causes a decrease in Y(II) and ETR in PSII.[25]

Trace concentrations of imazethapyr (ALS inhibitor) caused
a dramatic increase in reactive oxygen species (ROS) in
A. thaliana.[29]

In experiments with max chrysanthemum, TBM consid-
erably decreased ETRmax and somewhat increased
Y(NPQ)max relative to the intact plants. TBM did not affect
the Y(II)max of max chrysanthemum, and it was similar to
the control level during the experiment. Similar results
(except a decrease in Y(NPQ)) were obtained after treating
cornflower with tribenuron-methyl: no significant changes
were observed in Y(II) but ETR and Y(NPQ) decreased.[34]

Thus, differences in changes of parameters Y(II)max,
Y(NPQ)max, and ETR suggest that application of the free
TBM causes a pronounced response in most plants in the
early phase of the experiment but it usually becomes less
intense later. By contrast, the embedded TBM produces a
somewhat delayed effect, which becomes stronger by the
middle of the experiment and reaches its peak over time.

The effect of herbicides on the contents of
photosynthesis pigments

Another important indicator of plant photosynthetic activity,
along with chlorophyll fluorescence parameters, is the state
of chlorophyll-protein complexes.

The study of photosynthetic activity of weeds treated
with the free and embedded herbicides included analysis of
changes in chlorophyll a, b and carotenoid contents in
chlorophyll-protein complexes. The pigment contents of
different plant species treated with free and embedded
herbicides had similar patterns of change. Regardless of
the herbicide used, its form, and plant species treated,
chlorophyll a and b increased as the plants were growing
and developing, but the pattern of change of carotenoids
was more intricate. However, concentrations of the pig-
ments varied significantly depending on the plant species.
Intact and herbicide-treated plants of two species (Sinapis
arvensis and Leucanthemum maximum) contained almost
twice as high concentrations of the green pigments and
carotenoids compared with Amaranthus retroflexus (Table
3). Changes in the pigment concentrations were compared
in the experiments with herbicides that had different
modes of action (metribuzin and tribenuron-methyl) and
with different forms of the herbicides (free and embedded
ones) (Table 3). Both herbicides caused a decrease in
chlorophyll a and b relative to the intact plants, regardless
of the herbicide form, and the patterns of change were
similar while quantitative changes differed somewhat. The
greatest decrease in chlorophyll a was 53% and chloro-
phyll b 46% in Sinapis arvensis at day 14 in the experi-
ment with the free MET.

In contrast to the green pigments, carotenoid contents of
all weed species were quantitatively similar in the intact and
herbicide-treated plants. As plants developed, carotenoid
contents increased in all species in the experiments with
both free and embedded MET and TBM (Table 3).

Thus, both free and embedded MET and TBM caused a
quantitatively similar decrease in chlorophyll a and b in
various weed species compared to intact plants. The
decrease in concentrations of photosynthesis pigments in
plants treated with herbicides is usually attributed to the
damage to the chlorophyll synthesis system and increased
degradation of pigments, which is also caused by natural
aging of plants.[38] This is consistent with the available lit-
erature data on the effects of some herbicides on plants. For
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Table 3. Changes in photosynthesis pigment contents of weeds treated with the free and embedded metribuzin and tribenuron-methyl.

Chlorophyll a, mg/g Chlorophyll b, mg/g Carotenoids, mg/g

14 day 21 day 28 day 14 day 21 day 28 day 14 day 21 day 28 day

Amaranthus retroflexus
Control «�» (no herbicide applied) 0.34 ± 0.05 0.79 ± 0.05 1.56 ± 0.03 0.13 ± 0.02 0.31 ± 0.04 0.52 ± 0.03 0.08 ± 0.03 0.20 ± 0.02 0.43 ± 0.03
Control TBM «þ» 0.23 ± 0.02 0.75 ± 0.05 1.40 ± 0.03 0.08 ± 0.02 0.26 ± 0.03 0.47 ± 0.03 0.06 ± 0.02 0.22 ± 0.02 0.38 ± 0.03
P(3HB)/wood flour/TBM 0.22 ± 0.02 0.56 ± 0.04 1.30 ± 0.03 0.08 ± 0.02 0.23 ± 0.03 0.44 ± 0.03 0.06 ± .0.01 0.13 ± 0.01 0.34 ± 0.02
Control MET «þ» 0.33 ± 0.05 0.75 ± 0.05 — 0.12 ± 0.03 0.26 ± 0.03 — 0.08 ± 0.02 0.22 ± 0.02 —
P(3HB)/wood flour/MET 0.30 ± 0.04 0.51 ± 0.04 — 0.11 ± 0.02 0.21 ± 0.02 — 0.07 ± 0.02 0.19 ± 0.02 —

Sinapis arvensis
Control «�» (no herbicide applied) 0.76 ± 0.04 1.40 ± 0.06 1.65 ± 0.05 0.26 ± 0.03 0.57 ± 0.04 0.67 ± 0.04 0.16 ± 0.02 0.38 ± 0.04 0.43 ± 0.03
Control TBM «þ» 0.47 ± 0.03 1.32 ± 0.03 1.52 ± 0.03 0.18 ± 0.02 0.53 ± 0.03 0.62 ± 0.03 0.16 ± 0.02 0.34 ± 0.02 0.38 ± 0.02
P(3HB)/wood flour/TBM 0.44 ± 0.04 1.27 ± 0.04 1.48 ± 0.03 0.16 ± 0.02 0.50 ± 0.03 0.58 ± 0.03 0.13 ± 0.02 0.33 ± 0.03 0.36 ± 0.03
Control MET «þ» 0.36 ± 0.03 1.24 ± 0.03 — 0.14 ± 0.02 0.50 ± 0.02 — 0.11 ± 0.01 0.34 ± 0.03 —
P(3HB)/wood flour/MET 0.43 ± 0.03 0.94 ± 0.03 — 0.18 ± 0.02 0.44 ± 0.03 — 0.13 ± 0.02 0.28 ± 0.02 —

Leucanthemum maximum
Control «�» (no herbicide applied) 0.63 ± 0.05 1.03 ± 0.06 1.16 ± 0.07 0.23 ± 0.03 0.39 ± 0.03 0.42 ± 0.03 0.13 ± 0.02 0.24 ± 0.03 0.27 ± 0.03
Control TBM «þ» 0.42 ± 0.04 0.95 ± 0.05 1.02 ± 0.03 0.18 ± 0.02 0.36 ± 0.02 0.40 ± 0.03 0.12 ± 0.02 0.21 ± 0.01 0.25 ± 0.03
P(3HB)/wood flour/TBM 0.41 ± 0.04 0.92 ± 0.05 0.95 ± 0.02 0.17 ± 0.03 0.35 ± 0.02 0.35 ± 0.02 0.11 ± 0.01 0.20 ± 0.02 0.23 ± 0.02
Control MET «þ» 0.31 ± 0.03 0.84 ± 0.03 — 0.15 ± 0.02 0.34 ± 0.03 — 0.09 ± 0.01 0.22 ± 0.02 —
P(3HB)/wood flour/MET 0.36 ± 0.03 0.82 ± 0.03 — 0.17 ± 0.01 0.33 ± 0.02 — 0.11 ± 0.01 0.20 ± 0.01 —
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example, a study by Qian et al.[29] showed a strong effect of
trace concentrations of imazethapyr (an ALS inhibitor) on
A. thaliana plants and a decrease in chlorophyll synthesis.
Treatment of rape with amidosulfuron (an ALS inhibitor)
also resulted in a considerable chlorophyll decrease.[35]

Treatment of willow with the glyphosate-based herbicide
caused a decrease in chlorophyll concentrations and an
increase in carotenoid concentrations at day 7, followed by a
decrease.[41] An increase in carotenoids was observed in
Centaurea cyanus L. biotopes treated with tribenuron-
methyl.[34] Carotenoids usually take part in protection from
oxidative damage by detoxifying oxygen singlets produced
by photosynthesis or enzymatic transformation of other
ROS into oxygen singlets.[42] The present study suggests that
findings obtained in research of photosynthetic activity of
plants using chlorophyll fluorescence parameters have high
information value.

Conclusion

The study of the efficacy of the free and embedded forms of
metribuzin and tribenuron-methyl in controlling various
weeds showed that embedding of the herbicides in degrad-
able matrix did not decrease their activity but prolonged
their action and, in some cases, even enhanced their efficacy.
Embedded MET, which caused 100% mortality of the weeds,
was found to be the more effective herbicide. The herbicidal
activity of the embedded TBM was superior to its activity in
the free form: the embedding of this herbicide, which is
quickly inactivated and metabolized in plant tissues,
enhanced and prolonged its action. The study showed that
the herbicides decreased the main parameters of fluores-
cence [Y(II)max, Y(NPQ)max, and ETR] and concentrations
of photopigments. Comparison of the free and embedded
MET did not reveal any differences between qualitative and
quantitative changes in fluorescence parameters of the vari-
ous plants affected by the two forms. The effect of the
embedded TBM was somewhat delayed in the early phase of
the experiment but lasted longer than the effect of the free
TBM and increased over time.
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