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Abstract. A new C0 Hermite element of degree 3 on a cuboid is proposed for the three-dimensional Poisson equation. A feature
of the element is that it allows one to apply the collocation technique. As a result, the dimension of the system of equations is
reduced without deterioration of the convergence order. Numerical results confirm high efficiency of the proposed method.

INTRODUCTION

C0 Hermite finite elements can be applied when solving second order partial differential equations with a sufficiently
smooth solution. Contrary to fourth order equations, in this case a weak solution is not required to have continuous
first order derivatives.

The construction of C0 Hermite elements is easier in comparison with C1 ones. Examples of the most popular
Hermite finite elements can be found in [1]. The Bogner-Fox-Schmit rectangle [2] seems to be the simplest version
of C1 finite element in 2D. In [3, 4] 2D and 3D C1 finite elements of the Bogner-Fox-Schmit type are proposed and
studied. The advantage of rectangular elements in comparison with simplicial ones is that their basis functions are
tensor products of one-dimensional polynomials. So, the simplicial C1 finite elements are of still more complicated
structure and often are difficult to implement even in 2D (see, for example, the Argyris triangle [1, 5]). In 3D, the
development of simplicial finite elements presents severe difficulties [6]. In [7] some C1 finite elements of high degree
on tetrahedron are constructed and their approximation properties are studied. In [8] composite C1 triangular finite
elements (macroelements) are discussed and a composite C1 tetrahedral element is proposed.

In comparison with Lagrange finite elements, Hermite finite elements of the same degree (and, hence, providing the
same convergence order) result in a system of linear algebraic equations of considerably smaller dimension [9]. In [10,
11] we propose and study a two-dimensional rectangular Hermite element, which permits the collocation technique
for some equations. Requiring the residual to vanish at the nodes, we can express one degree of freedom in terms of
other ones from the original equation and eliminate the related equations from the discrete system. This enables one
to reduce still further the dimension of the system of equations without reducing the order of convergence.

In the paper, we generalize this approach to the three-dimensional Poisson equation. We propose a C0 Hermite
element of degree 3 on a cuboid, whose degrees of freedom involve the values of a function and its second-order
derivatives with respect to each variable at the vertices of the cuboid. To construct the reduced system, we eliminate
the unknowns being the values of the second order derivative with respect to one variable. In addition, we perform
some elementary manipulations to bring the matrix of the reduced system to symmetric form. We also propose an
auxiliary Hermite element of lower degree with the following property: the matrix of the system of the finite element
method for the auxiliary element coincides with the symmetrized matrix of the reduced system. This proves that the
matrix of the reduced system is nonsingular and simplifies the calculation of its entries.

Numerical experiments demonstrate that the elimination of a part of unknowns and, as a result, reducing the dimen-
sion of the system of equations by a factor of 1/4 retain the order of convergence of an approximate solution.

NOTATIONS

Let Ω = (0,H1)× (0,H2)× (0,H3) ⊂ R3 be a cuboid with the boundary Γ. To construct a uniform partition Th, we
subdivide Ω̄ into N1 ×N2 ×N3 closed cuboids by the planes

x = ih1, y = jh2, z = kh3, i = 0, ...,N1, j = 0, ...,N2, k = 0, ...,N3



where hs = Hs/Ns, s = 1,2,3. Denote h = max{h1,h2,h3}.
For functions u, v defined and measurable on Ω, introduce the inner product and the induced norm:

(u,v) =
∫
Ω

uvdΩ, |u|0,Ω = (u,u)1/2.

Denote by L2(Ω) the space of all functions u defined and measurable on Ω with the finite norm |u|0,Ω. Introduce also
the semi-norm

|u|s,Ω =

(
∑

i+ j+k=s

∣∣∣∣ ∂ su
∂xi∂y j∂ zk

∣∣∣∣2
0,Ω

)1/2

.

Denote by Hs(Ω) the space of all functions u defined and measurable on Ω together with their partial derivatives up
to order s with the finite norm [12]

∥ u ∥s,Ω= (|u|20,Ω + |u|21,Ω + ...+ |u|2s,Ω)1/2.

Denote by Pk the space of all polynomials in three variables up to degree s:

∑
0≤i+ j+k≤s

ai, j,kxiy jzk.

Define a “reference” finite element as a triple (ê, P̂, Σ̂) where ê is a “reference” cell, P̂ is a space of polynomials
defined on ê, and Σ̂ is a set of functionals called degrees of freedom (DoF).

A THREE-DIMENSIONAL CUBIC HERMITE ELEMENT

In [10, 11] we present a two-dimensional cubic Hermite element with second-order derivatives in the set of DoF. Now
we propose its three-dimensional version.

The “reference” element is defined as follows:

ê = [0,1]3,

P̂ = span{1, x̂, ŷ, ẑ, x̂2, ŷ2, ẑ2, x̂ŷ, ŷẑ, x̂ẑ, x̂3, ŷ3, ẑ3, x̂2ŷ, x̂ŷ2, ŷ2ẑ, ŷẑ2, x̂2ẑ, x̂ẑ2, x̂ŷẑ, x̂3ŷ, x̂3ẑ, x̂2ŷẑ, x̂ŷ3, ŷ3ẑ, (1)

x̂ŷ2ẑ, x̂ẑ3, ŷẑ3, x̂ŷẑ2, x̂3ŷẑ, x̂ŷ3ẑ, x̂ŷẑ3},
Σ̂ = {ψ̂0

i (p) = p(âi), ψ̂1
i (p) = pxx(âi), ψ̂2

i (p) = pyy(âi), ψ̂3
i (p) = pzz(âi), i = 1, . . . ,8, ∀ p ∈ P̂}.

where âi, i = 1, . . . ,8 are the nodes of the element which coincide with the vertices of ê and are numbered as shown
in Fig. 1. Observe that P̂ ⊃ P3, dim P̂ = card Σ̂ = 32.

It is easy to verify that the Lagrange basis of element (1) is of the form

φ̂0
1 := (1− x̂)(1− ŷ)(1− ẑ); φ̂0

3 := x̂ŷ(1− ẑ); φ̂0
5 := (1− x̂)(1− ŷ)ẑ; φ̂0

7 := x̂ŷẑ;
φ̂1

1 := λ (x̂)(1− ŷ)(1− ẑ); φ̂1
3 := µ(x̂)ŷ(1− ẑ); φ̂1

5 := λ (x̂)(1− ŷ)ẑ; φ̂1
7 := µ(x̂)ŷẑ;

φ̂2
1 := (1− x̂)λ (ŷ)(1− ẑ); φ̂2

3 := x̂ µ(ŷ)(1− ẑ); φ̂2
5 := (1− x̂)λ (ŷ)ẑ; φ̂2

7 := x̂ µ(ŷ)ẑ;
φ̂3

1 := (1− x̂)(1− ŷ)λ (ẑ); φ̂3
3 := x̂ŷλ (ẑ); φ̂3

5 := (1− x̂)(1− ŷ)µ(ẑ); φ̂3
7 := x̂ŷ µ(ẑ);

φ̂0
2 := x̂(1− ŷ)(1− ẑ); φ̂0

4 := (1− x̂)ŷ(1− ẑ); φ̂0
6 := x̂(1− ŷ)ẑ; φ̂0

8 := (1− x̂)ŷẑ;
φ̂1

2 := µ(x̂)(1− ŷ)(1− ẑ); φ̂1
4 := λ (x̂)ŷ(1− ẑ); φ̂1

6 := µ(x̂)(1− ŷ)ẑ; φ̂1
8 := λ (x̂)ŷẑ;

φ̂2
2 := x̂λ (ŷ)(1− ẑ); φ̂2

4 := (1− x̂)µ(ŷ)(1− ẑ); φ̂2
6 := x̂λ (ŷ)ẑ; φ̂2

8 := (1− x̂)µ(ŷ)ẑ;
φ̂3

2 := x̂(1− ŷ)λ (ẑ); φ̂3
4 := (1− x̂)ŷλ (ẑ); φ̂3

6 := x̂(1− ŷ)µ(ẑ); φ̂3
8 := (1− x̂)ŷ µ(ẑ)

(2)

where λ (t) := t(1− t)(t −2)/6, µ(t) := t(t2 −1)/6.
For the partition Th, the usual affine mapping of the “reference” element onto an elementary cell [xi,xi + h1]×

[y j,y j +h2]× [zk,zk +h3] is of the form

x = xi +h1x̂, y = y j +h2ŷ, z = zk +h3ẑ. (3)



FIGURE 1. The “reference” element. A double arrow shows the DoF being the value of the second-order derivative in the
corresponding direction.

Since P̂ ⊃ P3, for the interpolant ũI of a function u ∈ H4(Ω) on the partition Th, we have the usual accuracy
estimates [1, 13]

|u− ũI |0,Ω ≤ ch4 ∥ u ∥4,Ω,

∥ u− ũI ∥s,Ω≤ ch4−s ∥ u ∥4,Ω, s = 1,2

which define the convergence order of an approximate solution. From here on, c denotes a positive constant indepen-
dent of u and h.

As in the case of the two-dimensional version, finite element (1) enables one to apply the collocation technique for
some partial differential equations, in particular, for the Poisson equation. This results in reducing the dimension of
the discrete problem.

A DISCRETE PROBLEM

Without loss of generality, for simplicity sake we assume that Ω = (0,1)3. Consider the problem

−∆u = f in Ω, (4)
u = 0 on Γ (5)

where ∆ = ∂ 2/∂x2 +∂ 2/∂y2 +∂ 2/∂ z2 is the Laplacian, f ∈ H2(Ω).
For (4)–(5) we construct the standard scheme of the finite element method using Hermite element (1). Notice that

we have N1 = N2 = N3 = N, h1 = h2 = h3 = h. An approximate solution of (4)–(5) has the form

ũh =
N−1

∑
i, j,k=1

ũh(ωi, j,k)φ0
i, j,k(x,y,z) (6)

+ h2
N

∑
i, j,k=0

(
ũh

xx(ωi, j,k)φ1
i, j,k(x,y,z)+ ũh

yy(ωi, j,k)φ2
i, j,k(x,y,z)+ ũh

zz(ωi, j,k)φ3
i, j,k(x,y,z)

)
where ωi, j,k = (xi,y j,zk), xi = ih, y j = jh, zk = kh; the unknown coefficients ũh(ωi, j,k), ũh

xx(ωi, j,k), ũh
yy(ωi, j,k), and

ũh
zz(ωi, j,k) are the values of the approximate solution and the approximate values of the second-order derivatives of the

solution of (4)–(5) at the grid nodes, respectively. The basis functions φα
i, j,k(x,y,z), α = 0, . . . ,3 of the finite element

space are obtained from basis functions (2) of the “reference” element with the help of the affine mapping of the form
(3).

For the unknown coefficients of (6) we have a system of linear algebraic equations. The number of equations as
well as the number of unknowns equals to 4Nint where Nint = (N −1)3 is the number of interior nodes. The values of
ũh, ũh

xx, ũh
yy, and ũh

zz, at the boundary nodes coincide with those of the exact solution and are determined from (4)–(5).



The matrix of the system can be written in a block form

A =

 A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

 (7)

where Aα,β , α,β = 0, . . . ,3 are Nint ×Nint blocks with the entries(
Aα,β

)
i, j,k,p,q,s = a(φβ

p,q,s,φα
i, j,k) i, j,k, p,q,s = 1, . . . ,N −1 (8)

and the bilinear form in the right-hand side of (8) is as follows:

a(v,w) =
∫
Ω

(vxwx + vywy + vzwz) dΩ. (9)

Observe that Aα,β = AT
β ,α , i.e., matrix (7) is symmetric.

Thus, the system of the finite element method consists of four groups of equations

A00Uh
0 +A01Uh

1 +A02Uh
2 +A03Uh

3 = Fh
0 , (10)

A10Uh
0 +A11Uh

1 +A12Uh
2 +A13Uh

3 = Fh
1 , (11)

A20Uh
0 +A21Uh

1 +A22Uh
2 +A23Uh

3 = Fh
2 , (12)

A30Uh
0 +A31Uh

1 +A32Uh
2 +A33Uh

3 = Fh
3 (13)

where Uh
0 = {ũh(ωp,q,s)}N−1

p,q,s=1, Uh
1 = {h2ũh

xx(ωp,q,s)}N−1
p,q,s=1, Uh

2 = {h2ũh
yy(ωp,q,s)}N−1

p,q,s=1, Uh
3 = {h2ũh

zz(ωp,q,s)}N−1
p,q,s=1,

Fh
α =

{∫
Ω

f φα
i, j,k dΩ

}N−1

i, j,k=1
, α = 0, . . . ,3. The entries of the matrices Aα,β , α,β = 0, . . . ,3 are given by (8)–(9). Notice

that the equations corresponding to i = 1 or N − 1, j = 1 or N − 1, and k = 1 or N − 1 are modified in a usual way
taking into account the boundary conditions.

Notice that in system (10)–(13) we use the DoF ψ0
i, j,k(ũ

h) = ũh(ωi, j,k), ψ1
i, j,k(ũ

h) = h2ũh
xx(ωi, j,k), ψ2

i, j,k(ũ
h) =

h2ũh
yy(ωi, j,k), and ψ3

i, j,k(ũ
h) = h2ũh

zz(ωi, j,k) of an approximate solution on an actual element e ∈ Th as the unknowns,
i.e., the approximate values of second-order derivatives are equipped with the factor h2. This is convenient for several
reasons, in particular, this improves properties of the stiffness matrix.

THE ELIMINATION OF UNKNOWNS BY COLLOCATION

Introduce the grid functions uh(ωi, j,k) = ũh(ωi, j,k), uh
xx(ωi, j,k) = ũh

xx(ωi, j,k), uh
yy(ωi, j,k) = ũh

yy(ωi, j,k), and uh
zz(ωi, j,k) =

ũh
zz(ωi, j,k), i, j,k = 0, . . . ,N. They satisfy the algebraic identity

−uh
xx(ωi, j,k)−uh

yy(ωi, j,k)−uh
zz(ωi, j,k) = f h(ωi, j,k)− rh(ωi, j,k) (14)

where f h is a grid function defined by f h(ωi, j,k) = f (ωi, j,k) and rh is the residual.
Assuming the residual is known, express uh

zz(ωi, j,k) from (14) and substitute it into (10)–(13). We obtain the system

A00Uh
0 +(A01 −A03)Uh

1 +(A02 −A03)Uh
2 = Fh

0 +h2A03(Fh −Rh), (15)

A10Uh
0 +(A11 −A13)Uh

1 +(A12 −A13)Uh
2 = Fh

1 +h2A13(Fh −Rh), (16)

A20Uh
0 +(A21 −A23)Uh

1 +(A22 −A23)Uh
2 = Fh

2 +h2A23(Fh −Rh), (17)

A30Uh
0 +(A31 −A32)Uh

1 +(A32 −A33)Uh
2 = Fh

3 +h2A33(Fh −Rh) (18)

where Fh = { f h(ωi, j,k)}N−1
i, j,k=1, Rh = {rh(ωi, j,k)}N−1

i, j,k=1. As a result, the unknowns being the components of the vector
Uh

3 are eliminated, but system (15)–(18) is overdetermined. In principle, we can neglect, for example, equations (18),
but in this case we get system (15)–(17) with a non-symmetric matrix.



The next step is to make the matrix of (15)–(17) symmetric with the help of (18). To this end, we subtract (18) from
(16) and (17). This results in the equations

(A10 −A30)Uh
0 +(A11 −A13 −A31 +A33)Uh

1 +(A12 −A13 −A32 +A33)Uh
2 = Fh

1 −Fh
3 +h2(A13 −A33)(Fh −Rh), (19)

(A20 −A30)Uh
0 +(A21 −A23 −A31 +A33)Uh

1 +(A22 −A23 −A32 +A33)Uh
2 = Fh

2 −Fh
3 +h2(A23 −A33)(Fh −Rh), (20)

respectively. Combining (15) and (19)–(20), we arrive at the reduced system with the symmetric matrix

B =

 B00 B01 B02
B10 B11 B12
B20 B21 B22

=

 A00 A01 −A03 A02 −A03
A10 −A30 A11 −A13 −A31 +A33 A12 −A13 −A32 +A33
A20 −A30 A21 −A23 −A31 +A33 A22 −A23 −A32 +A33

 .

Now require that the residual vanish at the nodes and introduce grid functions vh, vh
xx, vh

yy, and vh
zz, being the values

of a new approximate solution and new approximate values of the second-order derivatives of the exact solution of
(4)–(5) at the nodes, respectively, which satisfy the equation

−vh
xx(ωi, j,k)− vh

yy(ωi, j,k)− vh
zz(ωi, j,k) = f h(ωi, j,k), i, j,k = 0, . . . ,N. (21)

In addition, introduce the vectors V h
0 = {vh(ωi, j,k)}N−1

i, j,k=1, V h
1 = {vh

xx(ωi, j,k)}N−1
i, j,k=1, V h

2 = {vh
yy(ωi, j,k)}N−1

i, j,k=1 and
V h

3 = {vh
zz(ωi, j,k)}N−1

i, j,k=1. In (15) and (19)–(20) put Rh = 0 and replace Uh
0 , Uh

1 , Uh
2 by V h

0 , V h
1 , V h

2 , respectively.
Finally, we obtain the system of equations

B00V h
0 +B01V h

1 +B02V h
2 = Fh

0 +h2A03Fh, (22)

B10V h
0 +B11V h

1 +B12V h
2 = Fh

1 −Fh
3 +h2(A13 −A33)Fh, (23)

B20V h
0 +B21V h

1 +B22V h
2 = Fh

2 −Fh
3 +h2(A23 −A33)Fh (24)

for the new unknowns. Once system (22)–(24) has been solved, vh
zz(ωi, j,k) can readily be determined from (21).

Notice that the choice of the unknowns to be eliminated is relatively arbitrary. In a similar way we can eliminate
uh

xx or uh
yy instead of uh

zz.

AN AUXILIARY FINITE ELEMENT

On a “reference” cell ê = [0,1]3 with the vertices âi, i = 1, . . . ,8 (Fig.2), consider the functions

θ̂ 0
i = φ̂0

i , θ̂ 1
i = φ̂1

i − φ̂3
i , θ̂ 2

i = φ̂2
i − φ̂3

i , i = 1, . . . ,8 (25)

where φ̂α
i , α = 0, . . . ,3, i = 1, . . . ,8 are defined by (2). Since functions (2) form the Lagrange basis for element (1),

they are linearly independent. Hence, functions (25) are linearly independent as well and we can construct the space

P̂′ = span{θ̂ α
i , α = 0,1,2, i = 1, . . . ,8} (26)

of polynomials such that dim P̂′ = 24.
Then we specify the set of DoF

Σ̂′ =
{

ψ̂0
i (p) = p(ai), ψ̂1

i (p) = pxx(ai), ψ̂2
i (p) = pyy(ai), i = 1, . . . ,8, ∀p ∈ P̂′} . (27)

Observe that card Σ̂′ = dim P̂′.
Direct calculations show that

ψ̂α
i (θ̂

β
j ) =

{
1 for α = β , i = j,
0 otherwise,

i.e., functions (25) form the Lagrange basis in space (26) with respect to set (27) of DoF. Thus, the triple (ê, P̂′, Σ̂′) is
a finite element, which is shown in Fig. 2.



FIGURE 2. An auxiliary finite element.

The matrix of the system of equations of the finite element method for problem (4)–(5) constructed on the partition
Th with the auxiliary finite element can be written as

A′ =

 A′
00 A′

01 A′
02

A′
10 A′

11 A′
12

A′
20 A′

21 A′
22

 (28)

where A′
α,β , α,β = 0,1,2 are Nint ×Nint blocks with the entries(

A′
α,β

)
i, j,k,p,q,s

= a(θ β
p,q,s,θ α

i, j,k) i, j,k, p,q,s = 1, . . . ,N −1.

The bilinear form a is given by (9), the basis functions θ α
i, j,k of the finite element space are obtained from (25) with

the help of an affine mapping of the form (3).
It is easy to verify that matrix (28) coincides with the matrix B of system (22)–(24). In other words, the matrix of

reduced system (22)–(24) is a matrix of a system of the finite element method but for elements with a smaller number
of DoF. Hence, it is nonsingular and system (22)–(24) has a unique solution. Besides, the entries of the matrix of
(22)–(24) can be immediately calculated as those of (28). This approach is more efficient in comparison with the
manipulations with original matrix (7).

Of course, we can construct a discrete system for the auxiliary element, which differs from (22)-(24) by the right-
hand side, and obtain an approximate solution of (4)-(5). However, since for (26) we have the inclusion P̂′ ⊃ P only,
this approach provides the same order of convergence as in the case of the usual trilinear element. Hence, at each
node we have 2 redundant DoF. Thus, this element is not of practical importance in itself, but it is a useful tool when
applying finite element (1) of higher degree.

NUMERICAL RESULTS

Let Ω = (0,1)3 and Γ = ∪6
i=1Γi be the boundary of Ω (Fig. 3). Consider the boundary value problem

−∆u = f in Ω, (29)
u = 0 on Γ1 ∪Γ2 ∪Γ3,
u = yzsin(y+ z) on Γ4,
u = xzsin(x+ z) on Γ5,
u = xysin(x+ y) on Γ6

(30)

where f = 3xyzsin(1− x− y− z)+2(xy+ yz+ xz)cos(1− x− y− z). The exact solution of (29)–(30) is of the form

u = xyzsin(1− x− y− z). (31)



FIGURE 3. The domain Ω with the boundary Γ.

We subdivide Ω into elementary cubes for mash size h = 1/N. In numerical experiments we use N = 5,10,20,40.
On the obtained partition, along with standard system (10)-(13) for finite element (1), we construct and solve reduced
system (22)-(24). The matrix of (22)-(24) is constructed using basis functions (25) of the auxiliary element.

To calculate the entries of the matrix and the components of the right-hand side vector for both systems, we apply
the three-dimensional version of the Gauss-Lobatto quadrature rule [14] to provide high order accuracy of the method.

Since exact solution (31) is known, the error u(ωi, j,k)−uh(ωi, j,k) or u(ωi, j,k)−vh(ωi, j,k) can be calculated explicitly.
Besides, we can calculate ∂ 2u/∂x2(ωi, j,k)− uh

xx(ωi, j,k), ∂ 2u/∂y2(ωi, j,k)− uh
yy(ωi, j,k), ∂ 2u/∂ z2(ωi, j,k)− uh

zz(ωi, j,k),
∂ 2u/∂x2(ωi, j,k)− vh

xx(ωi, j,k), ∂ 2u/∂y2(ωi, j,k)− vh
yy(ωi, j,k), and ∂ 2v/∂ z2(ωi, j,k)− uh

zz(ωi, j,k) to estimate convergence
of the second-order derivatives. We use the discrete norms

∥ u−uh ∥h = h3/2

(
N−1

∑
i, j,k=1

(
u(ωi, j,k)−uh(ωi, j,k)

)2
)1/2

,

∥ u−uh ∥H = h3/2

(
N−1

∑
i, j,k=1

((
u(ωi, j,k)−uh(ωi, j,k)

)2
+h4

(
∂ 2u
∂x2 (ωi, j,k)−uh

xx(ωi, j,k)

)2

+ h4
(

∂ 2u
∂y2 (ωi, j,k)−uh

yy(ωi, j,k)

)2

+h4
(

∂ 2u
∂ z2 (ωi, j,k)−uh

zz(ωi, j,k)

)2
))1/2

.

In Tables I–II we present results of the calculations for the standard system of the finite element method. We use
the following notations:

εH(uh) =∥ u−uh ∥H , σh
x (u

h) =
∥∥∥∂ 2u

∂x2 −uh
xx

∥∥∥
h
, σh

y (u
h) =

∥∥∥∂ 2u
∂y2 −uh

yy

∥∥∥
h
, σh

z (u
h) =

∥∥∥∂ 2u
∂ z2 −uh

zz

∥∥∥
h
,

Nun is the number of unknowns.

TABLE I. Accuracy of the approximate solution for the standard system.

Nun h εH(uh) σh
x (u

h) σh
y (u

h) σh
z (u

h)

500 0.2 5.94E-04 1.23E-02 1.23E-02 1.23E-02
4000 0.1 5.02E-05 3.49E-03 3.49E-03 3.49E-03

32000 0.05 3.62E-06 9.17E-04 9.17E-04 9.17E-04
256000 0.025 2.44E-07 2.36E-04 2.36E-04 2.36E-04

Observe that the error εH(uh) tends to be of order 4 as h decreases while σh
x (u

h), σh
y (u

h), and σh
z (u

h) tend to be of
order 2. This is typical for cubic finite elements.



TABLE II. A numerical convergence estimate for the standard system.

h log2
(
εH(u2h)/εH(uh)

)
log2

(
σh

x (u
2h)/σh

x (u
h)
)

log2
(
σh

y (u
2h)/σh

y (u
h)
)

log2
(
σh

z (u
2h)/σh

z (u
h)
)

0.1 3.56 1.81 1.81 1.81
0.05 3.80 1.93 1.93 1.93
0.025 3.89 1.96 1.96 1.96

Another series of calculations is related to the solution of the reduced system for the unknowns vh(ωi, j,k), vh
xx(ωi, j,k),

and vh
yy(ωi, j,k). In this case the values of vh

zz(ωi, j,k) are determined from (21). The results of calculations are presented
in Tables III–IV.

TABLE III. Accuracy of the approximate solution for the reduced system.

Nun h εH(vh) σh
x (v

h) σh
y (v

h) σh
z (v

h)

375 0.2 1.38E-04 2.87E-03 2.87E-03 2.87E-03
3000 0.1 1.21E-05 8.41E-04 8.41E-04 8.41E-04

24000 0.05 8.86E-07 2.25E-04 2.25E-04 2.25E-04
192000 0.025 5.98E-08 5.81E-05 5.81E-05 5.80E-05

TABLE IV. A numerical convergence estimate for the reduced system.

h log2
(
εH(v2h)/εH(vh)

)
log2

(
σh

x (v
2h)/σh

x (v
h)
)

log2
(
σh

y (v
2h)/σh

y (v
h)
)

log2
(
σh

z (v
2h)/σh

z (v
h)
)

0.1 3.52 1.77 1.77 1.77
0.05 3.77 1.90 1.90 1.90
0.025 3.89 1.96 1.96 1.96

Notice that the errors for vh are close to those for uh. Moreover, in the case of the reduced system the accuracy is
slightly better. Similar results were observed for two-dimensional problems [10, 11].

Thus, numerical experiments demonstrate the advantage of the proposed approach, namely, that the application of
collocation enables one to reduce the number of unknowns without deterioration of the convergence order.
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