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TEMPORAL LOGIC WITH OVERLAP TEMPORAL RELATIONS
GENERATED BY TIME STATES THEMSELVES

Abstract. The paper studies temporal logic with non-standard temporal
accessibility relations. The logic is generated by semantic underground
models, and any model has as a base a frame with temporal relations
generated by temporal states themselves, – potentially any state possesses
by its own temporal accessibility relation, possibly all different ones.
We see it as most plausible modelling, because any time state has, in
principle, its own view on what is past (or future). Time relations may
have non-empty overlaps, so to be totally intransitive and, thus that
approach to be suitable to analyze most general cases of reasoning about
computation, passing information its reliability and other areas in AI and
CS. The main mathematical question under consideration is existence of
algorithms for solving satisfiability problems. We solve this problem and
find the algorithms. In the final part of our paper we set interesting open
problems.

Keywords: temporal logic, non-classical logics, information, knowledge
representation, deciding algorithms, computability, information, satisfiability,
decidability.

1. Introduction

This paper combines two issues for interest: (1) pure mathematical one consists
in construction mathematica models for flaw of time and transition of information
by Kripke-Hintikka like relational models and logics syntaxis – formulas and other
syntactical instruments (to analyze laws and properties of such models), and (2)
possible applications to passing information, analyses of correctness the reasoning,
plausibility, getting hidden infirmation, consistency and reliability of knowledge
and other areas of AI and CS. The concept of knowledge, which maybe at first
glance looking as a kind of a stable, correct, profoundly verified (and supported?)
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2 TEMPORAL LOGIC

information is in the centre of research in CS and Philosophy. It and related to
it areas use instruments of temporal logic for representation and development
computational tools.

As in general, the concept of knowledge in terms of symbolic logic, probably,
may be dated to the end of 1950. At 1962 Hintikka wrote the book: Knowledge
and Belief, the first book-length work to suggest using modalities to capture the
semantics of knowledge. This book laid much of the groundwork for the subject, but
a great deal of research has taken place since that time. Temporal logic since then
got to be a popular area in mathematical symbolic logic and CS; a lot of impressive
results where obtain (cf. for historical outlook Gabbay, Hodkinson, Reynolds[5, 6],
Goldblat [7], Goranko [8], van Benthem [28], Yde Venema [31]).

Since invention of the linear temporal logic LTL with operation U - until - by
Amir Pnueli that system was investigate from many viewpoints due to interesting
mathematical representation and useful applications to analysis of protocols for
computations, verification of consistency. Automaton technique to solve satisfiability
in this logic was developed by Vardi [29, 30]). From reasonably modern results
concerning this logic I would mention the solution for admissibility problem for
LTL in Rybakov [14, 15], the basis for admissible rules of LTL was obtained in
Babenyshev and Rybakov [3]. The unification problem for LTL was solved in [19].
Concerning applications of logical methods in AI and CS, the tools around temporal
logic work well for analysis in multi-agent environment (cf. eg. [16, 17]).

In current time temporal logic was investigated from many viewpoints, in particular
extensions of LTL for the case of non-transitive models, were studied in Rybakov
[20, 21, 25] for the case of the interval versions of the logic. Also modelling multi-
agent reasoning via temporal models was applied in Rybakov [18, 22, 24] for the
versions of liner logic.

This paper is devoted to study an importance modification of LTL – a logic
based on non-transitive time with possible time overlaps on temporal accessibility
relations - so by nature intransitive one. But most innovative part here is that the
temporal relations on generating models are individual for any time state. This
looks as quite a new approach not touched yet in literature and most plausible
for real simulations of time runs. Besides the author, as mentioned above, actively
studied non-transitive temporal logics generated over linear time. I was trying to
resolve the most general case - when the temporal relations may be unbound and
else not placed all in infinite sequences of fixed intervals of time, since this limitation
looked as a bit artificial one, but I was unsuccessful. Here we found the solution and
yet via new approach which successfully packed all limitations in one new approach
which successfully allowed to resolve the problem. The main mathematical problem
under we study is existence of algorithms for solving the satisfiability problems.
We solve this problem and find the algorithms via reduction the problem to special
models with computable size. The paper is concluded with setting interesting open
problems.

2. Logical Language, Models with Overlap Relations

As we noted above, the most innovative point in the paper is usage of temporal
accessibility relations separate, so to say, individual, for any temporal state. That
looks as we have infinite number of accessibility relations, and it seems as we will
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need infinite set of temporal operations in the logical language. But, in fact, it is
not a case, and we can model this approach in usual temporal language.

So the logical language consists of potentially infinite set of propositional letters
P , Boolean logical operations, operation N (next), operation U (until). The formation
rules for compound formulas are as always: any letter from P is a formula; the set
of all formulas is closed w.r.t. applications of Boolean logical operations, the unary
operation N (next) and the binary operation U (until); φUψ to be read φ holds
until ψ will be true, Nφ says φ is true in next temporal state.

To model temporal flow we will use new modified Kripke-Hintikka like models
based on linear order at natural numbers.

Definition 1. A linear temporal non-transitive frame is a tuple

F := ⟨N, {Rx | x ∈ N},Nxt , ⟩, such that
for all x ∈ N , Rx is the linear order on the interval [x, ax] for some ax ≥ x, ax ∈
N , it might be also that Ra is the linear order on whole interval [a,∞]. ∀x, y ∈
N, x Nxt y ⇔ y = x+ 1.

It may happen that xRxax, y ∈ (x, ax) and not(yRyax). So to say y is a state
situated earlier than x but y remember even less as x remember. Besides it is clear
that in total the all relations form non-transitive relation: it may happen xRxax,
x < y < ax, so (aRxy), (yRyay) but not(xRyay).

A model M on any F to be defined by introduction a valuation V on F : for a set
of propositional letters p: V (p) ⊆ N , and V is extended to all formulas as follows:

Definition 2. For any a ∈ N :

(N, a) V p ⇔ p ∈ V (p);

(N, a) V ¬φ ⇔ (N, a) 1V φ;

(N, a) V (φ ∧ ψ) ⇔ ((N, a) V φ) ∧ ((N, a),V ψ);

(N, a) V (φ ∨ ψ) ⇔ ((N, a) V φ) ∨ ((N, a) V ψ);

(N, a) V (φ → ψ) ⇔ ((N, a) V ψ) ∨ ((N, a) 1V ψ);

for formulas of sort φUψ we define the truth values as follows:

(N, c) V (φ U ψ) ⇔
∃b ∈ N [(cRcb) ∧ ((N, b) V ψ)∧
∀y[(y ≥ b,&y < b) ⇒(N, y) V φ]];

(N, a) V Nφ ⇔ [(a Nxt b) ⇒ (N, b) V φ].

(N, a) V φ to be read the formula φ is true (valid) at the state a w.r.t. the
valuation V . We see that the truth of any formula with main temporal operation
U at a state a refers only to the unique accessibility relation Ra for a. Sometimes
we will use notation Nxt(a) = b or Next(a) = b to say that a Nxt b.

Definition 3. The logic TOv
L is the set of all formulas which are valid at any state

of any model based at any temporal frame F .

General illustrations why time flow may be seen as non-transitive and what might
be usage of such approach given in Rybakov [20, 21, 22, 24, 25].
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3. A Technique via Reduced Forms

Our aim is to show that the satisfiability problem for introduced logic is decidable.
Usual technique based at filtration, usage temporal degree of formulas and dropping
points do not work for this semantics since the relations as total non-transitive and
rules for computation truth values of formulas with U are different from standard.
We will use a modification of our old technique for reduction of formulas to rules
(which we have already used earlier many times for different purposes (cf. e. g.
[17, 15]) and transformation the latter ones to so-called reduced forms. We now
briefly recall this technique.

A rule is an expression r := φ1(x1, . . . , xn), . . . , φs(x1, . . . , xn) / ψ(x1, . . . , xn),
where all φk(x1, . . . , xn) and ψ(x1, . . . , xn) are formulas constructed out of letters
(variables) x1, . . . , xn.

Formulas φk(x1, . . . , xn) are called premises and ψ(x1, . . . , xn) is the conclusion.
The rule r means that ψ(x1, . . . , xn) (conclusion) follows (logically follows) from the
assumptions φ1(x1, . . . , xn), . . . , φs(x1, . . . , xn) . The definition of the validness of
a rule is the same for any relational model. To recall it, assume that a model M
and a rule r are given.

Definition 4. The rule r := φ1(x1, . . . , xn), . . . , φs(x1, . . . , xn) / ψ(x1, . . . , xn), is
valid on the model M based at a frame F iff

[∀a
(
(F , a) V

∧
1≤i≤s φi

)
] ⇒ [∀a ((F , a) V ψ)] .

If ∀a
(
(F , a) V

∧
1≤i≤s φi

)
but ∃a ((F , a) 1V ψ), then we say that r is refuted in

F by V and we denote this fact as F 1V r.

Definition 5. A rule r is valid (or true) on a frame F iff r is true (valid) on
any model based on F .

Definition 6. A formula φ is satisfiable iff there is a frame F and a valuation V
on F such that φ is true w.r.t. V at same sate from F

Lemma 1. For a formula φ, φ is satisfiable iff the rule x→ x/¬φ may be refuted
in some model M.

The proof is obvious - immediately follows from definitions. Thus we have

Lemma 2. If there is an algorithm verifying for any given rule r if this rule is
valid on all models F then there exists an algorithm verifying if any given formula
is satisfiable.

Now we need rules in some uniform simple form, in particular — without nested
temporal operations.

Definition 7. A rule r is said to be in reduced normal form if r = ε/x1 where

ε =
∨

1≤j≤m

[ ∧
1≤i≤n

x
t(j,i,0)
i ∧

∧
1≤i≤n

(Nxi)
t(j,i,1) ∧

∧
∧

1≤i,k≤n

(xiUxk)
t(j,i,k,2)

]
,

t(j, i, 0), t(j, i, 1), t(j, i, k, 2) ∈ {0, 1} and, for any formula α, α0 := α, α1 := ¬α.
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Definition 8. For any given rule r, a rule rnf in the reduced normal form is said
to be a reduced normal form of r iff

For any frame F , the rule r is valid in F if and only if the rule rnf is valid
in F .

Theorem 1. There exists an algorithm running in (single) exponential time which
given any rule r constructs some its reduced form rnf .

Proof. The proofs of the similar statement for various relative relational models
and rules was suggested by us quite a while ago since 1984 (eg. cf. Lemma 5 in [3],
or the proofs of similar statements in [14]).

The reduced normal forms of rules constructed by the algorithm from the proof
of this theorem are defined uniquely.

Thus, if we are interested to investigate the problem of refutation for rules, we
may restrict ourselves with consideration rules in the reduced form only.

4. Main Proofs, Results

First we need special auxiliary models. Recall that a linear temporal non-transitive
frame F is a tuple F := ⟨N, {Rx | x ∈ N},Nxt , ⟩, such that for any x ∈ N , Rx is
the linear order on the interval [x, ax] for some ax chosen for each x, it might be
also that Rx is the linear order on whole interval [x,∞). A model M based at F is
obtained by introduction some valuation V in F of a set of letters.

Definition 9. Any M+Lp model has the following structure. For m,m > 1, n > m,
M+Lp = ⟨[0, n],≤,Next, V ⟩ where Next(n) := m+ 1.

The relations Rx in such models are as follows: any Rx is the linear order on
[x, ax] where (1) x ≤ m and ax ≤ n, or (2) x ≥ m and ax ≤ n or (3) as in (2)
but else Rx extended by the linear order on [m+1, b], b ≤ n, and all elements from
the second interval [m+1, b] considered as strictly bigger than the states of the first
one (so we do a loop). V to be just a valuation as earlier.

The rules for computation the truth values of formulas in such models w.r.t. any
given valuation V are defined exactly as described earlier for usual models, simply
for states x bigger than m the order Rx within ≤, in a sense, to be replaced by
possible sequences by Next and they use new Rx for existence solution for until.

Theorem 2. If a rule r in normal reduced form is refuted in a model M by a
valuation V , then there exists a finite model of kind M+Lp disproving r by its own
valuation V (the size of such model is not identified yet).

Proof. Let M := ⟨N, {Rx | x ∈ N},Nxt , V ⟩, and the rule an the reduced normal
form is r = ε/x1 where ε =

∨
1≤j≤v θj ,

θj = [
∧

1≤i≤n

x
t(j,i,0)
i ∧

∧
1≤i≤n

(N xi)
t(j,i,1) ∧

∧
1≤i,k≤n

(xiUxk)
t(j,i,k,2)]; let

r be refuted in a M by a valuation V : M V ¬r. That is all formulas from the
premise of r are true at all states, but the conclusion is not true at some s, clearly
we may admit that s = 0.
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Thus for any a ∈ F there is exactly one unique θj which is true at a w.r.t. V ,
denote that θj by θ(a). Now we need to definite some special sets. For any b ∈ F ,
let for any formula φ := xiUxj from the premise of the rule if (M, b) VjxiUxj

Ev(φ, b) := min{k | b ≤ k, bRbk, (M, k) V xj ,∀c(b ≤ c < k)(M, k) V xi}.

So, Ev(φ, b) is the minimal evidence state saying that xiUxj is true at b. Vice
versa, for any b ∈ M, if (M, b)�� Vj

xiUxj ,

Disp(φ, b) := min{k | b ≤ k, bRbk, [(M, k) V xj⇒∃c(b ≤ c < k)(M, c)�� V xi]}.

That is Disp(φ) to be the minimal element disproving the formula φ.
Let Dm be the set of all disjunctive members of the premiss of the rule r. Sine

the infinity of N there is a number m, there is a subset Dm1 of Dm such that for
any number m1 ≥ m there is exactly one θ ∈ Dm1 which is true w.r.t. V at m1

and for any θ from Dm1 there are infinitely many numbers bigger than m at which
θ is true w.r.t. V . In other worlds, the following hold

(1) ∀m1 ≥ m∃θ ∈ Dm1[(M,m1) V θ&

[∀θ1 ∈ Dm1(M,m1) V θ1 ⇒ θ = θ1]].

(2) ∀m1 ≥ m∀θ ∈ Dm1[(M,m1) V θ⇒

.
∃m2 > (m1 +m+ ||Dm||) (M,m2) V θ)].

Now on, consider a smallest a where a > m and a > b, where

(3) b = max{n+ 1 | n ∈
∪
φ

{Disp(φ,m) ∪
∪
φ

{Ev(φ,m)}

and θ(m+ 1) = θ(a).
We will now modify our model. Let M+Lp be a model obtained form M as

follows:

M+Lp = ⟨[0,m] ∪ [m, a]⟩,
where Next(a) := m + 1 and the model is defined as earlier for models of kind
M+Lp and else have the following structure concerning the accessibility relations
Rx, x ∈ N .

For all x ≥ m,x ∈ N , if [x, ax] is located inside [0, a] we do not change Rx.
otherwise

(4) ax := b

.
We show now that the truth values for formulas from Dm in the modified model

are the same as earlier.
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Lemma 3. For any x ∈ [0, a], and θ(x) defined in the model M,

(M, x) V θ(x)⇔(M+Lp, c)  θ(x).

Proof goes by structure of formulas θ(x). For components of such formulas not
including operations U the similar statement to be shown by straightforward simple
induction of the length of the formulas. For formulas φ := xiUxj ,

(M, x) V ⇔(M+Lp, c)  xiUxj

follows from our definition (3) above:

b = max{n+ 1 | n ∈
∪
φ

{Disp(φ,m) ∪
∪
φ

{Ev(φ,m)}

because the presence of all evidence states and disproving states for operation U ,
they are all included in the modified model and that is sufficiennnt to keep truth
values of formulas of kind xiUxj the same �. Lemma is proved.

It concludes the proof of our theorem.

Now we need to find (compute) an upper bound for size of finite models refuting
the rules.

Theorem 3. If a rule r in normal reduced form is refuted in a model M+Lp then
it is refuted in some such model with a polynomial size computable from the length
of the r.

Proof. Let M+Lp := ⟨[0,m] ∪ [m, a],≤,Next, V ⟩, where Next(n) := m+ 1,
r = ε/x1 where

ε =
∨

1≤j≤m

[ ∧
1≤i≤n

x
t(j,i,0)
i ∧

∧
1≤i≤n

(Nxi)
t(j,i,1) ∧

∧
∧

1≤i,k≤n

(xiUxk)
t(j,i,k,2)

]
,

and Dm(r) be the set of all disjunctive members of the premiss of the rule r, and,
for any x ∈ [0, a], θ(x) be the member of Dm(r) which is true on x.

Now similar as in the previous lemma but in this new model consider the
following definitions. Consider the chosen branching state m ∈ M+Lp; let for any
formula φ := xiUxj from the premise of the rule if (M+Lp,m) VjxiUxj
c between m and k by Rl

b)

Ev(φ,m) := min{k | k,mRbk, k ≤ a, (M+Lp, k) V xj ,

∀c(b ≤ c)(M, k) V xi}.
So, Ev(φ,m) is the minimal evidence state saying that xiUxj is true at m. Vice

versa, if (M+Lp,m)�� VjxiUxj ,

Disp(φ,m) := min{k |, k, k ≤ a, mRbk, [(M+Lpk) V xj⇒

∃c(b ≤ c < k)(M+Lp, c)�� V xi]}.
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That is Disp(φ) to be the minimal element disproving the formula φ.
Let {a1, . . . , an} be the increasing sequence of all elements from all setsDisp(φ,m)

and all Ev(φ,m). Now on we are ready to start the rarefication procedure in order
to reduce the size of the model M+Lp to a computable (from size of r) one.

STEP 1. If an = a − 1 we do nothing. Otherwise consider θ(a − 1) and any
minimal b ∈ [an + 1, a − 1] (if the one exists) where θ(a − 1) = θ(b). And now we
delete all elements situated strictly between a− 1 and b− 1 and redefine relations
Rx as follows: if ax does not exceed b− 1 or if ax ≥ a1 we let Rx intact. Otherwise

Rx := [x, b− 1] ∪ [a− 1, aa−1].

Let M1 be the model modified as shown above.

Lemma 4. For all x ∈ M1, and θ(x) defined for M+Lp

(M+Lp, x) Vjθ(x)⇔(M1, x) Vjθ(x).

Proof follows by straightforward computation using θ(a − 1) = θ(b) valid in
M+Lp �

Now we consider c, were Next(c) = a − 1 instead of b as above and do for
it the similar transformation doing proper rarefication, and, next, continue such
transformation until we delete all states x with the same θ(x) moving to an. So,
such transformation will be completed in at most ||Dm(r)|| steps and the resulting
model M2 by Lemma 4 will disprove r.

Now we will reduce the size of M2 doing rarefication within [m, an]. For this we
consider separately all intervals [ai, ai+1] moving down from [an−1, an] to [m, a1].

For [an − 1, an] we do it as for [b, a− 1] above and so on. After completion this
procedure we will have computable upper bound for the number of states situated
between an and m - at most n× k × ||Dm(r)||+ ||Dm(r)||, where k is the number
of all formulas of kind xiUxj in the rule r. Denote the obtained model by M3, it
again will disprove r.

STEP 2. Now we will apply the same rarefication technique to the model M3

moving from m down towards 0, that is rarefying the interval [0,m] exactly by
the same procedure as for the interval [b, a − 1] above. Because we do not need
disproving (and proving) sates since we do not have a loop by Next already, we
need to consider only this interval itself in only one run. So, after completion this
procedure we will have the model M4 which again will disprove r and will have
size at most n× k × ||Dm(r)||+ ||Dm(r)||+ k × ||Dm(r)||. �

Theorem 4. If a rule r in normal form is refuted in a model M+Lp then it may
be refuted in some usual model M.

Proof. We need only to apply a simple modification of the standard unraveling
technique. Let M+Lp is based at the st [0,m] ∪ [m, a], where Next(a) := m + 1,
r = ε/x1. In fact now it is sufficient to only roll the cyclic part [m, a] starting from
first occurrence of m in the model towards future.

Using Lemmas 1,2 and Theorems 1,2,3 and 4 we immediately derive:

Theorem 5. The satisfiability problem for TOv
L is decidable. The logic TOv

L itself
is decidable
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Notice that we may consider the reduced version of this logic TOv
L - the one

TOv−Next
L without the logical operation N -next. Since we did not use this operation

ever in our proofs the following theorem holds.

Theorem 6. The satisfiability problem for TOv−Next
L is decidable. The logic TOv−Next

L

itself is decidable

We think there are several open problems concerning this research. (1) To extend
the obtained results on branching time logic which linear parts by operation NEXT
look as frames of this paper. Similar question is answered in Rybakov [25] for frames
which still within old paradigm of a kind of interval logic. (2) Study problem
of unification for studied in our paper logics. The logical unification problem is
impotent one as applications in AI and CS and may be seen as algebraic problem
of finding solutions for equations in free algebras. That problem was in active
investigation earlier (cf. Baader [1, 2], Ghilardi [9, 10], Rybakov [19]) and it looks
very attractive to find solution for our introduced logic. (3) Study admissibly
problem for it. The problem of admissibility since paper of H.Fridman [4] with the
list of open logical problems was investigated for many logics (cf. eg. [26, 27, 14,
11, 12]). But concerting nontransitive temporal linear logic the most progress was
achieved only for a logic with uniform limitations on time intervals with transitivity
in paper Rybakov [23]. (4) Consider the question of axiomatization for our logic.
(4) Embed the agents’ logic components in the invented temporal logic.
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