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Abstract. We consider the problem of determining the source function and the leading coefficient in a
multidimensional semilinear parabolic equation with overdetermination conditions given on two different
hypersurfaces. The existence and uniqueness theorem for the classical solution of the inverse problem in
the class of smooth bounded functions is proved. A condition is found for the dependence of the upper
bound of the time interval, in which there is a unique solution to the inverse problem, on the input data.
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Introduction

The purpose of this work is to investigate the unique solvability of the problem of determining
the source function and the coefficient at the second derivative in the spatial variable in a multi-
dimensional semilinear parabolic equation with Cauchy data and overdetermination conditions,
given on two different hypersurfaces. The unique solvability in classes of smooth bounded func-
tions of various inverse problems of determining two coefficients of semilinear parabolic equations,
different from the inverse problem considered in this article, was studied, for example in [1-3].

Using the overdetermination conditions, the initial inverse problem is reduced to the direct
auxiliary Cauchy problem for the nonlinear loaded equation. The solvability of the direct problem
is proved, for this purpose rather smooth input data and the method of weak approximation are
used [4,5]. The solution of the original inverse problem is written out explicitly through the
solution of the direct problem. On this basis, the existence and uniqueness theorem for the
classical solution of the inverse problem in the class of smooth bounded functions is proved for
t* € (0,T), T > 0, T — const. The condition for the dependence of t* on the constants of the
sufficiently smooth input data is formulated.
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1. Statement of the problem

We consider in Gjo7) = {(t, z, z)‘ 0<t<T,z€E,,z¢c E} the Cauchy problem

0
871: = Lx(u) + (L(t, x)uzz + ﬁl (tv SC)'LLZ + ﬁ?(tv ZL’)U2 + b(tv x)f(ta Z, Z)a (1)
u(0,z,2) =ug(x,2), (x,2)€ Epy. (2)
Here L, ( Z Qjg s &c] + Z ozl , the functions ug(x, 2), f(t,x, z) are given in F,, 11
i,j=1 i=1 i

and G|o,1) respectively, the coefficients a;(t), a;(t), i,j = 1,n, Bi(t,z), Ba2(t, x) are continuously
differentiable real-valued functions of the variable ¢, and ¢, x respectively, 0 < ¢t < T, T > 0,
T —const, E,, is the n-dimensional Euclidean | space, n>=1,neN.
Let be o;;(t) = a;i(t) and the relation Z a;;6& >0 V€ € E,\{0}, t € [0,T] is true.
ij=1
The coefficients a(t,x), b(t,z) and the solution u(t,z, z) of (1), (2) are unknown.

We assume that overdetermination conditions are given on two different hypersurfaces
z=di(t) and z = da(t):

U(t, xvdl(t)) = ¢(t7x)v u(t,x, d2(t)) = U](tﬂ x)? (3)

where (t,z) € Il 77, Hpo, ) = {(t,2)|0 <t < T, x € E,}; di(t), d2(t) are continuously differen-
tiable functions of the variable ¢, di(t) # da(t); ¢(t, ), (¢, z) are given functions satisfying the
matching conditions

(Z)(O,Qj) = UQ(CIL‘, da (0))7 '(/J(va) = uo(x’dQ(O))a (4)

where = € E,.

The solution of the inverse problem (1)-(3) in G, 0 < t* < T, is a triple of functions
u(t,z, z), a(t,z), b(t, z), that satisfies relations (1)—(3). Below we consider classical (sufficiently
smooth) solutions.

2. The transition from an inverse problem to
a direct problem

We reduce the problem (1)—(3) to some auxiliary direct problem. Let be z = dy(t), z = da(¢)
in (1) and in view of (3), we obtain

P =a(t,2)u..|,—q, ) + b(t, ) f(t, 2, d1(t)),
Q = a/(ta m)uzz|z:d2(t) + b(tv :C)f(t7 Z, d?(t))a

where
P = P(tax) =F - (51(t7x) + d/l(t))uz|z=d1(t)7 Q = Q(tax) = I — (61(t7x) + dé(t))uz|z=d2(t)a
F = d)t(ta x) - La:((b(t’w)) - Bg(t,x)q§2(t,x), Fy = ’l/}t(t.');‘) - Lw("/’(tvx)) - Bz(ta$)¢2(t7$)-
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Using the Cramer’s method, we find:

a(t .’E) _ Pf(t,l‘,dg(t))_Qf(t,l'7d1(t))
’ Uzz|z:d1(t)f(t7 €z, dQ(t)) - f(ta z,dy (t))u22|22d2(t) ’
Quzz|z:d1(t) - Puzz‘z:dz(t)
uzz|z:d1(t)f(t» z, dQ(t)) - f(ta z, dy (t))uzz|z:d2(t) .

b(t,x) =
We denote:
Nl :Nl(tvx) = Pf(t,.f,dg(t)) - Qf(t,l’,dl(t)),
Ny = Ny(t,xz) = uzz‘z:dl(t)f(taxa da(t)) — f(t, z, dl(t))uzz|zzd2(t)’ (6)
N3 :Ng(t,x) = Quzz|2:d1(t) - Puzz|z:d2(t)'

Then, substituting (5) into (1), we turn to the following problem:

Uy = Lx(u) + &uzz(t,x, Z) + Bl(t,x)uz(t,x, Z) + 52(t,x)u2(t,x, Z) + &f(ta I,Z), (7)

N, Nay
u(0, 2, 2) = up(, 2). (8)
We introduce the cutoff function Ss(y) € C*(E;), with the following properties:
)
5 TR

Ssly) 23>0, 8) = {x), 3 <y <3, 9)
5 1
3 Y < 3

where y € Ey, § = const, x(y) € C*(Ey).

We replace in (7) Ny and Ny by S5, (N1(t,x)), Ss, (N2(t, x)) respectively, we obtain
Ss, (N1(t,x)) Ns(t,x)
S5, (Na(t, x)) S5, (Na(t,x))

We assume that the input data are sufficiently smooth and it has all the continuous derivatives
contained in the following relation

up = Ly (u) + Uzz + Bt x)us + Bo(t, 2)u? + ft,z, 2). (10)

g%% (t,2, MDW (@, 2 ‘+‘Dmatg51 (t,2) ’+‘DIatng(t,:v)‘—&-\%ds(tﬂ <,

k=0,10—-2v|, |y €4,9=0,1,s=1,2, sy =1,2. (11)

Here (t,2,2) € Go, ¥ = (71,--+,Vn) is multi-index, |y] = i%‘, D) = L, Cis
’ ‘ 31’1“ L 0xm

=
a constant more than one. Generally speaking, constants C' here and throughout are different.
Let us suppose that the following conditions are true

N1(0,.’£) = P(va)f(oaxa d2(0)) - Q(O’x)f(0a$7 dl(())) > 5la (12)

0?ug(x,dy(0)) 0ug(x, d2(0))
Oaff(oaxde(o)) - 0@#

where (t,z) € o 71, 01, 02 > 0, 1, 62 = const, and
P(0,2) = ¢4(0,2) = Lo (6(0,2)) = (B1(0, %) + d1(0))u02] 2=, (0) — Ba(0, )67 (0, z),
Q(O,Jf) = ¢t(07x) - L£(¢(O,$)) - (,81(0,%‘) + dIQ(O))UOZ|ZZd2(0) - 62(05 $)¢2(07$)

Let us prove the existence of a solution of the auxiliary direct problem (10), (8).

N2(07x): f((),x,dl(())) 252;
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3. Solvability of the direct problem

We apply the method of weak approximation [4, 5] to prove the existence of the solution of
the problem (10), (8). We split the problem and linearize it by a g time shift in the nonlinear

terms

1
ug =3L,(u"), nT<t< (n + §>T, (13)

r Ss, (VT (¢, 2))

T T 1 2
Y] —3<Wuu+51(t,x)uz>, (n+§>7 <t< (n+§)7, (14)

T NI(t,x) 2
uf = 3G (- ) + RS, ()T <t < ot (15)
u™(0,z,2) = up(x,2), «€ E,,z¢€ Ey. (16)
Heren=0,1,...,.N—1,7TN=T,N>0, NeZ, u" =u"(t) =u" (¢, z, 2),
N{ = N{(t?x) = PTf(t,,fE,dg(t)) - QTf(tazydl(t))7
T T T T T T
NF = N3 (t.) = ul. (t = 2.2, i (D) flama) = Flomanoils (8 = 5,2, da(1)),

NI = Nj(t,x) =Qul, (t - z7nc,cl1(t)) —PTul, (t - g,x,dg(t)>,

3
T ! T T T ! T T
PT=F = (Bilt.2)+ d ()l (t = .0 di(t)), Q7= Fy = (By(t,2)+ dy(O)ul (¢ — 5.7 da(t)).
We introduce the notation 0
Uty =3 Up (1), (17)
k=0
k

bl

Ulz’to (t) = Ssup sup @UT(f, x, Z)

to<é<tx€E,,z€E 5 (18)
Up(0) = sup Ik Lol 2)1 s
©) wE B z€E; | 02" )
ak
w€B, 2B, | 0% ’ (19)

to € [0, <n+§>7)7 t>to,p=1,2,3.

The functions U (t), U* (to), Ux(0) are nonnegative and non-decreasing on each half-open
interval (nr, (n + 1)7].

Let us prove the priori estimates guaranteeing the compactness of a set of solutions
{u"(t,z, )} of the problem (13)—(16).

Let the half-interval (n7, (n + 1)7] be n-th time step, where n =0,1,..., N — 1.

We consider the zero integer step (n = 0).
At the first fractional step (p = 1), we obtain the following estimate for the solution u™ of

problem (13), (16), due to (11) and the maximum principle [6]

" (§,2,2)] < supue(,2)], 0<E< (20)

T
zeb, ,ze€F; 3
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We obtain the following estimates using differentiating the equation (13), (16) with respect
to z from one to ten times, respectively, due to (11) and the maximum principle [6]

ok ok T
@u (ﬁ,m,z) < EESU-peE @UO(.’E,Z) , k=110, 0< g < g (21)
z€E, ,z€E,
We obtain the following estimate from (20), (21) through (17), (18)
U™t <U0), 0<t< % (22)

At the second fractional step (p = 2), we obtain the following estimate for the solution of
equation (14) with initial data u™ (%,z,z) due to (11), (9) and the maximum principle [6]

U™ (1) < UT*§(§), % <t<Z. (23)

Collectively, on the first and second fractional steps, due to (22), (23) we get
7,0 27
U™(1) SU0). 0<t< 3 (24)

At the third fractional step (p = 3), integrating the equation (15) with ¢ € (%7,¢], & < ¢ <7,
we receive the equality

w@ = () 3 [ Gatnan o (- o) 4 g o,y

The last relation implies the inequality

. T [N (n, )|
<= )1 a0

ur (%T) ‘ +3 /j (1B2(n, z)|u” ()]

lu”(&)] <

2T
where — < &<t < T
Since this inequality holds for all z, z we replace the functions of the integral terms by their
exact upper bounds with respect to x € E,,,z € Eq, and then replace the function |u”|, on the

left-hand side of the inequality by ~ sup  |u”| considering (17)—(19) we obtain
r€E,z€FE,

o <u#(¥) o[ (o F g™ (- 3) + 07 (- 5)+
3
7% (0= 5)or¥ (- 5))Jan

Further, in the same way, differentiating equations (15) with respect to z from one to 10

times, similarly to the second fractional step, we get
7—7% 7—7%" 2T b & T,QTT 7',2.77 T T,QTT T
<ot () e [ 3 (05 G (- 7) + 07 (- 1)+

urE (77— g)Uf’%(n _ ;)>dn, k= T,10.
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Adding (25) and (26), by virtue of (17) we receive

or

where C' > 1-constant, independent of 7.
To the last inequality we apply the Gronwall lemma [7], then

v < (07 () e T 1 iy

Consequently, from (24) and last inequality at the zero whole step the following estimate
holds
U™0(t) < (U(0) + 1)e2c7WO+) 1 g <t <7

Repeating similar arguments at the first whole step, we obtain
U™ (t) < (U™ (1) + 1)e2077O+FVCT 1 7 <t L 2r

Assuming that 7 is sufficiently small and the inequality e2(V(O+DCT < 2 holds, at the zero
and first whole steps we get

U™0(t) < (U(0) + 1)eSUOFNCT 1 0 <t <27
Analogous reasoning, at the n—th whole step (n < N) we obtain
U™ (t) < (U™ (nr) +1)e2C7W D 0 e <t < (n41)7
Consequently, at n whole steps, we getting
U™0(t) < (U(0) + 1)e2@ntDUO+DET 9 0 <t < (n+ 1)7.
Hence, following estimate is true
U™0(t) < (U(0) +1)e2VO+FNCt _ 9 g <t < t,,

where ¢, satisfies the inequality
e2(U(0)+1)Ct* <2 (27)

10

Here U(0) = Z sup

b0 TE€ENn,2€E1
And, therefore, taking into account the notation (17), (18) uniformly with respect to

8k
@UO(% z)

, C'is constant depends of C,d1,dy from (11), (12).

k
‘ 0 u”(t,x, z)

02k

<C, k=0,10, (t,z,2)€ G[07t*]. (28)
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After differentiating problem (13)-(16) with respect to x;, z;, z; and z,,, we obtain equations
that can be regarded as linear with coefficients uniformly bounded in 7. Arguing by analogy and
considering (28), we obtain estimates uniformly with respect to 7

ok _—
D’y*u (t,iﬂ,Z) < C7 k= O, 10 — 2|7|7 |7| < 47 (t,.’E,Z) € G[O,t*]' (29)

T 0zk
We obtain from (29) and (13)—(16) uniformly with respect to 7
|UtT(tava)| < Ca (t,$,Z) € G[O,t*]'

We differentiate equations (13)—(16) once with respect to z. By (29), the right-hand side of
the equations obtained is uniformly bounded in 7, and consequently the left-hand side is also
uniformly bounded in 7

lul.(t,z,2)| < C,  (t,z,2) € G[O,t*]'

By analogy, uniformly with respect to 7

=

9k D’\ut (t,z,2)

<C, k=04, |N<2, (t,z,2)€ G[O,t*]'

Thus, the following estimate holds uniformly with respect to 7 for (¢,z,2) € G4,

’aataakkDAT 2 2)| + ‘88 ;:DAT ’ ‘6 akD/\Ttasz)gC, 0
=04, |A<2
ok
The estimate (29) implies the uniform boundedness in 7 of the family {Dgaku } in G,
and from (29), (30) their equicontinuity in ¢, z and z is equicontinuous in Gy ). Therefore, for
any fixed v, k, |y| < 2, k = 0,4, by the Arzela theorem [8] the set {D;Yaakku } is compact in

C(G[O,t*])’ M > 0 is an integer, G[O,t*] ={(t,z,2)[t € [0,T], x| < M, |z| < M}.

In a diagonal way, we choose a subsequence {u”} (we do not change the notation) converging
together with the corresponding derivatives with respect to x and z to some function u in Gy .,
and uniformly in each G[o L The function u is continuous, has derivatives of the corresponding
order in = and z that are continuous in G| ,], and satisfies the initial data (2) and inequality

’Dgazku(t,x,z) <O, k=04, |B] <2, (t,7,2) € G- (31)
ok ok
Since D;’a—uT = Dgc8 LU on G[Ot VM >0, |v] <2, k=0,4 and the inequality (31) is
T—0

satisfied, then we can prove that the proof is similar to the proof of Theorem 2.4.1 (see Sec.2.4.
One theorem of the weak approximation method [4]) that the function w is a solution of the
problem (10), (8) in G[Ot ] for any fixed M, and since M is arbitrary, then also in G|g ]

The function u(t, z, z) belongs to the class

09 oF
Ctl,’ai’f(G[o,t*]) = {fl(t7$72)|%f1 € C(G[o,t*]))anﬂfl € C(G[O,t*]),

(32)
18] < 2,k =0,4,9 =0, 1}
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The estimate (31) is true. In order to prove the existence of a solution of problem (7), (8),
it is necessary to remove the cutoff functions in equation (10). For this, we prove that for
(t,z) € gz},

0
Ni(t,x) > 5, Nao(t,z) >

We differentiate the expressions for Ny (t, ), Na(t, ) (N1(t
to t,

,x), Na(t,z) in (6))) with respect

My(t,x) = (N1(t, ) = Pif(t @, da(t) + P(fi(E, @, da(t)) + fL(E 2, da(2))d5 (1)) —
—Qif(tw, di () = QUL (82, da () + F2(E =, du(8))di (1)),
M(t,z) = (Na(t,2)); = (weze(t, 2, dr (b)) + wzez(t, 2, di (8))d1 () f (2, 2, da(t) + (33)
e (b, di (8)) (7 (¢, do (1)) + fL(E @, da(8))ds (1) — (f7 (2, @, du(F)) +
1Lt 2, di(8))dy (D) uzz(E, 2, do(t) — f(t, 2, di(8)) (uzz(E 2, do(1)))1,

where

Pl = ¢u — Lat(6(t, 7)) — Bure(t, 2)us(t,2,di (1)) — Bu(t, @) (uae (t, @, du (1)) +
Fuzs (t, @, di(8))d) (1) = Bae(t, 2) 9% (¢, 2) — 2B2(t, 2)d(t, 2) e (t, @) — (use(t, x, du(8))+
s (@, dy (8)dy (8))d) (£) — ua(t, 2, di ())dy (2),

Q1 =Y — Lot (V(t, ) — Pre(t, @)us(t, @, d2(t) — Bu(t, @) (wae (t, 2, da(t))+
Fuza(t @, do(t))dy(t) — Bae(t, 2)9° (8 ) — 262 (t, )y (t, 2)¢e(t ) — (wse(t, 2, d2 (1)) +
s (t, @, da(8)dy (1)) dy (8) — us(t, @, da(t))dy (1),

+

>3 f‘éﬁ)

=1

n , 82
Lu(6(t2) = Y ((a) amaq; g ascjat)

- 0% = 0%
_ Y
Lat(p(t, ) = Z_;l((o‘”) or,0r; | 9 aa; 895J8t) * ;( Y o, 8t)
By virtue of (11), (31)
|Mi(t,2)] < Ky, |Ma(t, )| < Ko, (34)

here K7, K5 are constants depending on d1, do, C.
We integrate expressions (33) with respect to ¢ in the range from 0 to ¢, we obtain

Ni(t.a) = Ni0.0)+ [ Milnohdn. Naft,) = Na(O.2) + [ MG, a)an

By virtue of (12), (34) Nl(t,x) 2 51 - K1t7 NQ(t, .’E) 2 52 - th

Nl(t;x) P %a NQ(tax) > %7 te [07t*] (35)

By the definition of the cutoff function (9) and (35), we obtain Ss, (N1(¢,2)) = Ni(t, z),
0 0
S5, (Na(t, 2)) = No(t,z) with ¢ € [0,¢*], when t* = min( L )
1 2
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Thus, in equation (10), the cutoffs are removed. The function u(t, z, z) satisfies equation (7).

The coefficients a(t, ) and b(t, z) can be written in the form (5).

Thus, we have proved the existence of a solution u(t,x, z) of the direct problem (7), (8) in
the class C} 2 e (G[O,t*])- It is proved

Theorem 1. Let conditions (9), (11), (12) are satisﬁed. Then there exists a solution

u(t,z,z) of the problem (7), (8) in the class Cth(G[O,t*]) satisfying (31).  The constant
o 0
t* = min( s 2}; 2}? ), where t, satisfies the inequality (27), the constants Ky, Ko depend

on C, 41, 02, fmm the relatz'ons (11), (12).

4. The existence and uniqueness of a classical solution
of the inverse problem

Let us prove that the triple of functions u(t, x, z), a(¢, z), b(t, =) are the solution of the inverse
problem (1)—(3), where a(¢t,z) and b(t,z) are defined in (5). Since u(t,z,z) is the solution of
the direct problem (7), (8), substituting u(t,x, z), a(t,x), b(t,z) in (1), we obtain the correct
identity.

According to (11), (31) from (5), (7), we obtain that the triple of functions u(t, z, 2), a(t, x),
b(t, z) belongs to the class

Z2(t*) = {u(t,z, 2), a(t,z), b(t, 2)|u € C 2 (Glo)),
a(t,x),b(t,x) € Ct,’a: (H[O,t*])}a

and satisfies the inequalities

Z Z)Dla S u(t,z Z)‘ <O, (t,x,2) € Gy, (36)
18]<2 k=0
3 ‘Dfa(t,x)‘ +3 ‘be(t,m)‘ <O, (to) el (37)
1Bl<2 1Bl<2
The class Ctljj(G[oyt*]) is defined in (32), and

CY2 (Mg ) = {a1(t, z)|DEay (t,2) € C(Ig 1), |B] < 2}

Using conditions (4) and equation (1), we can prove that the overdetermination conditions
(3) are satisfied.

The existence in the class Z(t*) of the solution u(t, z, z), a(t, x), b(t, z) of the problem (1)—(3)
satisfying relations (1)—(3) is proved.

The uniqueness of the solution to problem (1)—(3) is proved by a standard method: the
difference between the two solution to problem (1)—(3) that obey (36), (37) is shown to vanish.

Thus, it is proved

Theorem 2. Let us conditions (4), (11), (12) are satisfied. Then there exists a unique solution
u(t,x,z), a(t,x), b(t,x) of problem (1)—(3) in the class Z(t*) satisfying relations (36), (37). The
]
s —1, —2), where t, satisfies the inequality (27), the constants K1, K of
2K, 2K,
the temple from C, 01, b2, from relations (11), (12).

constant t* = min (t
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3ajsa4da omnpejesienus PyHKIINN UCTOYHUKA U CTAPIIIETro
Ko3durimeHTa B MOJIYJIMHEITHOM MHOTOMEPHOM
napaboJImIecKoM ypaBHEHUN

Csetiana B. IToabiniiesa
Kupa U. Coupuna

Cubupckuii deepasbHbIil YHUBEPCUTET
Kpacnosipck, Poccuiickass @eneparus

Awnnoranusi. PaccmarpuBaercs 3aada onpeesieans (GYyHKIAA UCTOYHUKA U KOIPDUIINEHTA TTPU BTO-
POt TPOU3BOIHOM MO ITPOCTPAHCTBEHHOM IMEPEMEHHON B MHOTOMEPHOM IOJIYJIUHEHHOM Mapabo/ImIecKOM
YPaBHEHUM C YCJIOBUSIMU IE€PEOIIPEIC/IEHNs, 3aJaHHBIMIA Ha JIBYX PA3JIMYHBIX TMIIEPIOBEPXHOCTSX. Jlo-
Ka3aHa TeopeMa CYIIeCTBOBAHUS M €IMHCTBEHHOCTH KJIACCUYECKOTO PeIlieHnsi OOpaTHON 3a/1a9n B KJIacce
IJIQIKUX OrpaHuYeHHbIX dyHKIuit. HaiineHo yciioBre 3aBHCHMOCTH BEpXHEH TDAHHIIBI BPEMEHHOTO OT-
pe3Ka, B KOTOPOM CYINECTBYeT W €IMHCTBEHHO pellleHrne OOpaTHOM 3384, OT BXOJIHBIX JTaHHBIX.

KuaroueBrbie ciioBa: obpaTHas 3ajada, yCJIOBUS MIEPEOTPEIECTICHNUs, TOJIYTNHERHOE MHOTOMEPHOE TTapa-
GoJsinyueckoe ypaBHeHue, 3aja4da Ko, Meros ciaboil alnmpoKCUMAaIui, BXOAHbIE JAHHbIE, OlpeIe/IeHne
K03 DUIIEHTOB.
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