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Abstract. The Ostroumov–Birikh type exact solution of thermodiffusion convection equations is con-
structed in the frame of mathematical model considering evaporation through the liquid–gas interface
and the influence of direct and inverse thermodiffusion effects. It is interpreted as a solution describing
steady flow of evaporating liquid driven by co-current gas-vapor flux on a working section of a plane
horizontal channel. Functional form of required functions is presented. An algorithm for finding all the
constants and parameters contained in the solution is outlined, and their explicit expressions are written.
The solution is derived for the case of vapor absorption on the upper wall of the channel which is set
with the help of the first kind boundary condition for the function of vapor concentration. Applicability
field of the solution is briefly discussed.
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Introduction

The widespread use of two-phase systems in different technologies motivates the intensive
development of the experimental and theoretical methods for studying the features of convective
flows accompanied by evaporation in the frame of various approaches [1]. Examples of such tech-
nologies are the fluidic cooling, thermal coating or drying processes etc. Full-scale experimental
elaboration and testing of the real technological systems can be very expensive and sometimes
impossible (for example, if it is expected that these systems will be used in microgravity). Thus,
preliminary theoretical investigation based on the mathematical modeling is the necessary re-
quirement and an indispensable part when solving the optimization problems of fluid technologies
and in the search for innovative technical solutions.
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Currently, mathematical models built on the basis of the Navier–Stokes and heat transfer
equations or their approximations are the most widely used ones for theoretical investigations
of the processes in the two-phase systems. These equations are the results of symmetry of the
space-time, i. e. the fulfilment of the fundamental conservation laws was implied in deriving
the equations. This fact enables to obtain the significant results in the study the problems of
the fluid flows with heat and mass transfer at the thermocapillary interfaces. We focus on the
search and investigation of an exact solution of the governing system of differential equations,
since the solution inherit basic properties of symmetry of the space-time and of a fluid moving
in the space, thereby ensuring feasibility of physical processes described by this solution.

Among possible solutions of the evaporative convection problems are especially highlighted
the Ostroumov–Birikh type solutions [1]. They take into account the presence of temperature
gradient which can appear both due to evaporation and applied outside or interfacial thermal
load. The applicability of such a class of solutions for describing the two-layer flows with diffusive
type evaporation at the interface in a horizontal channel is confirmed by a good qualitative
agreement between the experimental data and theoretical results [2]. The specific feature of
these solutions is that they allow one to test various types of boundary conditions for the vapor
concentration and temperature functions, to correctly take into account the influence of the
external controlling actions (thermal, mechanical, fluid flow rate etc.) as well as the gravity and
thermodiffusion effects [3, 4].

For the first time, the problem of unidirectional two-layer flows induced by the gravity and
Marangoni forces was considered in [5]. The first results of the study the flows with evaporation
in a bilayer system based on an analogue of the Ostroumov–Birikh solution were presented in [6].
2D and 3D generalizations of the solution obtained in the framework of the evaporative convection
problem in the liquid – gas system with the sharp interface admitting the phase transition were
constructed in [7,8]. The uniform character of evaporation was considered in all the listed works.

In the present paper, an exact solution of the convection equations to describe joint flow of
the evaporating liquid and gas-vapor mixture in a horizontal minichannel under conditions of
the given gas flow rate and full vapor absorption on the upper channel boundary is constructed.
The aim of this work is to take into account an inhomogeneous with respect to the longitudinal
coordinate character of evaporation at the interface.

1. Problem statement and form of exact solution

The stationary flow of two viscous incompressible media (of the liquid and gas-vapor mix-
ture) filling the plane channel and having the common thermocapillary interface Γ is considered
(Fig. 1). In the Cartesian coordinate system (x, y) the gravity acceleration vector g has the
coordinates g = (0, −g). The upper and lower boundaries of the channel y = h and y = −l are
the rigid walls. The interface remains to be flat, it is given by the equation y = 0.

The Oberbeck–Boussinesq approximation of the Navier–Stokes equations is used to describe
the flow in each phase. In two-dimensional case the constitutive equations have the following
form:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
, (2.1)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)
+ g (βT + γC) , (2.2)
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Fig. 1. Flow scheme.

∂u

∂x
+

∂v

∂y
= 0, (2.3)

u
∂T

∂x
+ v

∂T

∂y
= χ

(
∂2T

∂x2
+

∂2T

∂y2
+ δ

(
∂2C

∂x2
+

∂2C

∂y2

))
. (2.4)

The vapor transfer in the gas phase is governed by the convective diffusion equation, which is
the result of the Fick’s law [9]:

u
∂C

∂x
+ v

∂C

∂y
= D

(
∂2C

∂x2
+

∂2C

∂y2
+ α

(
∂2T

∂x2
+

∂2T

∂y2

))
. (2.5)

The terms γC in (2.2) and δ∆C in (2.4) are taken into account by modeling of flows in the
gas-vapor layer. In equations (2.1)–(2.5) the following notations are used: u, v are the longi-
tudinal and transversal components of the velocity vector, p is the deviation of pressure from
the hydrostatic one, T is the temperature, C is the vapor concentration in background gas, ρ
is the density of the liquid and gas (some reference value of the density), ν is the kinematic
viscosity coefficient, χ is the heat diffusivity coefficient, D is the coefficient of vapor diffusion in
the gas, β is the coefficient of thermal expansion, γ is the concentration coefficient of density,
the parameters δ and α characterize the Dufour and Soret effects (the effects of diffusive thermal
conductivity and thermodiffusion, correspondingly) [10].

Let the exact solution of the governing equations (2.1)–(2.5) be of a special type, when
only the longitudinal velocity component is not equal to zero and depends on the transverse
coordinate; functions of temperature and vapor concentration have the linear components with
respect to the longitudinal coordinate:

ui = ui(y), vi = 0, Ti = Ti(x, y) =
(
ai1 + ai2y

)
x+ ϑi(y),

C = C(x, y) = (b1 + b2y)x+ ϕ(y), pi = pi(x, y).
(2.6)

Index i denotes characteristics of corresponding fluid: i = 1 relates to the liquid in the lower
layer, i = 2 regards to the gas-vapor mixture filling the upper layer. Parameters ai2, bj (i = 1, 2;

j = 1, 2) are the constants, their values will be determined with the help of boundary conditions.
Furthermore, the boundary conditions will dictate certain linking relations for the parameters.
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2. Boundary conditions

The boundary conditions will be written subject to the form of exact solution (2.6) of equa-
tions (2.1)–(2.5). The no-slip conditions are fulfilled on the fixed impermeable channel walls

u1 (−l) = 0, u2 (h) = 0, (3.1)

and the linear temperature distribution is prescribed on these walls

T1 (x,−l) = A1x+ ϑ−, T2 (x, h) = A2x+ ϑ+. (3.2)

The condition for vapor concentration on the upper wall is determined by the property of
this wall to instantaneously completely absorb the vapor:

C (x, h) = 0. (3.3)

In some real physical cases the vapor absorbtion property is confirmed by a possibility of a freezing
out of the vapor. The applicability of boundary condition of such a type in this problem in frame
of 3D statement is discussed in [11].

On the thermocapillary interface Γ given by the equation y = 0 the kinematic and dynamic
conditions as well as the condition of heat balance should be set [12]. The kinematic condi-
tion is fulfilled automatically in view of the form of the velocity vector components (see (2.6)).
Projection of the dynamic condition on the unit tangential vector to the interface is written as
follows:

ρ1ν1u1y = ρ2ν2u2y − σTTx

∣∣
y=0

, (3.4)

where σT > 0 is the temperature coefficient of the surface tension σ which linearly depends on
the temperature, σ = σ0 − σT (T − T0), σ0 > 0 is the characteristic value of the surface tension
at a relative temperature T0. Projection of the dynamic condition on the unit normal vector to
the interface leads to the equality

p1 = p2. (3.5)

We demand the fulfilment of continuity conditions for the tangential component of velocity
vector and temperature at the interface:

u1 = u2, T1 = T2. (3.6)

The continuity of normal component of the velocity vector ensues from the kinematic condition.
The heat transfer condition and the mass balance equation are stated as follows:

κ1T1y − κ2T2y − δκ2Cy

∣∣
y=0

= −λM, (3.7)

M = −Dρ2 (C y + αT2y|y=0) . (3.8)

The relations include the effects of the thermodiffusion and duffusive thermal conductivity char-
acterized by coefficients α and δ; λ is the latent heat of evaporation. In the present paper, the
exact solution is constructed under assumption, that the evaporation mass flow rate of the liquid
at the interface linearly depends on the longitudinal coordinate:

M = M(x) = M0 +Mxx. (3.9)

The presupposition implies that nonuniform (inhomogeneous) character of phase transition is
examined. The evaporation mass flow rate M is one of the important characteristics of the
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evaporative convection. The positive values of M correspond to evaporation of the liquid into
the gas flow; the negative values regards to the vapor condensation.

The saturated vapor concentration is defined with the help of the relation being a sequence
of the Clapeyron–Clausius and Mendeleev–Clapeyron equations [6, 7, 13]:

C
∣∣
y=0

= C∗[1 + ε(T2

∣∣
y=0

− T0)]. (3.10)

In this equation ε = λµ0/(RT 2
0 ), µ0 is the molar mass of the evaporating liquid, R is the universal

gas constant, C∗ is the saturated vapor concentration at T2 = T0. Equation (3.10) is valid under
assumption of smallness of the dimensionless parameter εT∗ (T∗ is a characteristic temperature
drop), that is provided by moderate values of temperature and temperature drops.

To close the problem statement the condition of a given gas flow rate is assumed to be
satisfied:

Q =

∫ h

0

ρ2u2(y) dy. (3.11)

Used form of the boundary conditions allows one to correctly describe the phase transition of
diffusive type. Thus, boundary-value problem (2.1)–(2.5), (3.1)–(3.11) presents the mathematical
model to simulate convection in multiphase system under conditions of weak evaporation.

3. The class of the exact solutions

The fulfilment of condition of temperature continuity (3.6) at the interface dictates the fol-
lowing equality: ai1 = A (i = 1, 2). The value determines the longitudinal temperature gradient
presetting the intensity thermal effects on the interface, and as consequence, the intensity of
evaporation and surface tension-driven convection.

Deriving the solution of equations (2.1)–(2.5) in the form (2.6) results in the explicit expres-
sions for the required functions which define basic characteristics of the bilayer system (velocity
ui, pressure pi, temperature Ti in i-th phase and vapor concentration C in gas layer):

ui (y) = ci3 + ci2y + ci1
y2

2
+ Li

3

y3

6
+ Li

5

y4

24
,

pi (x, y) =

(
di1 + di2y + di3

y2

2

)
x+ ci8 +Ki

1y +Ki
2

y2

2
+Ki

3

y3

3
+Ki

4

y4

4
+

+Ki
5

y5

5
+Ki

6

y6

6
+Ki

7

y7

7
+Ki

8

y8

8
,

Ti (x, y)=
(
A+ ai2y

)
x+ ci5+ ci4y+N i

2

y2

2
+N i

3

y3

6
+N i

4

y4

24
+N i

5

y5

120
+N i

6

y6

720
+N i

7

y7

1008
,

C (x, y)= (b1 + b2y)x+ c7 + c6y + S2
y2

2
+ S3

y3

6
+ S4

y4

24
+ S5

y5

120
+ S6

y6

720
+ S7

y7

1008
.

(3.12)

Coefficients Li
4, L

i
3, Sj , K

i
m (i = 1, 2; j = 2, . . . , 7; m = 1, . . . , 8) are expressed by physical

parameters of the problem g, βi, νi, χi, ρi, D, γ, coefficients defining the longitudinal temperature
and vapor concentration gradients A, ai2, bi (i = 1, 2), and by integration constants cij (i = 1, 2;
j = 1, . . . , 5; 8), c6, c7. Exact representations of the listed coefficients are given in Appendix.
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4. The common scheme for finding the governing
parameters and integration constants

Implementation of boundary conditions (3.1)–(3.11) will lead to a system of equations for
calculation of the integration constants cij (i = 1, 2; j = 1, . . . , 5; 8), c6, c7. Determining these
constants, the velocity and temperature profiles, the pressure distributions for both fluids and
the vapor concentration in the gas are calculated with the help of formulas (3.12).

Below, the algorithm for finding all the unknown parameters and constants is outlined. Let
the gas flow rate (3.11) and certain values of the longitudinal temperature gradients A, A1 (see
expression for the temperature functions in (3.12) and boundary conditions (3.2) be given.

(i) In the consequence of the heat transfer and mass balance conditions (3.7), (3.8) at the
interface a relationship relating the longitudinal temperature gradients A, A1 and A2 is
derived. It should be noted that both boundary gradients A1 and A2 can be given, then
the corresponding relation to calculate the interfacial gradient A is obtained.

(ii) Parameters b1, b2, Mx characterizing the flow regime (2.6), (3.9) with nonuniform evapo-
ration are determined with the help of A, A2 on the basis of (3.3), (3.8), (3.10).

(iii) Solving the system of the linear algebraic equations being a consequence of the no-slip
conditions (3.1), dynamic conditions (3.4), (3.5), condition of velocity continuity (3.6) and
equality (3.11) defining the gas flow rate, the values of the unknowns {ci1, ci2, ci3} (i = 1, 2)
are calculated.

(iv) Conditions determining the thermal and vapor concentration boundary regimes (3.2), (3.3),
conditions at interface setting the temperature continuity (3.6) and saturated vapor con-
centration (3.10), and heat balance equation (3.7) lead to the system of the linear algebraic
equations for calculation {c24, c25, c6} and {c14, c15, c7}.

(v) The value of M0 will be computed with the help of obtained values c24 and c6.

Following this algorithm, all the required functions of the form (2.6) and the mass evaporation
rate at the interface M = M(x) in the form (3.9) are determined.

5. Concluding remarks with regard to conditions
of applicability of the solution

To use the obtained solution for describing convection with evaporation in real physical
systems, it should define conditions ensuring the correct application of the approach based on
the utilization of the exact solutions of the fluid mechanics equations in the Oberbeck–Boussinesq
approximation.

First of all, it must be remembered that the principal limitation for the use of the Oberbeck–
Boussinesq approximation is to consider the heat and mass transfer processes occurring under
moderate temperature drops. The equations of thermal-concentration convection written in form
(2.1)–(2.4) present the “diffusive” laws of the transfer of mass, momentum and energy which
adequately govern these processes near the thermodynamical equilibrium state. The moderate
temperature drops, in turn, result in small variations of concentration. The latter ensures the
correct using of the Fick’s law written in form of convection-diffusion equation (2.5) and interface
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boundary condition (3.10). These requirements concerning quantitative changes in temperature
and concentration in the system allow one to consider the processes of phase transition as the
diffusive ones, and consequently, to believe that we deal with “weak” evaporation. It means that
the phase transitions induced by critical thermal loads as, for example, while boiling are not
considered.

The second point is to regard the flows with small velocities. It allows one to suppose that the
gas in two-phase systems under study is an incompressible medium. It is worth to noting that for
the mini- and microscale fluidic systems this assumption is quite justified [14]. Simultaneously,
the requirement concerning the scale of the system is the condition when the Ostroumov–Birikh
type solution gives plausible description of all the basic characteristics for a two-phase system
with evaporation through the sharp interface [6].

Finally, taking into account the character of dependence of the temperature and vapor con-
centration functions on the longitudinal coordinate x specified in (2.6), one can conclude that
these functions will grow with growth of x. Then, according to the given physical interpretation
of solution (2.6), it will give appropriate (physically feasible) results if the convective regimes are
considered in the domain of finite size. One should control the values of C function; they cannot
be more than 1, since we treat this function as mass fraction of the evaporating component in the
background gas. If its values becomes more than 1, it will immediately mean, that the solution
gives “purely mathematical solution” of the boundary-value problem under consideration.

Appendix. Formulas for calculating the coefficients
in expressions (3.12)

Coefficients Li
4, L

i
3:

L1
4 =

gβ1a
1
2

ν1
, L1

3 =
gβ1A

ν1
, L2

4 =
g

ν2

(
β2a

2
2 + γb2

)
, L2

3 =
g

ν2
(β2A+ γb1) .

Coefficients N i
7, N

i
6, N

i
5, N

i
4, N

i
3, N

i
2:

N1
7 =

gβ1(a
1
2)

2

ν1χ1
, N1

6 = 5
gβ1Aa12
ν1χ1

, N1
5 =

1

χ1

(
gβ1(A)2

ν1
+ 3a12c

1
1

)
,

N1
4 =

1

χ1

(
Ac11 + 2a12c

1
2

)
, N1

3 =
1

χ1

(
Ac12 + a12c

1
3

)
, N1

2 =
A

χ1
c13, N2

7 = B2
g

ν2

(
β2a

2
2 + γb2

)
,

N2
6 =

g

ν2

[
B1

(
β2a

2
2 + γb2

)
+ 4B2 (β2A+ γb1)

]
, N2

5 = B1
g

ν2
(β2A+ γb1) + 3B2c

1
2,

N2
4 = B1c

2
1 + 2B2c

2
2, N2

3 = B1c
2
2 + 2B2c

2
3, N2

2 = B1c
2
3.

Coefficients S7, S6, S5, S4, S3, S2:

S7 =
g

ν2

(
β2a

2
2 + γb2

)(b2
D

− αB2

)
,

S6 =
g

ν2

[(
b1
D

− αB1

)(
β2a

2
2 + γb2

)
+ 4

(
b2
D

− αB2

)
(β2A+ γb1)

]
,

S5 =
g

ν2

[(
b1
D

− αB1

)
(β2A+ γb1) + 3

(
b2
D

− αB2

)
c21

]
,
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S4 =

(
b1
D

− αB1

)
c21 + 2

(
b2
D

− αB2

)
c22,

S3 =

(
b1
D

− αB1

)
c22 +

(
b2
D

− αB2

)
c23, S2 =

(
b1
D

− αB1

)
c23.

Coefficients di3, d
i
2, d

i
1:

d13 = ρ1gβ1a
1
2, d12 = ρ1gβ1A, d11 = ρ1ν1c

1
1,

d23 = ρ2gβ2a
2
2 + ρ2gγb2, d22 = ρ2gβ2A+ ρ2gγb1, d21 = ρ2ν2c

2
1.

Coefficients Ki
8, K

i
7, K

i
6, K

i
5, K

i
4, K

i
3, K

i
2, K

i
1:

K1
8 =

1

1008

(gβ1a
1
2)

2ρ1
ν1χ1

, K1
7 =

1

144

(gβ1)
2ρ1

ν1χ1
Aa12,

K1
6 =

1

120

gβ1ρ1
χ1

(
gβ1(A)2

ν1
+ 3a12c

1
1

)
, K1

5 =
1

24

gβ1ρ1
χ1

(
Ac11 + 2a12c

1
2

)
,

K1
4 =

1

6

gβ1ρ1
χ1

(
Ac12 + a12c

1
3

)
, K1

3 =
1

2

gβ1ρ1
χ1

Ac13, K1
2 = gβ1ρ1c

1
4, K1

1 = gβ1ρ1c
1
5;

K2
8 =

1

1008

g2ρ2
ν2

(
β2a

2
2 + γb2

)(
B2(β2 − αγ) +

γb2
D

)
,

K2
7 =

1

720

g2ρ2
ν2

[
(
β2a

2
2 + γb2

)(
B1(β2 − αγ) +

γb1
D

)
+

+4 (β2A+ γb1)

(
B2(β2 − αγ) +

γb2
D

)
],

K2
6 =

1

120
gρ2

[
g

ν2
(β2A+ γb1)

(
B1(β2 − αγ) +

γb1
D

)
+ 3

(
B2(β2 − αγ) +

γb2
D

)
c21

]
,

K2
5 =

1

24
gρ2

[(
B1(β2 − αγ) +

γb1
D

)
c21 + 2

(
B2(β2 − αγ) +

γb2
D

)
c22

]
,

K2
4 =

1

6
gρ2

[(
B1(β2 − αγ) +

γb1
D

)
c22 +

(
B2(β2 − αγ) +

γb2
D

)
c23

]
,

K2
3 =

1

2
gρ2

(
B1(β2 − αγ) +

γb1
D

)
c23, K2

2 = gβ2ρ2c
2
4 + gγρ2c

2
6, K2

1 = gβ2ρ2c
2
5 + gγρ2c

2
7.

Here, B1 =
DA− χ2δb1
Dχ2(1− αδ)

, B2 =
Da22 − χ2δb2
Dχ2(1− αδ)

.
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Решение задачи о двухслойном течении с неоднородным
испарением на термокапиллярной границе раздела

Виктория Б. Бекежанова
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация
Ольга Н. Гончарова

Алтайский государственный университет
Барнаул, Российская Федерация

Илья А. Шефер
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Аннотация. В рамках математической модели, учитывающей испарение на межфазной грани-
це и влияние прямого и обратного термодиффузионных эффектов, строится аналог решения
Остроумова–Бириха для уравнений термоконцентрационной конвекции. Полученное решение ин-
терпретируется как решение, описывающее установившееся течение испаряющейся жидкости, увле-
каемой спутным газопаровым потоком, на рабочем участке плоского горизонтального канала. При-
ведены точные представления искомых функций. Описан алгоритм определения констант и пара-
метров, которые содержит решение, выписан их явный вид. Решение построено для случая аб-
сорбции пара на верхней стенке канала, которое задаётся граничным условием первого рода для
функции концентрации пара. Кратко обсуждается область применимости полученного решения.

Ключевые слова: математическая модель, краевая задача, точное решение, испарительная кон-
векция.
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