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Abstract. The problem of two-dimensional stationary flow of two immiscible incompressible binary
mixtures in a cylindrical capillary in the absence of mass forces is investigated. The mixtures are
contacted through a common the interface on which the total energy condition is taken into account.
The temperature and concentration in the mixtures are distributed according to a quadratic law, which
is in good agreement with the velocity field of the type Hiemenz. The resulting conjugate boundary value
problem is nonlinear and inverse with respect to the pressure gradients along the axis of the cylindrical
capillary. The tau-method (a modification of the Galerkin method) was applied to this problem, which
showed the possibility of the existence of two solutions. It is shown that the obtained solutions with
a decrease in the Marangoni number converge to the solutions of the problem of the creeping flow of
binary mixtures. When solving the model problem for small Marangoni numbers, it is found that the
effect of the increments of the internal energy of the interfacial surface significantly affects the dynamics
of flows of mixtures in layers.
Keywords: binary mixture, interface, internal energy, inverse problem, pressure gradient, thermal
Marangoni number.
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Introduction

The specifics of the phenomena occurring at the interface of liquids are related to the existence
of the energy and entropy of the surface phase, which are excessive in relation to the bulk
phases in the transition layer [1]. However, the energy exchange between the bulk and surface
phases has not been sufficiently studied. For ordinary liquids at room temperature, the effect
of changes in the internal energy of the interfacial surface on the formation of heat fluxes,
temperature fields, and velocities in its vicinity is insignificant in relation to viscous friction
and heat transfer . However, at sufficiently high temperatures, when the viscosity and thermal
conductivity of ordinary liquids are significantly reduced, as well as for liquids with reduced
viscosity (for example, for some cryogenic liquids), the effect of the internal energy increments
of the interfacial surface is significant [3].
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In this paper, we consider a mathematical model describing the two-dimensional stationary
thermodiffusion motion of two immiscible incompressible binary mixtures in a cylindrical cap-
illary in the absence of mass forces. The mixtures are contacted through a common interface
on which the total energy condition is taken into account. In this geometry, the mechanism of
influence of changes in the surface internal energy on the dynamics of binary mixtures is inves-
tigated. Without taking into account the effects of thermal diffusion, such a model was studied
in the works [4, 5].

1. Statement of the problem
We consider a two-dimensional stationary axisymmetric flow of two immiscible incom-

pressible binary mixtures in a cylindrical tube of radius R2, the temperature of which is
maintained constant. Binary mixture occupy the field: Ω1 = {0 6 r 6 R1, |z| < ∞} and
Ω2 = {R1 6 r 6 R2, |z| < ∞}, where r, z are the radial and axial cylindrical coordinates. Here
r = R1 = const is the total interface of binary mixtures, r = R2 = const is the solid wall. The
values related to the regions Ω1 and Ω2 are denoted by indexes 1 and 2, respectively. The area
of Ω1 is called the core, and the area Ω2 is an interlayer or film. It is assumed that its charac-
teristic transverse size is small by compared to the radius of the core, R2 − R1 ≪ R1. Such a
geometry corresponds, for example, to the case of displacement of the liquid that originally filled
the capillary by another liquid.

Fig. 1. The scheme of the flow region

Binary mixture is characterized by constant thermal conductivities kj , specific heat capacities
cpj , dynamic viscosities µj , densities ρj ; let χj = kj/ρjcpj is the thermal conductivity, νj = µj/ρj
is the kinematic viscosity (here and further, j = 1, 2). The influence of gravity is not taken into
account, which may be justified, for example, if the tube it is quite narrow to the capillaries.

The system of equations of motion, continuity, internal energy balance and concentration
transfer has the following form [6]:

ujujr + wjujz +
1

ρj
pjr = νj

(
∆uj −

uj

r2

)
,

ujwjr + wjwjz +
1

ρj
pjz = νj∆wj ,

ujr +
uj

r
+ wjz = 0,

ujθjr + wjθjz = χj∆θj ,

ujcjr + wjcjz = dj∆cj + αjdj∆θj ,

(1)

where uj , wj are projections of the velocity vector on the r, z axis of the cylindrical coordinate
system; pj is the pressure in the layers; θj , cj are deviations of temperature and concentra-
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tion from their equilibrium values; dj , αj are the diffusion and thermal diffusion coefficients,
respectively; ∆ = ∂2/∂r2 + r−1∂/∂r + ∂2/∂z2 is the Laplace operator.

The linear dependence of the interfacial tension coefficient on temperature and concentration
is assumed:

σ(θ, c) = σ0 − æ1(θ − θ0)− æ2(c− c0). (2)

Here æ1 > 0 is the temperature coefficient, æ2 is the concentration coefficient of the surface
tension (normally æ2 < 0, because the surface tension increases with increasing concentration);
θ0, c0 are the temperature and concentration on the interfacial surface in the as balance.

The solution to the problem is sought in a special form:

uj = uj(r), wj = zvj(r), pj = pj(r, z),

θj = aj(r)z
2 + bj(r), cj = hj(r)z

2 + gj(r).
(3)

A solution of the form (3) is called a solution of the type Hiemenz [7], in which the velocity field
is linear with respect to the transverse coordinate. Thus, the temperature θj takes an extreme
value at the point z = 0: the maximum at aj(r) < 0 and the minimum at aj(r) > 0. We
get a similar interpretation for the concentration cj , only instead of aj(r) the function hj(r) is
considered.

After substituting the special form (3) into the equations of motion (1) we will have the
following system with unknown functions uj(r), vj(r), pj(r), aj(r), bj(r), hj(r), gj(r):

ujujr +
1

ρj
pjr = νj

(
ujrr +

1

r
ujr −

uj

r2

)
, (4)

z(ujvjr + v2j ) +
1

ρj
pjz = νjz

(
vjrr +

1

r
vjr

)
, (5)

ujr +
uj

r
+ vj = 0, (6)

ujajr + 2vjaj = χj

(
ajrr +

1

r
ajr

)
, (7)

ujbjr = χj

(
bjrr +

1

r
bjr + 2aj

)
, (8)

ujhjr + 2vjhj = dj

(
hjrr +

1

r
hjr

)
+ αjdj

(
ajrr +

1

r
ajr

)
, (9)

ujgjr = dj

(
gjrr +

1

r
gjr + 2hj

)
+ αj dj

(
bjrr +

1

r
bjr + 2aj

)
. (10)

From the equations (4), (5), we express the pressure gradients (pjr, pjz):

pjr = ρjνj

(
ujrr +

1

r
ujr −

uj

r2

)
− ρj uj ujr, (11)

pjz = z
[
ρjνj

(
vjrr +

1

r
vjr

)
− ρj(uj vjr + v2j )

]
, (12)

Conditions for the compatibility of the equations (11), (12) are satisfied identically:
pjrz = pjzr = 0. It follows that the pressure in the layers will be restored by the formula:

pj = −ρjfj
z2

2
+ sj(r), (13)

where the derivative of the variable r from the functions sj(r) is exactly the right-hand side of
the equation (11). Integrating this equation, we obtain for the functions sj(r) the following view:

sj(r) = ρjνj

(
ujr +

1

r
uj

)
− 1

2
ρj u

2
j + sj0, sj0 ≡ const. (14)
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In turn, the functions vj(r) are defined from the equation:

ujvjr + v2j = νj

(
vjrr +

1

r
vjr

)
+ fj , (15)

where fj ≡ const. The flow in the layers is induced by the longitudinal pressure gradients
fj . These are unknown constants that are subject to by definition. Therefore, the problem is
reversed.

On a solid wall r = R2, the boundary conditions are satisfied:

u2(R2) = 0, v2(R2) = 0, a2(R2) = a20, b2(R2) = b20,

h2r(R2) + α2a2r(R2) = 0, g2r(R2) + α2b2r(R2) = 0,
(16)

with the given constants a20, b20. Note that when a20 < 0 the wall temperature has a maximum
value at the point z = 0, and for a20 > 0 — minimal.

On the interface r = R1, given the dependence (2), we will have the following conditions:

cu1(R1) = u2(R1), v1(R1) = v2(R1), (17)

a1(R1) = a2(R1), b1(R1) = b2(R1),

h1(R1) = h2(R1), g1(R1) = g2(R1),
(18)

µ2v2r(R1)− µ1v1r(R1) = −2æ1a1(R1)− 2æ2h1(R1), (19)

d1[h1r(R1) + α1a1r(R1)] = d2[h2r(R1) + α2a2r(R1)], (20)

k2a2r(R1)− k1a1r(R1) = æ1a1(R1)v1(R1),

k2b2r(R1)− k1b1r(R1) = æ1b1(R1)v1(R1).
(21)

The relation (21) is called the energy condition on the interface of two binary mixtures [8–10].
It means that the jump in the heat flow in the direction of the normal to the surface section
r = R1 is compensated by a change in the internal energy of this surface. In turn, this change
is associated with both a change in temperature (and with it the specific internal energy) and a
change in the area of the interface.

For a complete statement of the problem to the relations (17)–(21), it is necessary to add the
boundedness of the functions on the axis of the cylindrical capillary at r = 0:

|u1(0)| < ∞, |v1(0)| < ∞, |s1(0)| < ∞, |a1(0)| < ∞,

|b1(0)| < ∞, |h1(0)| < ∞, |g1(0)| < ∞.
(22)

2. Transformation to a problem in dimensionless variables
For what follows, it is essential that the equations (6), (7), (9), (15) are independent of

the others and form a closed subsystem for defining the functions vj(r), aj(r), hj(r) and the
constants fj (j = 1, 2). After solving it, the functions bj(r), gj(r) are found from the equations
(8), (10), and sj(r) is uniquely restored by the formula (14). If we integrate the continuity
equation (6) and exclude functions uj(r) in the equations (7), (9), (15) with given the conditions
of boundedness (22) and sticking on a solid wall (16), the problem is reduced to the conjugate
boundary value problem of finding only the functions vj(r), aj(r), hj(r) and the constants fj .
We introduce dimensionless variables and functions by equalities:

ξ =
r

R1
, R =

R2

R1
> 1 , Vj =

R2
1vj

Ma ν1
,

Aj =
aj
a20

, Hj =
hj

c0
, Fj =

R4
1fj

Ma ν21
,

(23)
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where a20, c0 are the characteristic temperature and concentration.
As the defining parameters of the problem under consideration, we choose the following:

Ma =
æ1a20R

3
1

µ2ν1
, Mc =

æ2c0 R
3
1

µ2ν1
, Prj =

νj
χj

, Scj =
νj
dj

, Srj =
αja20
c0

,

µ =
µ1

µ2
, ν =

ν1
ν2

, k =
k1
k2

, d =
d1
d2

, M =
Mc
Ma

=
æ2c0
æ1a20

.

(24)

Here Ma is the thermal Marangoni number, Mc is the concentration Marangoni number, Prj are
the Prandtl numbers, Scj are the Schmidt numbers, Srj are the Soret numbers.

After de-dimensionalization, we obtain a nonlinear inverse boundary value problem in the
domain with respect to the spatial variable ξ, which, for j = 1 varies between 0 and 1, and when
j = 2 — in the range from 1 to R.

For 0 < ξ < 1 we will have:

K1(V1, F1) ≡ V1ξξ +
1

ξ
V1ξ +

Ma
ξ

V1ξ

∫ ξ

0

xV1(x) dx− MaV 2
1 + F1 = 0, (25)

S1(V1, A1) ≡
1

Pr1

(
A1ξξ +

1

ξ
A1ξ

)
+

Ma
ξ

A1ξ

∫ ξ

0

xV1(x) dx− 2MaA1V1 = 0; (26)

T1(V1, A1,H1) ≡
1

Sc1

(
H1ξξ +

1

ξ
H1ξ

)
+

Sr1
Sc1

(
A1ξξ +

1

ξ
A1ξ

)
+

+
Ma
ξ

H1ξ

∫ ξ

0

xV1(x) dx− 2MaH1V1 = 0.

(27)

For 1 < ξ < R, we have:

K2(V2, F2) ≡
1

ν

(
V2ξξ +

1

ξ
V2ξ

)
− Ma

ξ
V2ξ

∫ R

ξ

xV2(x) dx− MaV 2
2 + F2 = 0, (28)

S2(V2, A2) ≡
1

Pr2ν

(
A2ξξ +

1

ξ
A2ξ

)
− Ma

ξ
A2ξ

∫ R

ξ

xV2(x) dx− 2MaA2V2 = 0; (29)

T2(V2, A2,H2) ≡
1

Sc2ν

(
H2ξξ +

1

ξ
H2ξ

)
+

Sr2
Sc2ν

(
A2ξξ +

1

ξ
A2ξ

)
−

−Ma
ξ

H2ξ

∫ R

ξ

xV2(x) dx− 2MaH2V2 = 0.

(30)

Then, on a solid wall ξ = R, the conditions are met:

V2(R) = 0, A2(R) = 1, H2ξ(R) + Sr2A2ξ(R) = 0. (31)

On the interface ξ = 1:

V1(1) = V1(1),

∫ 1

0

xV1(x) dx = 0,

∫ R

1

xV2(x) dx = 0, (32)

A1(1) = A2(1), H1(1) = H2(1), (33)

V2ξ(1)− µV1ξ(1) = −2A1(1)− 2MH1(1), (34)

d(H1ξ(1) + Sr1A1ξ(1)) = H2ξ(1) + Sr2A2ξ(1), (35)
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A2ξ(1)− kA1ξ(1) = EA1(1)V1(1), (36)

where E = æ2
1a20R

2
1/µ2k2 is a parameter that determines the effect of the internal energy of the

interface on the dynamics of the movement of liquids inside the layers.
On the axis of symmetry, the conditions of boundedness are set:

|V1(0)| < ∞, |A1(0)| < ∞, |H1(0)| < ∞. (37)

Remark. The integral redefinition conditions in (32), meaning the flow closure conditions, are
necessary to find the unknown longitudinal pressure gradients Fj in the layers of binary mixtures,
j = 1, 2.

3. Solving of the conjugate problem for small Marangoni
numbers

We will assume that the thermal Marangoni number Ma ≪ 1 (a creeping motion), and
Ma ∼ Mc, that is, the thermal and concentration effects on the interface ξ = 1 of the same
order. Formally decomposing the functions Vj , Aj , Hj in a series of Ma, we obtain for the first
approximation the problem (25)–(27), (28)–(30) with Ma = 0. In the equations of momentum,
energy, and concentration transport, the convective terms are discarded. As for the nonlinear
boundary condition (36), it is remains unchanged. To do this, we must assume that E = O(1).

Then the conjugate inverse boundary value problem for small Marangoni numbers becomes
linear:

V1ξξ +
1

ξ
V1ξ = −F1, (38)

A1ξξ +
1

ξ
A1ξ = 0, (39)

H1ξξ +
1

ξ
H1ξ = 0, 0 < ξ < 1; (40)

V2ξξ +
1

ξ
V2ξ = −F2ν, (41)

A2ξξ +
1

ξ
A2ξ = 0, (42)

H2ξξ +
1

ξ
H2ξ = 0, 1 < ξ < R; (43)

with the boundary conditions (31)–(37).
Common solutions of systems (38)–(43) are easily found (the boundedness conditions (37)

are taken into account):

V1(ξ) = C1 −
F1

4
ξ2 , A1(ξ) = C2 , H1(ξ) = C3; (44)

V2(ξ) = C4 + C5 ln ξ −
F2ν

4
ξ2 , A2(ξ) = C6 + C7 ln ξ , H2(ξ) = C8 + C9 ln ξ, (45)

with the constants C1, . . . , C9, which are determined from the boundary conditions (31)–(36).
Exactly,

C1 =
F1

8
, C2 = C6 =

8

8− EF1 lnR
, C3 = C8 ,

C4 =
2F2ν − F1

8
, C5 =

2F2ν(R
2 − 1) + F1

8 lnR
, C7 =

EF1

EF1 lnR− 8
, C9 = −Sr2C7.

(46)
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As for the constant C3, from the boundary condition (34) it is defined as follows:

C3 =
F2ν − F1µ− 4C2 − 2C5

4M
. (47)

But such a representation for C3 makes it difficult to further search for the pressure gradients
F1, F2 along the layers when solving the inverse boundary value problem. On the other hand,
this constant can be found if you set the average concentration over the cross section z = 0, so
1∫
0

ξH1(ξ) dξ = 0. From where we get that C3 = 0 and, therefore, C8 = 0.

The pressure gradients F1, F2 are related by the relation F2 = F1N(R), where the function
N(R) is defined by the formula:

N(R) =
R2 − 2 lnR− 1

2ν(R2 − 1)[(R2 + 1) lnR−R2 + 1]
. (48)

In addition, the functions Uj(ξ)are recovered from the continuity equation (6):

U1(ξ) =
F1

16
ξ(ξ − 1)(ξ + 1) ,

U2(ξ) =
F1

16ξ
[(R2 − ξ2)(8C4 − 4C5 − F2ν(R

2 + ξ2)) + 8C5(R
2 lnR− ξ2 ln ξ)].

(49)

If the expression for the constant C3 from (47) vanishes, then after some calculations a
quadratic equation arises with respect to the unknown pressure gradient F1:

EL(R) lnRF 2
1 − 8L(R)F1 − 128 lnR = 0, (50)

where L(R) is defined by the formula:

L(R) = 4ν lnR(ρ−N(R)) + 2νN(R)(R2 − 1) + 1. (51)

Of interest are the cases related to the number of solutions of the equation (50).
1. If E = 0, we get the equation: −8L(R)F1 − 128 lnR = 0, which has a unique solution

F1 = −16 lnR/L(R). The pressure gradient F2 is easily determined from the ratio (48).
2. If R → 1, then we have the equation: −8L(R)F1 = 0, which has the only solution F1 = 0.

Here it is taken into account that the function L(R) takes positive values on the interval (1,+∞).
Then it follows from (48) that F2 = 0. The equality of the pressure gradients to zero means that
there is no source of motion of the mixtures in both layers. Thus the mixtures are at rest.

Next, we find the discriminant of the quadratic equation (50):

D = 64L(R)(L(R) + 8E ln2 R), (52)

depending on the sign of which the equation has a different number of roots.
3. If D > 0, we get: E > −L(R)/8 ln2 R. In this case, the square equation has two roots:

F 1,2
1 =

4L(R)± 4
√

L2(R) + 8EL(R) ln2 R

EL(R) lnR
. (53)

4. The discriminant vanishes at E = −L(R)/8 ln2 R, (L(R) ̸= 0). Then the equation will
have a unique solution: F1 = −32 lnR/L(R). Note, what is the expression L(R)/8 ln2 R > 0
when R ∈ (1,+∞). Therefore, the parameter E takes negative values. This is possible with
a20 < 0, since E depends on this parameter.

5. The negative sign of the discriminant corresponds to the condition: E < −L(R)/8 ln2 R,
which is equivalent to the absence of real roots of the square equation.

Thus, the number of solutions to the equation (50) depends more on the parameter E. In other
words, the energy of interfacial heat transfer has a significant effect on the processes occurring
in the contacting liquids.
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4. Model problem

We present the quantitative results of solving the problem for the model system formic acid
(mixture 1) — transformer oil (mixture 2). According to the tabular data, the physical constants
are as follows:

µ1= 1.78 · 10−3 kg
m · s

, µ2= 198.1 · 10−4 kg
m · s

, ν1= 1.46 · 10−6 m2

s
, ν2= 22.5 · 10−6 m2

s
,

χ1 = 1.057 · 10−7 m2

s
, χ2 = 7.55 · 10−8 m2

s
, k1 = 0.267

Wt
m · K

, k2 = 0.1106
Wt

m · K
,

σ0 = 37.58 · 10−3 N
m

, æ1 = 1.2826 · 10−4 N
m · K

.

The following parameter values were also used: R = 1.5, R1 = 10−9 m, E = 0.7 (a20 > 0). As
a result of the calculations, two solutions were obtained for the longitudinal pressure gradients
in the layers: F 1

1 = −1.78305, F 1
2 = −71.22054 and F 2

1 = 29.96938, F 2
2 = 1197.06399. It can

be seen that for the second solution, the gradient values in both mixtures are too high, which is
unphysical.

Fig. 2–4 demonstrates the function Vj(ξ) and the velocity profile Uj(ξ) depending on the
various defining parameters of the model.

Fig. 2. The behavior of the function Vj(ξ) and the velocity profile Uj(ξ): a) for the first solution,
b) for the second solution

Fig. 2 shows the functions Vj(ξ) , Uj(ξ), corresponding to the two solutions {F 1
1 , F

1
2 } and

{F 2
1 , F

2
2 }.

Fig. 3 shows that as the parameter E increases, the values of the functions Vj(ξ), Uj(ξ) in
absolute value decreases significantly. You can choose such values of E, at which the model prob-
lem will have a single solution. So, for E = 0 (a20 = 0) we get: F1 = −1.89641, F2 = −76.27046.
By E ≈ −2.6 (a20 = −3.46 · 1023) we have: F1 = −3.79282, F2 = −152.54093.

The increase of the parameter R is strongly influenced by the velocity profile Uj(ξ) and the
function Vj(ξ). Fig. 4 shows that the absolute values of the functions increase. This is due to
the fact that for a fixed R1, the radius of the outer cylinder increases, since R = R2/R1. It is
also important to trace how the change in the radius of the inner cylinder R1 affects the flow
pattern in the layers. It turned out that with the growth of R1, the values of the functions Vj(ξ),
Uj(ξ) in absolute value decreases. This is due to the fact that with an increase in the radius of
the inner cylinder at fixed R and E, the influence of a constant temperature set on the surface
of the outer cylindrical tube weakens.
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Fig. 3. The dependence of the functions Vj(ξ), Uj(ξ) on the parameter E: 1 — E = 0.05,
2 — E = 0.2, 3 — E = 0.7

Fig. 4. The dependence of the functions Vj(ξ), Uj(ξ) on the parameter R: 1 — R = 1.5,
2 — R = 1.7, 3 — R = 2.0

Fig. 5 shows the “temperature” and “concentration” functions Aj(ξ), Hj(ξ), corresponding to
the first solution {F 1

1 , F
1
2 }. In the first layer, these functions are constant. In the second layer

Aj(ξ) increases and Hj(ξ) decreases, which corresponds to the phenomenon of abnormal thermal
diffusion.

Fig. 5. The behavior of functions Aj(ξ), Hj(ξ) in the case of the first solution
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Thus, the effect of changes in the internal energy of the interfacial surface on the two-layer
flow of two immiscible binary mixtures in a cylindrical capillary is studied. It is found that with
an increase in the parameter E, which is responsible for the influence of changes in the surface
internal energy on the dynamics of liquids in layers, the absolute values of the functions Vj(ξ),
Uj(ξ) decreases.

5. Derivation of a finite-dimensional system of nonlinear
algebraic equations

To solve the nonlinear problem (25)–(37), the tau method is used, which is a modification
of the Galerkin method [11]. For the future, it is essential to replace the variables: ξ′ = ξ with
j = 1 and ξ′ = (ξ − R)/(1 − R) when j = 2 and re-assign ξ′ ↔ ξ. An approximate solution is
sought in the form of sums:

V n
j (ξ) =

n∑
l=0

V l
jR

(0,1)
k (ξ), An

j (ξ) =
n∑

l=0

Al
jR

(0,1)
k (ξ), Hn

j (ξ) =
n∑

l=0

H l
jR

(0,1)
k (ξ), (54)

где R
(0,1)
k (ξ) are the shifted Jacobi polynomials. In general, they are defined in terms of the

Jacobi polynomials P
(α,β)
k (y) as follows (α > −1, β > −1) [12]:

R
(α,β)
k (y) = P

(α,β)
k (2y − 1), y ∈ [0, 1]. (55)

Coefficients V l
j , Al

j , H l
j and constants Fj are found from the Galerkin approximation system,

namely: ∫ 1

0

Kj(V
n
j , Fj)R

(0,1)
m (ξ) ξ dξ = 0, (56)∫ 1

0

Sj(V
n
j , An

j )R
(0,1)
m (ξ) ξ dξ = 0, (57)∫ 1

0

Tj(V
n
j , An

j ,H
n
j )R

(0,1)
m (ξ) ξ dξ = 0, m = 0, . . . , n− 2, j = 1, 2. (58)

It follows from the integral redefinition conditions of (32) that V 0
1 = V 0

2 = 0.
The boundary conditions are transformed as follows:

n∑
l=0

(−1)lV l
2 = 0,

n∑
l=0

(−1)lAl
2 = 1, (59)

n∑
l=1

(−1)l−1l(l + 1)(l + 2)[H l
2 + Sr2Al

2] = 0. (60)

n∑
l=0

V l
1 =

n∑
l=0

V l
2 ,

n∑
l=0

Al
1 =

n∑
l=0

Al
2,

n∑
l=0

H l
1 =

n∑
l=0

H l
2, (61)

n∑
l=1

l(l + 2)(V l
2 − µV l

1 ) = −2

n∑
l=0

(Al
1 + MH l

1). (62)

d

n∑
l=1

l(l + 2)[H l
1 + Sr1Al

1] =

n∑
l=1

l(l + 2)[H l
2 + Sr2Al

2], (63)

n∑
l=1

l(l + 2)(Al
2 − kAl

1) = −E

n∑
l=0

Al
1

n∑
l=0

V l
1 . (64)
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Verbose output finite-dimensional system galerkins approximations for the coefficients V l
j ,

Al
j , H l

j , l = 0, . . . , n, j = 1, 2, and also the calculation of definite integrals from different product
of shifted Jacobi polynomials are present in the work [13].

As a result, the system of integro-differential equations are converted to a closed system
of nonlinear algebraic equations unknown coefficients V l

j , Al
j , H l

j and gradients of pressure Fj ,
where l = 0, . . . , n, j = 1, 2. Its solution was used Newton’s method with a given accuracy
ε = 10−5. As an initial approximation, the results obtained in solving the model problem were
taken.

Applied to a nonlinear inverse boundary value problem (25)–(37) the tau-method showed the
possibility of existence of two solutions for the longitudinal pressure gradients and, accordingly,
for the rest of the desired functions of the problem. Calculations were performed for n = 10, 12
in Galerkin approximations. As the number of n increases, a rapid increase in the accuracy of
the solution is detected.

Fig. 6 shows the dependence of the functions Vj(ξ) , Uj(ξ) on different values of the thermal
Marangoni number, obtained for the first solution: F1 = −1.78355, F 1

2 = −71.73149. We
conclude that the solutions found with a decrease in the Marangoni number converge to solutions
of the problem of the creeping flow of binary mixtures.

Fig. 6. The dependence of the functions Vj(ξ), Uj(ξ) of the thermal Marangoni number:
1 — Ma = 15, 2 — Ma = 3, 3 — Ma = 0.5, 4 — Ma = 0.28, 5 — a creeping current
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Двухслойное стационарное течение в цилиндрическом
капилляре с учетом изменения внутренней энергии
поверхности раздела

Виктор К. Андреев
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация
Сибирский федеральный университет

Российская Федерация
Наталья Л. Собачкина
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Аннотация. Изучена задача о двумерном стационарном течении двух несмешивающихся несжи-
маемых бинарных смесей в цилиндрическом капилляре в отсутствие массовых сил. Смеси контак-
тируют через общую поверхность раздела, на которой учитывается полное энергетическое условие.
Температура и концентрация в смесях распределены по квадратичному закону, что хорошо согла-
суется с полем скоростей типа Хименца. Возникающая сопряженная краевая задача является нели-
нейной и обратной относительно градиентов давлений вдоль оси цилиндрического капилляра. К
этой задаче применен тау-метод (модификация метода Галеркина), который показал возможность
существования двух решений. Показано, что полученные решения с уменьшением числа Маран-
гони сходятся к решениям задачи о ползущем течении бинарных смесей. При решении модельной
задачи при малых числах Марангони установлено, что влияние приращений внутренней энергии
межфазной поверхности существенно сказывается на динамике течения смесей в слоях.

Ключевые слова: бинарная смесь, поверхность раздела, внутренняя энергия, обратная задача,
градиент давления, тепловое число Марангони.
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