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1. Introduction and preliminaries

We use the notation C× for the one-dimensional complex torus C \ {0}. For vectors z =

= (z1, . . . , zn) in Cn or (C×)
n and α = (α1, . . . , αn) in Zn, denote by zα the monomial zα1

1 . . . zαn
n .

Consider a Laurent series for a rational function F (z) =
P (z)

Q(z)
of n complex variables centered

at the origin:
F (z) =

∑
α∈Zn

Cαz
α. (1)

Let L ⊂ Zn be a sublattice of the n-dimensional integer lattice. Then the generating function
for the subsequence {Cα}α∈L of the coefficients indexed by L is called the complete diagonal of
the Laurent series (1). Throughout the paper, we consider the sublattice of rank 1 generated by
the irreducible vector q = (q1, . . . , qn) from Zn \ {0}. We will call the corresponding diagonal

dq(t) =

∞∑
k=−∞

Cq·kt
k

a complete q-diagonal of the Laurent series (1). Such a diagonal can be written naturally as a sum
of two subseries d+q (t) and d−q (t) with only non-negative and negative powers of t, correspondingly.
We call them one-sided q-diagonals. Clearly, we have the equality dq(t) = d+q (t) in the case of
Taylor series. For the unit vector I = (1, . . . , 1), we denote dI(t) by d(t), and refer to I-diagonal
simply as a diagonal.

Further, we consider irreducible polynomials P (z) and Q(z). It is well-known that domains
of absolute convergence of power series are logarithmically convex. In the case of the Laurent
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series (1), it is convenient to use the notion of an amoeba of the denominator Q(z) of the
rational function F (z) in the description of such domains. Recall [1, Section 6.1] that the
amoeba of a polynomial Q is the image of a hypersurface Z×(Q) under the logarithmic mapping
Λ : (C×)

n → Rn defined by
Λ(z) = (log |z1|, . . . , log |zn|),

where Z×(Q) is defined in the complex torus (C×)
n by zeroes of the polynomial Q.

The complement Rn\AQ consists of a finite number of connected components E that are open
and convex. The preimages Λ−1(E) of these components are domains of absolute convergence
for Laurent expansions (1) (centered at the origin) for the rational function F (z) (see Section 2).

Amoebas are closely related to the notion of the logarithmic Gauss mapping

γQ : regZ×(Q) → CPn−1

defined as
γQ(z) =

(
z1

∂Q

∂z1
(z) : . . . : zn

∂Q

∂zn
(z)

)
(2)

in regular points z of the hypersurface Z×(Q). In fact, the set of critical points of the logarithmic
projection Λ : Z×(Q) → Rn contains the boundary ∂AQ and coincides with γ−1

Q (RPn−1).
The complete q-diagonal dq(t) of the Laurent series (1) that converges in the domain Λ−1(E)

for a rational function F can be represented as the integral (see Section 2)

dq(t) =
1

(2πı)n

∫
Γ

P (z)

Q(z)

zq

zq − t

dz1 ∧ . . . ∧ dzn
z1 . . . zn

over the n-dimensional cycle Γ = Λ−1(y2) − Λ−1(y1) in (C×)
n \ {Z×(Q · (zq − t))}. The

parameter t in the integral representation is chosen so that the amoeba of the polynomial zq − t

(that is the hyperplane 〈q,u〉 = log |t| with the normal vector q) divides the component E into
two parts, and points y1, y2 are chosen from different parts of this partition. The ramification
of the complete q-diagonal happens when a value of the parameter t is such that the rank of the
n-dimensional homology group (C×)

n \ {Z×(Q · (zq − t))} drops.
Since E is convex, the restriction of a linear function 〈q,u〉 to the closure of E in Rn attains

extreme values on the boundary ∂E. Let u0 = u0(q) be one of the points of the boundary ∂E

such that the function specified above attains an extreme value. Then the branch points of dq(t)
should be among points of the form pq, where p = p(q) is a point of the hypersurface Z×(Q)

such that Λ(p) = u0.
The main result of the present paper is the theorem that characterises branch points of

diagonals.

Theorem 1. Let the Laurent series (1) for a rational function of n variables converge in the
domain Λ−1(E), and let dq(t) be its complete q-diagonal. If q = γQ(p), where the point p is
regular for the logarithmic Gauss mapping and Λ(p) ∈ ∂E, then

1. In the case n = 2k the point t0 = pq is a branch point of finite order 2 of dq(t).

2. In the case n = 2k + 1 the point t0 = pq is a branch point of infinite order (logarithmic
branch point) of dq(t).

In the context of enumerative combinatorics (see. [2, Section 6.1]), there is the following
hierarchy of generating functions

{rational} ⊂ {algebraic} ⊂ {D − finite}.

– 361 –



Dmitry Pochekutov Analytic Continuation of Diagonals of Laurent Series for Rational Functions

It was proven in [3] that complete q-diagonals of Laurent series for rational functions of two
complex variables are algebraic. In expositions that deals with diagonals (see, for instance, [4,
Section 2] or [2, Section 6.3]), treatment of the case of more than two variables is limited by
pointing at the example of non-algebraic diagonal of the Taylor series for the rational function
of three variables.

Since algebraic functions cannot have branch points of infinite order, Theorem 1 gives the
sufficient condition of non-algebraicity of a diagonal in the case when the dimension n is odd.

Corollary 1. Let the Laurent series (1) for a rational function of 2k + 1 variables converge in
the domain Λ−1(E), and let dq(t) be its complete q-diagonal. If q = γQ(p), where the point
p is regular for the logarithmic Gauss mapping and Λ(p) ∈ ∂E, then dq(t) is a non-algebraic
function.

2. Amoebas and integral representation for diagonal

From the moment of diagonals appeared on the mathematical scene (see [5, p. 280]), the
important role in their study was played by integral representations. George Pólya showed the
algebraicity of a diagonal of a bivariate rational Taylor series from a particular class in [6]. His
proof was based on a representation of the diagonal by an integral over a contour in the complex
plane. Exploiting a similar idea it was shown in [4, 7] that the diagonal of an analytic power
series F in a bidisk {|z1| < A, |z2| < B} can be represented as

d(t) =
1

2πı

∫
|ζ|=ε

F

(
ζ,

t

ζ

)
dζ

ζ
,

where ε =
(
A+

|t|
B

)/
2. If, in addition, F converges to a rational function, then evaluating the

integral by residues gives that the diagonal is algebraic, see [4, Section 2] and [2, Section 6.3].
Further, in [8] it was proved that the q-diagonal of the Taylor series for a rational function

F (z) =
P (z)

Q(z)
of n complex variables holomorphic at the origin has the integral representation

dq(t) =
1

(2πı)n

∫
Γρ

P (z)

Q(z)

zq−I

zq − t
dz,

where the cycle Γρ = {z ∈ Cn : |z1| = ρ1, . . . , |zn| = ρn} is chosen so that the closed polydisk
{|z1| 6 ρ1, . . . , |zn| 6 ρn} contains no poles of the function F (z), and ρq > |t|. It will be
convenient for us to use the following notation

ω =
1

(2πı)n
P (z)zq−Idz.

In order to describe the integral representation for a complete q-diagonal of the Laurent
series (1), we list necessary facts about amoebas of polynomials.

Recall that the Newton polytope ∆Q of a polynomial Q is the convex hull in Rn of the set
of exponents of the monomials occuring with non-zero coefficients in Q. According to Proposi-
tions 2.4–2.6 in [9], on the set {E} of connected components of Rn \AQ there exists an injective
order mapping

ν : {E} 7→ ∆Q ∩ Zn
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such that the dual cone to ∆Q at the point ν(E) coincides with the recession cone of the compo-
nent E. Then it follows from this fact that the number of connected components of the amoeba
complement is at most equal to the number of integer points in ∆Q (see [9, Theorem 2.8]). Note
that the proof of the injectivity of ν also establishes that components E are convex in Rn.

Corollary 1.6 in [1] says that all centered at the origin Laurent expansions (1) of a rational

function F (z) =
P (z)

Q(z)
are in a bijective correspondence with the connected components {E}.

The sets Λ−1(E) are the convergence domains for the corresponding Laurent expansions. If the
rational function F (z) is holomorphic at the origin, then its Taylor expansion converges in the
domain Λ−1(E), where ν(E) = (0, . . . , 0), and the point (0, . . . , 0) is a vertice of the Newton
polytope ∆Q.

The following proposition from [3] generalizes the integral representation for diagonals of
Taylor series that have been mentioned above.

Proposition 1. Let the Laurent series (1) for a rational function of n variables converge in the
domain Λ−1(E), where E is a connected component of the complement Rn \ AQ, and let y1, y2

are points in E such that the inequality 〈q,y1〉 < 〈q,y2〉 holds for a non-zero q ∈ Zn. Then the
complete q-diagonal dq(t) of the Laurent series (1) has the integral representation

dq(t) =

∫
Γ

ω

Q(z)(zq − t)
, (3)

where 〈q,y1〉 < log |t| < 〈q,y2〉 , and Γ = Λ−1(y2)− Λ−1(y1).

3. Proof of Theorem 1

Note that the differential form ω is regular in (C×)
n, while the differential form in the integral

representation (3) is meromorphic in (C×)
n with polar singularities on hypersurfaces

S1 = Z×(Q), S2 = Z×(zq − t).

Let y1, y2 be points in E chosen as specified in Proposition 1. The fibers Λ−1(y1), Λ−1(y2) of
the logarithmic projection over these points are n-dimensional real tori (C×)n that define classes
in the reduced homology group Hn((C×)n \ S1 ∪ S2) with compact supports.

We want to show that the family {S1, S2} has a so-called quadratic zero-pinch (see [10,
Section IV.1]) at the point p for t = t0, where t0 = pq. For this purpose, we introduce new
coordinates w = (w1, . . . , wn) in the n-dimensional torus (C×)

n.
We first note that since vector q is irreducible, according to the Invariant Factor Theorem (see

[11, Theorem 16.6]), there exists an unimodular transformation A : Zn → Zn that takes vector
q to vector e1 = (1, 0, . . . , 0). This transformation induces the diffeomorphism (C×)

n → (C×)
n

defined as
w1 = za1 , . . . , wn = zan ,

where aj ’s are columns of the matrix for the transformation A, and a1 = q. In new coordinates,
the hypersurfaces S1, S2 are defined by equations

Q̃(w) = 0, w1 − t = 0,

correspondingly.
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Next, assume, without loss of generality, that Q̃w1(p̃) 6= 0, where the point p̃ = (pa1 , . . . ,pan).
Then, by the Implicit Function Theorem, there exists a sufficiently small neighbourhood U of
the point p̃ such that S1 is defined in U as a graph of some analytic function,

S1 ∩ U = {w ∈ U : w1 = f(w2, . . . , wn)}.

Therefore, the intersection S1 ∩ S2 is defined in U as the zero set of the system{
w1 − f(w2, . . . , wn) = 0,

w1 − t = 0.

From the definition of the logarithmic Gauss mapping (2), it follows that

γQ̃(w) = (1 : −w2fw2(w2, . . . , wn) : . . . : −wnfwn(w2, . . . , wn))

for w ∈ U. In particular, γQ̃(p̃) = (1 : 0 . . . : 0). Since the (i, j)-component of the Jacobian
matrix of the logarithmic Gauss mapping γQ̃ at the point p̃ ∈ U has the form(

−p̃ifwiwj
(p̃2, . . . , p̃n)

)
i,j

, i, j = 2, . . . , n,

the Jacobian determinant of γQ̃ at p̃ and the Hessian determinant of the function f(w2, . . . , wn)

at the point (p̃2, . . . , p̃n) vanish simultaneously. If p is a regular point of γQ then p̃ is a regular
point of γQ̃. So the point (p̃2, . . . , p̃n) is a Morse critical point for the function f(w2, . . . , wn),
and by the Morse lemma, there exist local coordinates (w̃2, . . . , w̃n) in a neighbourhood of this
point such that f = w̃2

2 + . . . + w̃2
n + pq. So the intersection S1 ∩ S2 is given locally by the

equation
w̃2

2 + . . .+ w̃2
n + pq − t = 0.

Therefore, the family of the hypersurfaces S1, S2 has the quadratic zero-pinch at the point p for
t = pq.

Thus, for the discriminant value t0 = pq of the parameter t, we have the standart degeneration
of type Pi = P2 (in terms of the notation of [12, Section I.8]). The monodromy operator

Φ : Hn((C×)n \ S1 ∪ S2) → Hn((C×)n \ S1 ∪ S2),

defined by a small loop going around t0 was calculated in [10, Part IV]. This operator reduces
to the standart Picard–Lefschetz formula for the Morse singularity in Cn−i+1 = Cn−1.

So, by Theorem 2.4 in [10, Part IV], we have that

Φ([Γ]) = [Γ] + ι[Σ]

where ι is a non-zero integer, and the class [Σ] is defined as follows. According to the Thom
Isotopy theorem, the monodromy acts identically outside a sufficiently small neighbourhood W

of the point p. Let σ be the vanishing sphere of the dimension n−2 in the intersection of S1∩S2

and W . Then [Σ] = i∗δ
2[σ], the homomorphism i∗ is induced by the inclusion of W into (C×)

n,
and δ2 : Hn−2(S1 ∩ S2 ∩W ) → Hn(W \ (S1 ∪ S2)) is 2-iterated coboundary operator of Leray
defined in Theorem 2 of [10, Part II].

Note that the Picard-Lefschetz formula also gives us

Φ([Σ]) = (−1)n−1[Σ].
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Knowing the transformation of [Γ] and [Σ] by Φ allows us to continue the integral

dq(t) =

∫
Γ

ω

Q(z)(zq − t)

analytically along a small loop around the point t0. Let

q(t) =

∫
Σ

ω

Q(z)(zq − t)
.

Then during one traversal of the mentioned loop the integral for dq(t) goes to

dq(t) + ιq(t).

If the dimension n = 2k, the two traversals of the loop give

dq(t) + ιq(t) + (−1)2k−1ιq(t) = dq(t).

So, the point t0 is a branch point of order 2 for the diagonal dq(t). If the dimension n = 2k+ 1,
the two traversals of the loop give

dq(t) + ιq(t) + (−1)2kιq(t) = dq(t) + 2ιq(t).

In this case, t0 is a branch point of infinite order for the diagonal dq(t). The theorem is proved.

4. The diagonal of the multivariate geometric series

The purpose of this section is to illustrate Theorem 1.
Consider the polynomial L(z) = 1− z1 − . . .− zn. The multivariate geometric series

1

L(z)
=

∑
α∈Nn

(α1 + . . .+ αn)!

α1! . . . αn!
zα

converges in the domain Λ−1(E0), where E0 is the compoment of the complement Rn \ AL that
corresponds to the constant term of L.

For convenience, we denote the diagonal of this Taylor series by

dn(t) =

∞∑
k=0

nk!

(k!)n
tk. (4)

The logarithmic Gauss mapping γL : Z×(L) → CPn−1 is a birational isomorphism with the
inverse given by

zj =
qj

q1 + . . .+ qn
, j = 1, . . . , n,

where q = (q1 : . . . : qn) ∈ CPn−1. Also, the point p =
( 1

n
, . . . ,

1

n

)
is projected by the

logarithmic mapping Λ to the point of the boundary ∂E0, so that, by Theorem 1, the point
t0 = pI = 1/nn is a branch point for the diagonal dn(t), and the type of this branch point
depends on the parity of n.

We note that
d2(t) =

1√
1− 4t

,
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by means of the generalized binomial expansion. Thus, the diagonal d2(t) is an algebraic function

that has a branch point of the order 2 at t0 =
1

4
.

In the case n = 3, the diagonal (4) is represented by the Gaussian hypergeometric function

d3(t) = 2F1

(
1
3 ,

2
3 , 1; 27t

)
,

so that t0 =
1

27
is a branch point for the diagonal. Note that the parameters of this hypergeo-

metric function are not in Schwarz’s list of the cases when the Gaussian hypergeometric function
is algebraic.

Proposition 1. The diagonal d3(t) has the form

d3(t) = a3(t) log(1− 27t) + b3(t),

in a neighbourhood of the point t0 =
1

27
, where the functions a3(t) and b3(t) are holomorphic

and non-vanishing at the point t0 =
1

27
.

Proof. According to [13, Section 16], we can write the hypergeometric function 2F1

(
1
3 ,

2
3 , 1; 27t

)
as the integral

− 1

2πı

1

Γ
(
1
3

)
Γ
(
2
3

) ∫
− 1

2+ıR

Γ2(−ζ)Γ
(
1
3 + ζ

)
Γ
(
2
2 + ζ

)
(1− 27t)ζdζ

with the meromorphic integrand that has three groups of poles

ξk = k, ζk = −1

3
− k, ηk = −2

3
− k, k ∈ N ∪ {0}.

The poles ξk lie on the complex plane to the right of the integration contour, while the poles ζk,
ηk lie to the left of it.

Evaluating the integral as the sum of residues in poles ξk of the first group gives us the desired
representation. 2

Further, it is clear from the representation

d4(t) = 3F2

(
1
4 ,

1
2 ,

3
4 ; 1, 1; 256t

)
in the form of the generalized hypergeometric function that the diagonal d4(t) has a branch point

at t0 =
1

256
.

By a happy coincidence, the generalized hypergeometric function 3F2 that corresponds to
this specific set of parameters can be written in the form

d4(t) =
(
F
(
1
8 ,

3
8 ; 1; 256t

))2 (5)

with a help of Clausen’s formula [14]. It allows us to describe a type of the branch point t0 =
1

256
in a way that is similar to the proof of Proposition 1.

Proposition 2. The diagonal d4(t) has the form

d4(t) = a4(t)(1− 256t)
1
2 + b4(t),

in a neighbourhood of the point t0 =
1

256
, where functions a4(t) and b4(t) are holomorphic and

non-vanishing at the point t0 =
1

256
.
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Proof. According to [13, Section 16], we can write the hypergeometric function 2F1

(
1
8 ,

3
8 , 1; 256t

)
as the integral

− 1

2πı

1

Γ( 58 )Γ(
7
8 )

∫
− 1

16+ıR

Γ(−ζ)Γ
(
1
2 − ζ

)
Γ
(
1
8 + ζ

)
Γ
(
3
8 + ζ

)
(1− 256t)ζdζ,

where the integration contour separates poles of the function Γ(−ζ)Γ
(
1
2 − ζ

)
of the form

ξk = k, ζk = 1
2 + k,

from the poles of Γ
(
1
8 + ζ

)
Γ
(
3
8 + ζ

)
of the form

ηk = −1

8
− k, κk = −3

8
− k.

The parameter k ranges over the set N ∪ {0}.
We let b(t) denote the sum of residues of the integrand at the point ξk. It occurs that b(t)

is holomorphic at t0 =
1

256
and does not vanish at this point. At the same time, the sum of

residues of the integrand at the points ζk has the form a(t)(1− 256t)1/2, where the function a(t)

is holomorphic at t0 =
1

256
and is non-vanishing at this point.

Thus, the function 2F1

(
1
8 ,

3
8 , 1; 256t

)
has the representation

a(t)(1− 256t)
1
2 + b(t)

in some neighbourhood of the point t0 =
1

256
. Then the Proposition follows directly from the

Clausen formula (5). 2
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[5] H.Poincaré, Les méthodes nouvelles de la mécanique céleste. Tome I, Paris: Gauthier-Villars
et fils, 1892.
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Аналитическое продолжение диагоналей рядов Лорана
рациональных функций

Дмитрий Ю. Почекутов
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Мы описываем точки ветвления полных q-диагоналей рядов Лорана рациональных
функций нескольких комплексных переменных в терминах логарифмического отображения Гаусса.
Доказано достаточное условие неалгебраичности такой диагонали.

Ключевые слова: диагонали рядов Лорана, логарифмическое отображение Гаусса, амеба гипер-
поверхности, нулевой пинч, монодромия.
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