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Abstract. The paper considers the flow in a three-layer system "liquid–liquid–gas" in a horizontal chan-
nel with solid impermeable walls.The evaporation process at the thermocapillary interface of the liquid
and gas is taken into account. The Soret and Dufour effects are taken into account in the upper layer
filled with a gas-vapor mixture. The system of Navier-Stokes equations in the Boussinesq approximation
is used as a mathematical model. A temperature regime is set on the channel walls. Liquid evaporation
is modeled using the conditions at the liquid-gas interface. Exact solution of a special type describing
the flow in a three-layer system is constructed. The velocity profiles are presented on the example of the
"silicone oil–water–air" system for various values of gas flow rate, longitudinal temperature gradients at
the system boundaries, thicknesses of liquid and gas-vapor layers.
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Introduction

The problem of studying convective flows has a fairly long history. But the development
of high-tech technologies is constantly expanding the range of problems associated with mathe-
matical modeling of convection and requiring a more complete and accurate description of the
phenomena of heat and mass transfer [1]. A special place among such problems is occupied by
the investigation of flows in the presence of evaporation or condensation. Convective flows of
liquids and co-current gas flows under conditions of mass transfer at the interface are considered
experimentally and theoretically [2–5]. The problems solved within the framework of the classi-
cal formulations of problems for the Navier-Stokes equations of a viscous incompressible liquid
and its Oberbeck-Boussinesq approximations are of particular interest [6,7]. The study of exact
solutions of a special type is relevant for the description of multilayer flows in connection with the
possibility of investigation the influence of various physical factors on the nature of flows [8–10].

In the paper the three-layer flows of the "liquid–liquid–gas" type accompanied by evapora-
tion at the liquid-gas interface are considered. The research is based on exact solutions of the
Ostroumov-Birikh type [11, 12]. Mathematical modeling is carried out using the Navier-Stokes
equations in the Oberbeck-Boussinesq approximation. The process of vapor diffusion in the up-
per layer is considered taking into account the effects of thermal diffusion and diffusion thermal
conductivity.
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1. Problem statement and construction of the exact
solutions

The flow in a three-layer system "liquid–liquid–gas" in a horizontal channel is studied. Fig. 1
shows a system of three infinite horizontal layers with solid upper and lower boundaries and
thermocapillary interfaces. The lower and middle layers are filled with viscous incompressible
one-component liquids, the upper one is filled with a two-component mixture of gas and vapor
of the liquid of the middle layer. The coordinate system is chosen in such a way that the gravity
vector is directed opposite to the Oy axis.
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liquid 1

gas-vapor mixture
ϑ

+
 

T=A1x+ϑ
 -
 

T=Ax+ ϑ0  

liquid 2

-h1

h2

0

Fig. 1. Geometry of the flow domain

The system of equations for finding the velocity, temperature and pressure in each of the
layers of the system, as well as the vapor concentration in the upper layer in the stationary case,
is written as follows [6]:
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(1)

Here u, v are the projections of the velocity vector on the Ox and Oy axes, respectively, p′ is
the modified pressure (deviation from hydrostatic pressure, p′ = p− ρg · x, p is the pressure), g
is the gravity vector (g = (0, −g)), T is the temperature, C is the vapor concentration, ρ is the
density, ν, χ, D are the coefficients of kinematic viscosity, thermal diffusivity and vapor diffusion
in the gas, respectively. α and δ characterize the Soret and Dufour effects, β and γ are the
thermal and concentration expansion coefficients, respectively. Note that the diffusion equation
and underlined terms are taken into account only when modeling of the upper gas-vapor layer.
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It is assumed that the solution to the system has the form [11, 12]:

ui = ui(y), vi = 0, Ti = (ai1 + ai2y)x+ ϑi(y), C = (b1 + b2y)x+ ϕ(y), (2)

where aij and bj are some constants. The index i = 1, 2, 3 is responsible for belonging to the
layer: the quantities with subscript i = 1 belong to the media of the lower layer, i = 2 — to the
media of the middle layer, and i = 3 — to the media of the upper layer. This type of solution
means that only the longitudinal velocity components are non zero, whereas the transverse ones
are equal to zero.

The functions of longitudinal velocity, temperature, and pressure taking into account the type
of exact solutions (2) for liquids filling the lower and middle layers have the form
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where the coefficients kij (i = 1, 2, j = 0, 7) do not depend on y and are defined as follows:
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Here i = 1, 2, p′i = p+ ρgy is the modified pressure.
For the upper layer containing gas, vapor is a passive addition. The exact solution describing

the velocity, the temperature distribution, the vapor concentration and the pressure are written
in the following form:
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where the coefficients k37 — k30 are given by the relations
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Here B1 and B2 have the form
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.

All unknown integration constants that arise during the construction of exact solutions to
the desired functions are determined based on the boundary conditions at the solid channel
boundaries and interfaces.

2. Formulation of boundary conditions of the problem

Let us formulate the boundary conditions that the solutions of the system (1) satisfy.
On the lower and upper solid walls of the channel the no-slip conditions (equality to zero of

the longitudinal velocities) are written in the form

u1(−h1) = 0, u3(h3) = 0. (10)

A linear distribution with respect to the horizontal coordinate is specified for the temperature
at the upper and lower boundaries:

T1|y=−h1 = (a11 + a12(−h1))x+ ϑ1|y=−h1 = A1x+ ϑ−, (11)

T3|y=h3 = (a31 + a32h3)x+ ϑ3|y=h3 = A3x+ ϑ+. (12)
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The coefficients ϑ− and ϑ+ are set based on the physical parameters of the process. The longitu-
dinal temperature gradients on the channel walls have the form A1 = a11−a12h1, A3 = a31+a32h3.

In addition to the above conditions, on the upper wall of the channel, the condition for the
vapor concentration is satisfied. In this case, we assume that the vapor concentration at the
upper boundary is equal to zero [10] (the condition of complete vapor absorption):

C|y=h3 = 0. (13)

Let us formulate the conditions at the interface y = 0 between two liquids. Continuity
conditions for the tangential velocities and temperatures are satisfied:

u1(0) = u2(0), (14)

T1|y=0 = T2|y=0. (15)

The heat transfer condition at boundary y = 0 takes the following form:

κ1
∂T1

∂y

∣∣∣
y=0

= κ2
∂T2

∂y

∣∣∣
y=0

, (16)

where κ1 and κ2 are the thermal conductivity coefficients of the liquids in the lower and middle
layers. The kinematic condition is fulfilled automatically taking into account the type of exact
solutions (2). In the general case, the dynamic condition has the form

(−p1n+ 2ρ1ν1nD(v1)n)− (−p2n+ 2ρ2ν2nD(v2)n) = 2Hσn +∇Γσ. (17)

The surface tension σ depends on the temperature (σ = σ0 + σT (T − T0), σT < 0) and at the
liquid–liquid interface is determined using the Antonov rule [13]: σ(T ) = σ2(T )− σ1(T ), where
σ1(T ) and σ2(T ) are the surface tensions of liquids filling the lower and middle layers of the
system, respectively. The projection of a dynamic condition on a tangential vector is written as
follows:

ρ1ν1u1 y = ρ2ν2u2 y + (σT1 − σT2)Tx. (18)

Here σT1 and σT2 are the temperature coefficients of surface tension of liquids (σ1(T ) = σ01+

+σT1(T −T0), σ2(T ) = σ02+σT2(T −T0)). The projection of a dynamic condition on a normal
vector has the form

p1 = p2. (19)

Let us formulate the conditions at the interface between the liquid and the gas-vapor medium
y = h2. Continuity conditions of tangential velocities and temperatures have the form

u2(h2) = u3(h2), (20)

T2|y=h2 = T3|y=h2 . (21)

The heat transfer condition at the y = h2 boundary in the case when the effect of diffusion
thermal conductivity is taken into account takes the following form [5,6, 8]:

κ2
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∂y
− κ3

∂T3

∂y
− δκ3

∂C

∂y

∣∣∣
y=h2

= −λM. (22)

Here κ3 is the thermal conductivity of the gas, λ is the amount of heat released during evapora-
tion, M is the mass of liquid evaporating from a unit surface area per unit time. Also, for the
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vapor concentration at the thermocapillary boundary, the mass balance equation with the effect
of thermal diffusion should be fulfilled. It has the following form [5,10]:

M = −Dρ3

(∂C
∂y

∣∣∣
y=h2

+ α
∂T3

∂y

∣∣∣
y=h2

)
. (23)

The vapor concentration in the upper layer of the system is found using the Clapeyron-
Clausius equation, which determines the dependence of the saturated vapor pressure P on the
temperature at the interface:

P = P0exp
[
λµ

R

( 1

T0
− 1

T

)]
and the Mendeleev-Clapeyron equation for an ideal gas ρυRT = µP . Here R is the gas con-
stant, µ is the molar weight of the evaporating liquid, P0 and T0 initial pressure and absolute
temperature [14]. Assuming the equality ρυ = Cρ3 fulfilled we can write the equation for the
concentration of saturated steam at the thermocapillary boundary in the following form:

C(0) = C∗exp
[

λµ

RT 2
0

T3

∣∣∣
y=h2

]
.

Here C∗ is the vapor saturation concentration at T3 = 0, T0 is set equal to 20oC (T0 = 293oK).
The linearized equation can be used for not too large values of T3:

C|y=h2 = C∗[1 + εT3|y=h2 ], ε =
λµ

RT 2
0

. (24)

This linearization is possible due to the smallness of the parameter εT∗ [10, 15].
The kinematic condition is also performed automatically here. The projections of a dynamic

condition on a tangent vector and a normal are written as follows:

ρ2ν2u2 y = ρ3ν3u3 y + σTTx, (25)

p2 = p3. (26)

The value of Q determines the gas flow rate in the upper layer according to the following
formula: ∫ h3

h2

ρ3u3dy = Q. (27)

3. Determination of unknown constants of integration and
parameters of the problem

The presented boundary conditions (10)–(27) allow us to determine all unknown parameters
of the problem aij , bj , M and constants arising in the course of constructing exact solutions
(3)–(9) cik (k = 1, . . . , 7).

The condition of temperature continuity at the liquid-liquid interface (15) implies the fol-
lowing equality of parameters: a11 = a21 = A, where A determines the longitudinal temperature
gradient at the y = 0 boundary. Condition (11) defines a21 through the temperature gradients
and the thickness of the lower layer as follows: a12 = (A − A1)/h1. The parameter a22 can be
found from heat transfer condition (16): a22 = a12κ1/κ2. Equation (12) that sets the temperature
regime on the upper wall of the channel determines the relationship between the parameters a31
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and a32: a31 = A3 − a32h3. Then due to the temperature continuity condition at the boundary
y = h2 (21) the parameter a32 has the following form:

a32 =
[
A+
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κ2

h2

h1
(A−A1)−A3

] 1

h2 − h3
.

Note that in this statement of the problem the denominator of the fraction 1/(h2 − h3) does
not become equal to zero, because if h2 = h3 the thickness of the gas-vapor layer is 0. The
parameter b2 can be found using both heat transfer condition at the liquid-gas interface (22) and
mass balance equation (23). This makes it possible to determine the dependence of one of the
longitudinal temperature gradients at the boundaries of the system through others. For example,
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The relationship between the longitudinal gradients A and A1 is obtained due to the previous
reasoning, the relation specifying the saturated vapor concentration and condition for the vapor
absorption at the upper wall of the channel (13):
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Taking into account dynamic conditions (18), (19) and the velocity continuity condition (14) at
the liquid–liquid interface we obtain the following relations:
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The temperature continuity condition (15) and the heat transfer condition at the boundary
y = 0 entail the equalities c15 = c25 and c14 = c24κ2/κ1, respectively. The system of linear algebraic
equations which is a consequence of the conditions (11), (12), (13), (21), (22), (23), (24) is
constructed to find the constants of integration c24, c25, c34, c35, c6, c7, as well as the value of M
which determines the mass of the evaporating liquid.

4. Influence of thermal load at the system boundaries and
gas flow in the upper layer on the flow structure

Let us consider a three-layer system "liquid–liquid-gas" in the case when silicone oil and water
are used as liquids filling the lower and middle layers, respectively, and air is chosen as the gas.
The main parameters of the media are shown in Tab. 1 [16]. The following physical and chemical
values are also used: D = 0.22 · 10−4 m2/s, σT1 = −0.697 · 10−5 N/(m K), σT2 = −1.514 · 10−5

N/(m K), λ = 2.547 · 106 W s /kg, C∗ = 0.05, ε = 0.065 1/K; the parameters α and δ are taken
equal −0.5 · 10−2 and 10−3, respectively.

Table 1. Physicochemical parameters of the problem

Parameter Silicone oil Water Air
ρ kg/m3 0.935 · 103 0.997 · 103 1.35
ν m2/s 10−5 0.893 · 10−5 1.35 · 10−5

β 1/K 1.08 · 10−3 2.07 · 10−4 3.66 · 10−3

κ W/(m K) 0.134 0.6167 0.026
χ m2/s 0.96 · 10−7 1.47 · 10−7 0.214 · 10−4

Fig. 2 shows the velocity profiles for various values of the gas flow rate Q in the upper layer of
the system. The thickness of the silicone oil layer is 3 ·10−3m, water — 4 ·10−3m, air — 5 ·10−3m.
The longitudinal temperature gradients at the system boundaries have constant values: A1 = 1

K/m, A = 1.85 K/m, A3 = 0.635 K/m. As the values of Q increase, the maximum velocity in
the gas-vapor layer increases significantly. The liquid profiles change slightly in this case.

Qualitative and quantitative changes in flows in liquids are observed in the case when the
values of longitudinal temperature gradients change, and the gas flow rate remains constant at
the same values of the layer thicknesses (see Fig. 3). The longitudinal velocity at the interfaces
takes positive values for sufficiently large values of gradient A1 (A1 = 2 K/m, A1 = 1 K/m, a solid
line and a short dashed line, respectively). A purely Poiseuille’s flows characterized by positive
values of velocities in all layers of the system are observed. In the case when the longitudinal
gradient A1 takes the value −1 K/m, reverse flows appear at the interfaces (large dashed line,
Fig. 3). Thus, as the longitudinal temperature gradients increase, the flow type changes from
thermocapillary, due to the predominance of Marangoni forces, to Poiseuille flow (see [4, 5]).

Fig. 4 shows a system where the thickness of the silicone oil layer is 5 · 10−3 m, water —
4 · 10−3 m, air — 3 · 10−3 m. The gas flow rate Q is set to 10−6 kg/(m s), as in the case shown
in the Fig. 3. The maximum longitudinal velocity increases significantly with a decrease in the
thickness of the gas–vapor layer in it. There are no qualitative changes in the velocity profiles of
liquids in comparison with the previous case.

In the case of a further decrease in the thickness of the gas–vapor layer, the maximum value
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Fig. 2. Influence of gas flow rate Q on the velocity profile. Here A1 = 1 K/m, h1 = 3 · 10−3m,
h2 = 4 · 10−3m, h3 = 9 · 10−3m. 1 — Q = 3 · 10−6 kg/(m s); 2 — Q = 2 · 10−6 kg/(m s);
3 — Q = 10−6 kg/(m s)

Fig. 3. Influence of the longitudinal temperature gradient A1 on the velocity profile. Here
Q = 10−6 kg/(m s), h1 = 3 · 10−3s, h2 = 4 · 10−3s, h3 = 9 · 10−3m. 1 — A1 = 2 K/m;
2 — A1= 1 K/m; 3 — A1 = −1 K/m

of the longitudinal velocity in the upper layer of the system continues to increase (see Fig. 5).
The gas flow rate Q and the longitudinal temperature gradient on the lower wall of the channel
A1 are chosen the same as in the previous case. Note also that, in this case, reverse flows are
not observed at thermocapillary interfaces.
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Fig. 4. Influence of the longitudinal temperature gradient A1 on the velocity profile. Here
Q = 10−6 kg/(m s), h1 = 5 · 10−3m, h2 = 4 · 10−3m, h3 = 7 · 10−3m. 1 — A1 = 2 K/m;
2 — A1 = 1 K/m; 3 — A1 = −1 K/m

Fig. 5. Influence of the longitudinal temperature gradient A1 on the velocity profile. Here
Q = 10−6 kg/(m s), h1 = 5 · 10−3m, h2 = 5 · 10−3m, h3 = 7 · 10−3m. 1 — A1 = 2 K/m;
2 — A1 = 1 K/m; 3 — A1 = −1 K/m

Conclusion

An exact solution of the system of Navier-Stokes equations in the Boussinesq approximation
describing the flow in a three-layer system "liquid–liquid–gas" under conditions of a given gas
flow rate is constructed. Evaporation is taken into account at the liquid-gas interface, the in-
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terfaces are thermocapillary surfaces. Using the "silicone oil–water–air" system as an example,
the influence of the temperature regime on the solid walls of the channel, gas flow rate and layer
thicknesses on the change in velocity profiles is considered.

Within the framework of the proposed problem, it is planned to consider various conditions on
the channel walls for temperature and vapor concentration. It is interesting to study the influence
of various system parameters on the distribution of temperature and vapor concentration in the
system, as well as on the intensity of evaporation from the liquid-gas interface. The construction
of such exact solutions is of particular relevance in connection with the possibility of investigating
the degree of influence of various physical factors on the nature of flows and the intensity of
evaporation, as well as making predictions about the results of experiments.

The work was carried out in accordance with the State Assignment of the Russian Ministry
of Science and Higher Education entitled "Modern methods of hydrodynamics for environmental
management, industrial systems and polar mechanics" (Govt. contract code: FZMW-2020-0008,
24 January 2020).
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5(1907), 372–385.

[14] I.Prigozhin, Chemical thermodynamics, Novosibirsk, Nauka, 1966 (in Russian).

[15] T.A.Ghezzehei, R.C.Trautz, S.Finsterle, et al., Modeling coupled evaporation and seepage
in ventilated cavities, Vadose Zone J., 3(2004), 806–818.

[16] V.B.Bekezhanova, O.N.Goncharova, N.A.Ivanova, D.S.Klyuev, Instability of a two-layer sys-
tem with deformable interface under laser beam heating J. of Siberian Federal University.
Math. and Phys., 12(2019), no. 5, 543–550. DOI: 10.17516/1997-1397-2019-12-5-543-550.

Построение точных решений, описывающих трехслойные
течения с испарением в горизонтальном канале

Екатерина В. Резанова
Алтайский государственный университет

Барнаул, Российская Федерация

Аннотация. В работе рассматривается течение в трехслойной системе "жидкость–жидкость–газ"
в горизонтальном канале с твердыми непроницаемыми стенками. Процесс испарения на термока-
пиллярной границе раздела жидкости и газа принимается во внимание. При моделировании тече-
ния в верхнем слое, заполненном газо-паровой смесью, учитываются эффекты Соре и Дюфура. В
качестве математической модели рассматривается система уравнений Навье-Стокса в приближе-
нии Буссинеска. На стенках канала задан тепловой режим. Испарение жидкости моделируется с
помощью условий на границе раздела "жидкость–газ". Построено точное решение специального
вида, описывающее течение в трехслойной системе. Представлены профили скорости на примере
системы "силиконовое масло–вода–воздух" при различных значениях расхода газа, продольных
градиентов температуры на границах системы, толщин жидких и газопарового слоев.

Ключевые слова: трехслойная система, точные решения, испарение, эффект Соре, эффект Дю-
фура.
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