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Abstract. We study the unique solvability of the mixed Dirichlet-Neumann problem for the biharmonic
equation in the exterior of a compact set under the assumption that solutions of this problem have
bounded Dirichlet integrals with the weight |x|a. Depending on the value of the parameter a, we obtained
uniqueness (non-uniqueness) theorems of the problem and present exact formulas for the dimension of
the space of solutions of the mixed Dirichlet-Neumann problem.
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1. Introduction and preliminaries

Let Ω be an unbounded domain in Rn, n > 2, Ω = Rn \ G with the boundary ∂Ω ∈ C2,
where G is a bounded simply connected domain (or a union of finitely many such domains) in
Rn, 0 ∈ G, Ω = Ω ∪ ∂Ω is the closure of Ω, x = (x1, . . . , xn) ∈ Rn and |x| =

√
x2
1 + · · ·+ x2

n.
In the domain Ω we consider the following mixed problems for the biharmonic equation

∆2u = 0 (1)

with the Dirichlet–Neumann boundary conditions

u
∣∣
Γ1

=
∂u

∂ν

∣∣∣
Γ1

= 0, ∆u
∣∣
Γ2

=
∂∆u

∂ν

∣∣∣
Γ2

= 0, (2)

where Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅, mesn−1 Γ1 ̸= 0, ν = (ν1, . . . , νn) is the outer unit normal
vector to ∂Ω.

As is well known, if Ω is an unbounded domain, one should additionally characterize the
behavior of the solution at infinity. As a rule, to this end, one usually poses either the condition
that the Dirichlet (energy) integral is finite or a condition on the character of vanishing of the
modulus of the solution as |x| → ∞. Such conditions at infinity are natural and were studied by
several authors (e.g., [6–8]).

Elliptic problems with parameters in the boundary conditions have been called Steklov or
Steklov-type problems, since their first appearance in [27]. For the biharmonic operator, these
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conditions were first considered in [1, 9] and [25], where the isoperimetric properties of the first
eigenvalue were studied.

Note that standard elliptic regularity results are available in [3]. The monograph covers
higher order linear and nonlinear elliptic boundary value problems, mainly with the biharmonic
or polyharmonic operator as the leading principal part. The underlying models and, in particular,
the role of different boundary conditions are explained in detail. As for linear problems, after a
brief summary of the existence theory and Lp and Schauder estimates, the focus is on positivity.
The required kernel estimates are also presented in detail.

In [2], the boundary value problems for the biharmonic equation and the Stokes system are
studied in a half space, and, using the Schwarz reflection principle in weighted Lq-space, the
uniqueness of solutions of the Stokes system or the biharmonic equation is proved.

In the present note, this condition is the boundedness of the weighted Dirichlet integral:

Da(u,Ω) ≡
∫
Ω

|x|a
∑
|α|=2

|∂αu|2 dx < ∞, a ∈ R.

In various classes of unbounded domains with finite weighted Dirichlet (energy) integral, one
of the author [10–23] studied uniqueness (non–uniqueness) problem and found the dimensions of
the spaces of solutions of boundary value problems for the elasticity system and the biharmonic
(polyharmonic) equation.

By developing an approach based on the use of Hardy type inequalities [6–8], in the present
note, we obtain a uniqueness (non–uniqueness) criterion for a solution of the mixed Dirichlet–
Neumann problem for the biharmonic equation.
Notation: C∞

0 (Ω) is the space of infinitely differentiable functions in Ω with compact support
in Ω. We denote by Hm(Ω,Γ), Γ ⊂ Ω, the Sobolev space of functions in Ω obtained by the
completion of C∞(Ω) vanishing in a neighborhood of Γ with respect to the norm

||u;Hm(Ω,Γ)|| =

(∫
Ω

∑
|α|6m

|∂αu|2dx

)1/2

, m = 1, 2,

where ∂α ≡ ∂|α|/∂xα1
1 . . . ∂xαn

n , α = (α1, . . . , αn) is a multi-index, αi > 0 are integers, and
|α| = α1 + · · ·+ αn; if Γ = ∅, we denote Hm(Ω,Γ) by Hm(Ω).

◦
H

m

(Ω) is the space obtained by the completion of C∞
0 (Ω) with respect to the norm

||u;Hm(Ω)||.
◦
H

m

loc (Ω) is the space obtained by the completion of C∞
0 (Ω) with respect to the family of

semi-norms

∥u;Hm(Ω ∩B0(R))∥ =

 ∫
Ω∩B0(R)

∑
|α|6m

|∂αu|2 dx


1/2

for all open balls B0(R) := {x : |x| < R} in Rn for which Ω ∩B0(R) ̸= ∅.
Let

(
n
k

)
be the (n, k)-binomial coefficient,

(
n
k

)
=0 for k > n.

2. Definitions and auxiliary statements
Definition 2.1. A solution of the homogenous biharmonic equation (1) in Ω is a function
u ∈ H2

loc(Ω) such that for every function φ ∈ C∞
0 (Ω), the following integral identity holds:∫

Ω

∆u∆φdx = 0.
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Lemma 2.2. Let u be a solution of equation (1) in Ω such that Da(u,Ω) < ∞. Then

u(x) = P (x) +
∑

β0<|α|6β

∂αΓ(x)Cα + uβ(x), x ∈ Ω, (3)

where P (x) is a polynomial, ordP (x) < m0 = max{2, 2−n/2−a/2}, β0 = 2−n/2+a/2, Γ(x) is
the fundamental solution of equation (1), Cα = const, β > 0 is an integer, and the function uβ

satisfies the estimate:

|∂γuβ(x)| 6 Cγβ |x|3−n−β−|γ|, Cγβ = const,

for every multi-index γ.

Remark 2.3. As is known [26], the fundamental solution Γ(x) of the biharmonic equation has
the form

Γ(x) =

{
C|x|4−n if 4− n < 0 or n is odd,

C|x|4−n ln |x| if 4− n > 0 and n is even.

Proof of Lemma 2.2. Consider the function v(x) = θN (x)u(x), where θN (x) = θ(|x|/N), θ ∈
C∞(Rn), 0 6 θ 6 1, θ(s) = 0 for s 6 1, θ(s) = 1 for s > 2, while N ≫ 1 and G ⊂ {x : |x| < N}.
We extend v to Rn by setting v = 0 on G = Rn \ Ω.

Then the function v belongs to C∞(Rn) and satisfies the equation

∆2v = f,

where f ∈ C∞
0 (Rn) and supp f ⊂ {x : |x| < 2N}. It is easy to see that Da(v,Rn) < ∞.

We can now use Theorem 1 of [5] since it is based on Lemma 2 of [5], which imposes no
constraint on the sign of σ. Hence, the expansion

v(x) = P (x) +
∑

β0<|α|6β

∂αΓ(x)Cα + vβ(x),

holds for each a, where P (x) is a polynomial of order ordP (x) < m0 = max{2, 2− n/2− a/2},
β0 = 2− n/2 + a/2, Cα = const and

|∂γvβ(x)| 6 Cγβ |x|3−n−β−|γ|, Cγβ = const .

Therefore, by the definition of v, we obtain (3). The proof of Lemma 2.2 is complete. 2

Definition 2.4. A function u is a solution of the mixed Dirichlet–Neumann problem (1), (2),

if u ∈
◦
H

2

loc (Ω,Γ1) such that for every function φ ∈ C∞
0 (Rn), φ = 0 in the neighborhood of Γ1,

the following integral identity holds: ∫
Ω

∆u∆φdx = 0. (4)

3. Main Results
Theorem 3.1. The mixed Dirichlet–Neumann problem (1), (2) with the condition D(u,Ω) < ∞
has n+ 1 linearly independent solutions.

Proof. For any nonzero vector A in Rn, we construct a generalized solution uA of the biharmonic
equation (1) with the boundary conditions

uA(x)
∣∣
Γ1

= (Ax)
∣∣
Γ1
,

∂uA(x)

∂ν

∣∣∣
Γ1

=
∂(Ax)

∂ν

∣∣∣
Γ1

, ∆uA

∣∣
Γ2

=
∂∆uA

∂ν

∣∣∣
Γ2

= 0, (5)
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and the condition

χ(uA,Ω) ≡



∫
Ω

(
|uA(x)|2

|x|4
+

|∇uA(x)|2

|x|2
+ |∇∇uA(x)|2

)
dx < ∞

for n > 4,∫
Ω

(
|uA(x)|2

||x|2 ln |x||2
+

|∇uA(x)|2

||x| ln |x||2
+ |∇∇uA(x)|2

)
dx < ∞

for 2 6 n 6 4,

(6)

for A, x ∈ Rn, where Ax denotes the standard scalar product of A and x.
Such a solution of problem (1), (5) can be constructed by the variational method [26], mini-

mizing the functional

Φ(v) =
1

2

∫
Ω

|∆v|2 dx

in the class of admissible functions
{
v : v ∈ H2(Ω), v(x)

∣∣
Γ1

= (Ax)
∣∣
Γ1
,
∂v(x)

∂ν

∣∣
Γ1

=
∂(Ax)

∂ν

∣∣
Γ1

,

v is compactly supported in Ω
}
. The validity of condition (6) as a consequence of the Hardy

inequality follows from the results in [6–8].
Now, for any arbitrary number e ̸= 0, we construct a generalized solution ue of equation (1)

with the boundary conditions

ue

∣∣
Γ1

= e,
∂ue

∂ν

∣∣∣∣
Γ1

= 0, ∆ue

∣∣
Γ2

=
∂∆ue

∂ν

∣∣∣
Γ2

= 0, (7)

and the condition

χ(ue,Ω) ≡



∫
Ω

(
|ue(x)|2

|x|4
+

|∇ue(x)|2

|x|2
+ |∇∇ue(x)|2

)
dx < ∞

for n > 4,∫
Ω

(
|ue(x)|2

||x|2 ln |x||2
+

|∇ue(x)|2

||x| ln |x||2
+ |∇∇ue(x)|2

)
dx < ∞

for 2 6 n 6 4.

(8)

The solution of problem (1), (7) is also constructed by the variational method with the
minimization of the corresponding functional in the class of admissible functions {v : v ∈

H2(Ω), v
∣∣
Γ1

= e,
∂v

∂ν

∣∣∣∣
Γ1

= 0, v is compactly supported in Ω}. The condition (8) as a con-

sequence of the Hardy inequality follows from the results in [6–8].
Consider the function v(x) = (uA(x)−Ax)− (ue − e). Obviously, v is a solution of problem

(1), (2):

∆2v = 0, x ∈ Ω, v
∣∣
Γ1

=
∂v

∂ν

∣∣∣∣
Γ1

= 0, ∆v
∣∣
Γ2

=
∂∆v

∂ν

∣∣∣
Γ2

= 0.

One can easily see that v ̸≡ 0 and D(v,Ω) < ∞.
To each nonzero vector A = (A0, A1, . . . , An) in Rn+1, there corresponds a nonzero solution

vA = (vA0 , vA1 , . . . , vAn) of problem (1), (2) with the condition D(vA,Ω) < ∞, and moreover,

vA(x) = uA(x)− ue −Ax+ e.

Let A0, A1, . . . , An be a basis in Rn+1. Let us prove that the corresponding solutions
vA0 , vA1 , . . . , vAn are linearly independent. Let
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n∑
i=0

CivAi ≡ 0, Ci = const .

Set W (x) ≡
n∑

i=1

CiAix− C0e. We have W (x) =
n∑

i=1

CiuAi(x)− C0ue,∫
Ω

|x|−2|∇W |2 dx < ∞, n > 4;

∫
Ω

||x| ln |x||−2|∇W |2 dx < ∞, 2 6 n 6 4.

Let us show that

W (x) ≡
n∑

i=1

CiAix− C0e ≡ 0.

Let T =
n∑

i=0

CiAi = (t0, . . . , tn), where A0 = −e. Then

∫
Ω

|x|−2|∇W |2 dx =

∫
Ω

|x|−2(t21 + · · ·+ t2n) dx =∞, n > 4,∫
Ω

||x| ln |x||−2|∇W |2 dx =

∫
Ω

||x| ln |x||−2(t21 + · · ·+ t2n) dx = ∞, 2 6 n 6 4,

if T ̸= 0.

Consequently, T =
n∑

i=0

CiAi = 0, and since the vectors A0, A1, . . . , An are linearly indepen-

dent, we obtain Ci = 0, i = 0, 1, . . . , n.
Thus, the Dirichlet–Neumann problem (1), (2) with the condition D(u,Ω) < ∞ has at least

n+ 1 linearly independent solutions.
Let us prove that each solution u of problem (1), (2) with the condition D(u,Ω) < ∞ can

be represented as a linear combination of the functions vA0 , vA1 , . . . , vAn , i.e.

u =

n∑
i=0

CivAi , Ci = const .

Since A0, A1, . . . , An is a basis in Rn+1, it follows that there exist constants C0, C1, . . . , Cn

such that

A =

n∑
i=0

CiAi.

We set

u0 ≡ u−
n∑

i=0

CivAi .

Obviously, the function u0 is a solution of problem (1), (2), and D(u0,Ω) < ∞, χ(u0,Ω) < ∞.
Let us show that u0 ≡ 0, x ∈ Ω. To this end, we substitute the function φ(x) = u0(x)θN (x)

into the integral identity (4) for the function u0, where θN (x) = θ(|x|/N), θ ∈ C∞(R), 0 6 θ 6 1,
θ(s) = 0 for s > 2 and θ(s) = 1 for s 6 1; then we obtain∫

Ω

(∆u0)
2θN (x) dx = −J1(u0)− J2(u0), (9)

where

J1(u0) = 2

∫
Ω

∆u0 ∇u0 ∇θN (x) dx, J2(u0) =

∫
Ω

u0 ∆u0 ∆θN (x) dx.
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By applying the Cauchy–Schwarz inequality and by taking into account the conditions
D(u0,Ω) < ∞ and χ(u0,Ω) < ∞, one can easily show that J1(u0) → 0 and J2(u0) → 0 as
N → ∞. Consequently, by passing to the limit as N → ∞ in (9), we obtain∫

Ω

(∆u0)
2 dx = 0.

Therefore, we have
∆u0 = 0, x ∈ Ω,

u0

∣∣
Γ1

=
∂u0

∂ν

∣∣∣∣
Γ1

= 0, ∆u0

∣∣
Γ2

=
∂∆u0

∂ν

∣∣∣∣
Γ2

= 0.

Hence, it follows [4, Ch.2] that u0 ≡ 0 in Ω. The proof of the theorem is complete.

Theorem 3.2. The mixed Dirichlet–Neumann problem (1), (2) with the condition Da(u,Ω) < ∞
has:

(i) the trivial solution for n− 2 6 a < ∞, n > 4;
(ii) n linearly independent solutions for n− 4 6 a < n− 2, n > 4;
(iii) n+ 1 linearly independent solutions for −n 6 a < n− 4, n > 4;
(iv) k(r, n) linearly independent solutions for −2r + 2− n 6 a < −2r + 4− n, r > 1, n > 4,

where

k(r, n) =

(
r + n

n

)
−
(
r + n− 4

n

)
.

The proof of Theorem 3.2 is based on Lemma 2.2 about the asymptotic expansion of the
solution of the biharmonic equation and the Hardy type inequalities for unbounded domains
[6–8]. In case (iv), we need to determine the number of linearly independent solutions of the
biharmonic equation (1), the degree of which do not exceed the fixed number.

It is well know that the dimension of the space of all polynomials in Rn of degree 6 r is equal(
r+n
n

)
[24]. Then the dimension of the space of all biharmonic polynomials in Rn of degree 6 r

is equal to (
r + n

n

)
−
(
r + n− 4

n

)
,

since the biharmonic equation is the vanishing of some polynomial of degree r − 4 in Rn. If
we denote by k(r, n) the number of linearly independent polynomial solutions of equation (1)
whose degree do not exceed r and by l(r, n) the number of linearly independent homogeneous
polynomials of degree r, that are solutions of equation (1), then

k(r, n) =
r∑

s=0

l(s, n), where l(s, n) =

(
s+ n− 1

n− 1

)
−
(
s+ n− 5

n− 1

)
, s > 0.

Further, we prove that the mixed Dirichlet–Neumann problem (1), (2) with the condition
Da(u,Ω) < ∞ for −2r + 2 − n 6 a < −2r + 4 − n has equally k(r, n) linearly independent
solutions.
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Смешанная бигармоническая задача Дирихле–Неймана
во внешних областях

Овик А. Матевосян
Федеральный исследовательский центр «Информатика и управление» РАН

Москва, Российская Федерация
Московский авиационный институт (национальный исследовательский университет)

Москва, Российская Федерация

Аннотация. Изучаются вопросы единственности решения смешанной задачи Дирихле–Неймана
для бигармонического уравнения во внешности компактного множества, в предположении, что
обобщенное решение этой задачи обладает конечным интегралом Дирихле с весом |x|a. В зависи-
мости от значения параметра a доказаны теоремы единственности (неединственности), и найдены
точные формулы для вычисления размерности пространства решений смешанной задачи Дирихле–
Неймана.

Ключевые слова: бигармонический оператор, задача Дирихле-Неймана, весовой интеграл Ди-
рихле.
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