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Abstract. The unidirectional motion of two viscous immiscible incompressible liquids in a flat channel
is studied. An unsteady temperature gradient is set on the bottom solid wall, and the upper wall is
a free boundary. Liquids contact on a flat interface. The motion is caused by the combined action
of thermogravitational and thermocapillary forces and a given total unsteady flow rate in the layers.
The corresponding initial boundary value problem is conjugate and inverse, since the pressure gradient
along the channel is determined together with the velocity and temperature field. An exact stationary
solution was found for it. In Laplace images, the solution of the non-stationary problem is found in
the quadrature forms. It was established that if the temperature on the bottom wall and the flow rate
stabilize with time, then the motion goes to a stationary state with time. This fact indicates the stability
of the stationary solution with respect to unidirectional unsteady perturbations. The calculation results
showing various methods of controlling motion by setting the temperature on the wall are given.
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It is well known that in a nonuniformly heated pure liquid medium there occurs a motion
which is called convection. Under the condition close to zero gravity, the inhomogeneity of the
temperature field affects the flow from the region of little to the region of large surface tension
due to a spontaneous decrease of the interface free energy between two liquid media or the free
boundary (Marangoni effect, see the detailed review in [1]). Observation of thermocapillary
motion due to interfacial tension gradients in terrestrial conditions is very difficult, since gravita-
tional convection becomes the dominant form of motion. However, in recent years in connection
with the development of modern technologies, new problems have arisen in which it is neces-
sary to take into account the thermocapillary effect in terrestrial conditions. For example, in
laser annealing of semiconductors or in laser processing of materials with fusion, which is used
to alloy the surface layer of metal [2]. In this case, relatively long thin layers of melt (of the
order of several micrometers) appear on the surface of materials, in which, according to [3, 4],
thermocapillary forces dominate over gravitational forces. Knowledge of the laws of thermal
convection in liquid layered systems is of interest for understanding the hydrodynamics and heat
and mass transfer processes when applying multilayer coatings, in thermal stabilization systems
of power plants or cooling electronic devices, in the processes of growing single crystals and films,
etc. [5]. It is known that the solution of R.V. Birikh [6] describes a stationary convective flow
in a strip. For the first time, its generalization to the case when the longitudinal temperature
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gradient depends on time was proposed by V. V. Pukhnachev in [7], as well as [8]. A similar
generalization the solution of the problem of the motion of two immiscible liquids with a flat
interface allows [9]. In the monograph [10], the problems of unidirectional motion of a viscous
heat-conducting fluid in a flat horizontal channel in a field of gravity acting across the channel
are studied. At the same time, an unsteady temperature field is set on a fixed solid wall, and
the upper boundary can be a solid wall, either insulated or not, or a free boundary. The present
work is devoted to the study of the unidirectional thermogravitational motion of two immiscible
viscous liquids in a flat horizontal channel. In this case, an unsteady temperature field, which is
linear in the longitudinal coordinate, is set on the lower solid wall and the upper wall is a free
boundary. The system of Oberbek–Boussinesq equations is taken as a mathematical model. A
detailed conclusion and analysis of the main assumptions that lead to this system are available
in many works, for example, in [7].

1. Statement of problem

We consider a system of two incompressible immiscible liquids with an interface y = 0. The
parameters of the fluid that moves in the strip −h1 < y < 0, −∞ < x < ∞ are denoted by
index “1”, and the parameters of the fluid moving in the strip 0 < y < h2 will be denoted by
index “2”; ρj , νj , µj , χj , βj are densities, kinematic viscosities, dynamic viscosities, thermal
diffusivity and volume expansion coefficients, respectively. Further on, it is assumed that these
parameters are positive constants. Let x and y denote the horizontal and vertical coordinates,
gravity with acceleration g acts in the negative direction of the y axis. Substitution of a solution
of the form [8]

uj = wj(y, t), θj = −aj(y, t)x+ Tj(y, t), pj = −bj(y, t)x+ Pj(y, t), j = 1, 2. (1)

into the Oberbek–Boussinesq system leads to the equations

ajt = χjajyy,

bjy = ρjgβjaj ,

wjt = νjwjyy +
1

ρj
bj ,

Tjt = χjTjyy + ajwj ,

Pjy = ρjgβjTj .

(2)

In (1) uj is the projection of the velocity vector on the x axis, θj is temperature, pj is pressure
deviation from hydrostatic one. Next, we consider the problem only for determining the velocity
field, that is, the problem for wj and aj . The functions Tj will be the solution of the conjugate
problem similar to the problem for aj . Using the known functions aj and Tj , the functions
bj(y, t) and Pj(y, t) are reconstructed by quadratures from the second and fifth equations of (2)

bj(y, t) = ρjgβj

∫ y

0

aj(z, t) dz + Cj(t),

Pj(y, t) = ρjgβj

∫ y

0

Tj(z, t) dz + P0j(t).

(3)

For the system (2), we can pose various initial–boundary value problems that describe the motion
in a flat channel: one liquid in a channel with solid impermeable walls, a solid wall and a free
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boundary, one or more interfaces, an interface and a free boundary (a part of the statements of
such problems was considered in [8, 10]). In this paper, we consider the last case for a specific
problem, namely, when the temperature is set on the solid lower wall y = −h1, and the upper
wall y = h2 is free boundary. Since the interface y = 0 at the initial moment of time is assumed
to be horizontal, at any moment of time it will be such [10, p. 41]. The large capillary pressure
(Weber number We ≫ 1) allows us to assume that the free surface y = h2 also remains flat [11].

We introduce the characteristic length scales for the first and second layer, these are h1 and
h2, for time this is h2

1χ
−1
1 and functions wj , aj , Cj these are χjh

−1
j , ã = max

t>0
|a1(−h1, t)| > 0,

µ1χ1h
−3
1 and write out the conjugate initial boundary value problem for the functions aj(y, t) in

the dimensionless form

a1t(y, t) = a1yy(y, t), −1 < y < 0,

a2t(y, t) = h2χ−1a2yy(y, t), 0 < y < 1,
(4)

aj(y, 0) = aj0(y), (5)

a1(−1, t) = a(t), a2y(1, t) + Bia2(1, t) = 0, (6)

a1(0, t) = a2(0, t), ka1y(0, t) = ha2y(0, t). (7)

In (4)–(7) h = h1/h2, χ = χ1/χ2, k = k1/k2, Bi = γh2k
−1
2 is the Bio number, γ > 0 is

the interfacial heat transfer coefficient, and functions aj0(y) and a(t) are known. Relations (7)
follow from the equality of temperatures and heat fluxes at the interface y = 0.

Let us pass to the formulation of the problem for dimensionless velocities wj(y, t)

P−1
1 w1t(y, t) = w1yy(y, t) + Ra1

∫ y

0

a1(z, t) dz + C1(t), −1 < y < 0, (8)

χh−2P−1
2 w2t(y, t) = w2yy(y, t) + Ra2

∫ y

0

a2(z, t) dz + µχh−3C2(t), 0 < y < 1, (9)

wj(y, 0) = wj0(y), (10)

w1(−1, t) = 0, χh−1w1(0, t) = w2(0, t). (11)

The first condition in (11) is the sticking condition on the lower solid fixed wall y = −1, and
the second is a consequence of the continuity of velocities at the interface y = 0. The dynamic
condition on the interface y = 0 is reduced to two:

w2y(0, t)− µχh−2w1y(0, t) = −Ma1a1(0, t), p1(0, t) = p2(0, t). (12)

The last condition, together with representations (1), (3), implies the equalities

C1(t) = C2(t) ≡ C(t), P1(0, t) = P2(0, t).

Besides, on the free boundary y = 1, from the dynamic condition for tangential stresses it follows

w2y(1, t) = Ma2a2(1, t). (13)

Assuming We ≫ 1, from the condition for normal stresses we obtain that the free surface remains
flat. In equations (8), (9) and in conditions (12), (13), dimensionless parameters arise µ = µ1/µ2,
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Pj = νj/χj are the Prandtl numbers, Raj = gβj ãh
4
j/νjχj are the Rayleigh numbers, Maj =

= æj ãh
2
2/µ2χ2 are the Marangoni numbers.

If C(t) is given, then the statement of the problem for velocities is completed. The aim of
this work is to study the inverse problem, therefore, it is necessary to put another condition is
the total consumption in layers

χ

∫ 0

−1

w1(z, t) dz +

∫ 1

0

w2(z, t) dz = q(t). (14)

2. Stationary solution

Suppose that a(t) = a0 = const, q(t) = q0=const. We give the form of a stationary solution
a0j (y), w0

j (y) and C0=const

a01(y) = −Bia0
δ

(y + 1) + a0, −1 6 y 6 0,

a02(y) = −Bia0
δ

(
k

h
y + 1

)
+ a0, 0 6 y 6 1,

(15)

w0
1(y) = −a0Ra1

24

(
−Bi

δ
y4 + 4

(
1− Bi

δ

)
y3
)
− Cs

2
y2 +m1y +m2, −1 6 y 6 0,

w0
2(y) = −a0Ra2

24

(
−kBi

hδ
y4 + 4

(
1− Bi

δ

)
y3
)
− µχCs

2h3
y2 +m3y +m4, 0 6 y 6 1,

Cs = δ1 + hm1.

(16)

In (15), (16) we introduced the notation

δ =
(1 + Bi)k

h
+ Bi,

δ1 = −a0h
3

µχ

[
Ra2
6

(
3− Bi

δ
(3 +

k

h
)

)
+ Ma1

(
1− Bi

δ

)
+ Ma2

(
1− Bi

δ
(1 +

k

h
)

)]
,

δ2 =
a0Ra1
24

(
3Bi
δ

− 4

)
+

δ1
2
, δ3 =

χa0Ra1
120

(
5− 4Bi

δ

)
− a0Ra2

120

(
5− Bi

δ
(5 +

k

h
)

)
,

m1 =
−6δ3 + χδ1(1 + µh−3) + 3a0Ma1(1− Biδ−1)− 6δ2χ(1 + h−1) + 6q0

−hχ(1 + µh−3)− 3χ(1− µh−2) + 3h−1χ(h+ 1)(h+ 2)
.

m2 = δ2 +
m1

2
(h+ 2) , m3 =

µχ

h2
m1 − a0Ma1

(
1− Bi

δ

)
, m4 =

χ

h
m2,

Fig. 1 shows stationary velocity profiles w0
j (y) depending on the dimensionless flow rate q0.

Hereinafter, the function w0(y) coincides with the functions w0
j (y), j = 1, 2 on their domains of

definition. The calculations show that with an increase in q0, the velocity profile in the first layer
becomes linear, i.e., a Couette flow arises. In the second layer, a Poiseuille flow arises (parabolic
profile). With a decrease in the layers q0, zones of the return flow arise.

Fig. 2 shows stationary velocity profiles for different values of the Bio number. It can be
seen that in the second layer for Bi = 0 (a thermally insulated free surface) the velocity profile
is linear, and with an increase the Bio number it becomes parabolic. The dependence of the
velocity profile in the layers on the dimensionless temperature gradient a0 is shown in Fig. 3.
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Fig. 1. Stationary profile of velocities w0
j (y) depending on the dimensionless flow rate

The case when a0 < 0 means that the bottom wall is cooling. So, for a0 = 2 a return flow arises
near the interface y = 0, and for a0 = −2 the direction of the current changes to the opposite.
At a0 = 0 in both layers the velocities have a parabolic profile and there are no zones of return
flow.

Fig. 2. Stationary profile of velocities w0
j (y) depending on the Bio number

Changes of the Marangoni numbers also affect the nature and intensity of the arising currents.
So, a change in the number Ma1 affects the direction and intensity of the flow near the interface
y = 0 (see Fig. 4 а), and the number Ma2 only affects the intensity near the free boundary
(see Fig. 4 b).
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Fig. 3. Stationary profile of velocities w0
j (y) depending on the dimensionless temperature

gradient a0

Fig. 4. Stationary profile of velocities w0
j (y) depending on the Marangoni numbers Ma1 (a)

and Ma2 (b)

3. Solution of conjugate problem by the Laplace
transformation method. Analysis of numerical results

To solve non-stationary problems (4)–(7) and (8)–(14) we apply the Laplace transform. As
a result, we arrive to boundary value problems for images Aj(y, s) of functions aj(y, t)

A1yy(y, s)− sA1(y, s) = −a10(y), −1 < y < 0,

A2yy(y, s)− sχh−2A2(y, s) = −χh−2a20(y), 0 < y < 1,
(17)

A1(−1, s) = A(s), A2y(1, s) + BiA2(1, s) = 0,

A1(0, s) = A2(0, s), kA1y(0, s) = hA2y(0, s)
(18)
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and images Wj(y, s) of functions wj(y, t)

W1yy(y, s)− sP−1
1 W1(y, s) = −

(
P−1
1 w10(y) + Ra1

∫ y

0

A1(z, s) dz + Ĉ(s)

)
, −1 < y < 0,

W2yy(y, s)−
sχ

h2 P2
W2(y, p) = −

(
χ

h2P2
w20(y)+ Ra2

∫ y

0

A2(z, s)dz +
µχ

h3
Ĉ(s)

)
, 0 <y < 1,

(19)

W1(−1, s) = 0, χh−1W1(0, s) = W2(0, s), W2y(1, s) = Ma1A2(1, s),

W2y(0, s)− µχh−2W1y(0, s)= −Ma1A1(0, s), χ

∫ 0

−1

W2(y, s)dy+

∫ 1

0

W2(y, s)dy = Q(s).
(20)

When deriving equations (17), (19), the initial data (5), (10) were used. In (18), (20) the A(s)

and Q(s) are images of the given functions a(t) and q(t) respectively (see conditions (6), (14)).
The general solution of equations (17), (19) has the form

A1(y, s) = b1 sh
√
sy + b2 ch

√
sy − 1√

s

∫ y

0

a10(z) sh
√
s(y − z) dz,

A2(y, s) = b3 sh
√
sy + b4 ch

√
sy −

√
χ

h
√
s

∫ y

0

a20(z) sh
√
s(y − z) dz,

W1(y, s) = d1 shα1y + d2 chα1y −
1

α1

∫ y

0

f1(z, s) shα1(y − z)dz − Ĉ(s)

α1

(
chα1y −

1

α1

)
,

W2(y, s) = d3 shα2y + d4 chα2y −
1

α2

∫ y

0

f2(z, p) shα2(y− z)dz− µP2Ĉ(s)

sh
(chα2y − 1),

(21)

f1(y, p) = P−1
1 w10(y) + Ra1

∫ y

0

A1(z, s) dz, f2(y, s) =
χ

h2P2
w20(y) + Ra2

∫ y

0

A2(z, s) dz,

α1 =

√
sP−1

1 , α2 =

√
sχP−1

2 h−1.

The values mk, dk, k = 1, 4, appearing in (21), and function Ĉ(s) are determined from the
boundary conditions (18), (20). The type of these values is not presented here because of its
complexity.

Suppose, that lim
t→∞

a(t) = a0 and lim
t→∞

q(t) = q0. Using the obtained representations for

Aj(y, s), Wj(y, s) and Ĉ(p), we can prove the limit equalities

lim
t→∞

aj(y, t) = lim
s→0

sAj(y, s) = asj(y), lim
t→∞

wj(y, t) = lim
s→0

sWj(y, s) = ws
j (y),

lim
t→∞

C(t) = lim
s→0

sĈ(s) = Cs,
(22)

where asj(y), w
s(y) and Cs are given by formulas (15), (16).

Using the method of numerical inversion of the Laplace transform, we obtain some results for
the velocities. The case when q(t) = 0 (the flow rate is zero and the movement occurs only due
to thermogravitational forces) is considered, and the longitudinal temperature gradient on the
bottom wall is distributed according to the law a(t) = a0+γ1e

−γ2t sin(γ3t), where the coefficients
γ1, γ2 are responsible for the amplitude and frequency of the oscillations, respectively. In the case
when a ̸= 0, γ2 > 0, then, according to equalities (22), the solution converges to the stationary
state (see Fig. 5 а), and for γ2 6 0, the limits of the functions a(t) at t → ∞ do not exist and
the solution does not tend to the stationary state (see Fig. 5 b). As a(t) discontinuous functions
can also be specified, thereby also influencing the nature of the flow.
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Fig. 5. Profile of dimensionless velocities Wj(y) at a(t) = 1 − 5e−0.01t sin(0.1t) (a) and
a(t) = 2 sin(0.1t) (b)
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Слоистое движение двух несмешивающихся жидкостей
со свободной границей

Елена Н. Лемешкова
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. Изучено однонаправленное движение двух вязких несжимаемых жидкостей в плос-
ком канале. На нижней твердой стенке задан нестационарный градиент температуры, а верхняя
стенка — свободная граница. Жидкости контактируют по плоской поверхности раздела. Движе-
ние вызвано совместным действием термогравитационных и термокапиллярных сил и заданного
общего нестационарного расхода в слоях. Соответствующая начально-краевая задача является со-
пряжённой и обратной, поскольку градиент давления вдоль канала должен находиться вместе с
полем скоростей и температур. Для нее найдено точное стационарное решение. В изображениях
по Лапласу решение нестационарной задачи находится в виде квадратур. Установлено, что ес-
ли температура на нижней стенке и расход стабилизируются со временем, то движение выходит
на стационарный режим с ростом времени, что говорит об устойчивости стационарного решения
относительно однонаправленных нестационарных возмущений. Приведены результаты расчетов,
показывающие различные способы управления движением с помощью задания температуры на
стенке.

Ключевые слова: термокапиллярность, поверхность раздела, уравнения Обербека–Буссинеска.
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