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Abstract. We study one-parameter families of 7-dimensional nilpotent indecomposable Lie algebras and
the orbits of holomorphic realizations of such algebras in a 4-dimensional complex space. It is shown,
in contrast to the orbits of 5-dimensional nilpotent Lie algebras in 3-dimensional case, that two such
families (out of the existing nine ones) admit orbits that are Levi non-degenerate (homogeneous) real
non-spherical hypersurfaces. Up to holomorphic equivalence, all obtained non-degenerate nonspherical
orbits are graphs of polynomials of degree 4.
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Introduction

In connection with the problem of describing holomorphically homogeneous real hypersurfaces
of 3-dimensional complex space the technique was developed in the articles [1–4] for studying
holomorphic realizations of 5-dimensional Lie algebras in the space C3.

Under this, according to the result of [2], the orbits of nilpotent 5-dimensional Lie algebras
in the space C3 can be either Levi degenerate hypersurfaces, or non-degenerate spherical ones,
i.e. holomorphic images of non-degenerate quadrics

Im z3 = |z1|2 ± |z2|2.

In the present work, a similar technique is used for study of holomorphically homogeneous
hypersurfaces in the space C4. In particular, below we consider the orbits of holomorphic real-
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izations in this space of nilpotent 7-dimensional Lie algebras (representations of these algebras
in the algebra of germs of holomorphic vector fields in C4).

Note that situations with 5-dimensional and 7-dimensional Lie algebras significantly differ
from each other in the number of algebraically different objects. So, according to [5], there are
only 9 nilpotent 5-dimensional Lie algebras (6 indecomposable and 3 decomposable). And the
family of 7-dimensional indecomposable Lie algebras contains (see [6]) 140 isolated nilpotent
algebras and 9 one-parameter families of nilpotent Lie algebras. In [6], these families are denoted
by

147E, 1357M, 1357N, 1357S, 12457N, 123457I, 147E1, 1357QRS1, 12457N2. (1)

Below 6 such families are considered with the aim of comparing situations with holomorphic
homogeneity of hypersurfaces in 3-dimensional and 4-dimensional complex spaces. The main
interest of the article is related to nondegenerate orbits of Lie algebras; the main results are
presented in the following two theorems.

Theorem 1. Each 7-dimensional orbit in the space C4 of any algebra of four families 1357N ,
12457N , 123457I, 12457N2 must be degenerate in Levi sense.

Theorem 2. The two families 1357M , 1357QRS1 have algebras, admitting holomorphic real-
izations with Levi non-degenerate non-spherical 7-dimensional orbits in the space C4. Up to
holomorphic equivalence, all such orbits of the 1357M family are described by the formulas

y4 = y1y3 + y22 + y21y2 +Dy41 , D ̸= 1

12
; (2)

among Levi non-degenerate nonspherical orbits of the 1357QRS1 family there are holomorphic
images of the surfaces

y4 = y1y3 + y22 + x1y1y2 +Dy41 , D ̸= 1

12
. (3)

The families 1357S, 147E, 147E1 also contain algebras whose orbits in C4 are non-degenerate
nonspherical hypersurfaces. However, all such surfaces are described by formula (2). Due to the
limited scope of the article, we do not discuss these three families.

1. Families of 7-dimensional nilpotent Lie algebras

The existence of the families of nilpotent algebras depending on the real parameter, distin-
guishes the cases of 7-dimensional algebras and 5-dimensional ones. We denote this parameter by
the common symbol λ and discuss the families of 7-dimensional indecomposable algebras men-
tioned above. Each of them is described in some basis e1, . . . , e7 by the following relationships:

1357M (λ ̸= 0) : [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e1, e5] = e7,

[e2, e4] = e5, [e2, e6] = λe7, [e3, e4] = (1− λ)e7.
(4)

1357N : [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e1, e5] = e7,

[e2, e3] = λe7, [e2, e4] = e5, [e3, e4] = e7, [e4, e6] = e7.
(5)

12457N : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e7, [e1, e5] = e6, [e1, e6] = e7,

[e2, e3] = e5, [e2, e4] = e6, [e2, e5] = λe7, [e2, e6] = e7, [e3, e4] = e7, [e3, e5] = −e7.
(6)

123457I : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e1, e6] = e7,

[e2, e3] = e5, [e2, e4] = e6, [e2, e5] = λe7, [e3, e4] = (1− λ)e7.
(7)
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1357QRS1 (λ ̸= 0) : [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e1, e5] = e7,

[e2, e3] = −e6, [e2, e4] = e5, [e2, e6] = λe7, [e3, e4] = (1− λ)e7.
(8)

12457N2 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = −e6, [e1, e5] = e7, [e1, e6] = e7,

[e2, e3] = e5, [e2, e4] = e7, [e2, e5] = −e6 + λe7, [e3, e5] = −e7.
(9)

The main point of [1–4], as well as of this article, is the use of large Abelian subalgebras of
studied algebras and simplification of bases of these subalgebras.

It can be noted that for nilpotent Lie algebras of arbitrary dimensions the existence of such
subalgebras (and even Abelian ideals) follows from Morozov’s known statement [7].

In the case of algebras from the families (4)–(9) it is easy to make sure that each of them
contains a 4-dimensional Abelian ideal with the following basis:

12457N, 12457N2, 123457I : I4 =< e4, e5, e6, e7 >,

1357M, 1357N, 1357QRS1 : I ′4 =< e3, e5, e6, e7 > .

Remark. For some of the families (4)–(9), each algebra contains several different 4-dimensional
Abelian ideals. For instance, in every algebra from the family of 1357M there are (in addition
to the above ideal I ′4 =< e3, e5, e6, e7 >) also I4 =< e4, e5, e6, e7 > and I ′′4 =< e2, e3, e5, e7 > .

2. Degeneracy of the orbits of 7-dimensional Lie algebras

A scheme for constructing realizations of 7-dimensional Lie algebras as the algebras of holo-
morphic vector fields in space C4 essentially repeats a similar scheme implemented in [1–4] for
5-dimensional algebras. The main technical idea here is to simplify the form of basis vector fields
of distinguished ideal (and then basis of the whole algebra under discussion). Algebras with
simplified bases can be integrated (with overcoming certain technical difficulties).

So, write each element of the basis e1, . . . , e7 of the discussed Lie algebra g in the form of a
holomorphic vector field in space C4:

ek = ak(z)
∂

∂z1
+ bk(z)

∂

∂z2
+ ck(z)

∂

∂z3
+ dk(z)

∂

∂z4
(k = 1, . . . , 7). (10)

In this entry, ak(z), bk(z), ck(z), dk(z) are holomorphic (near the discussed point of the
surface) functional coefficients, z = (z1, z2, z3, z4) is a vector of complex coordinates. We will
also use entries of the form ek = (ak, bk, ck, dk) to shorten the formula (10).

A real hypersurface M = {Φ = 0} is the orbit (or integral surface) of a holomorphic realization
of the algebra g if for each base field ek of this algebra the condition of tangency M is satisfied
in the form

Re (ek (Φ)|M ) = 0. (11)

Lemma 1. Let a real hypersurface M ⊂ C4 be Levy non-degenerate near some of its point Q
and let it be the orbit of the 7-dimensional Lie algebra g of holomorphic vector fields in this space.
Let also I4 be a 4-dimensional Abelian subalgebra in g with a fixed basis e4, e5, e6, e7.

This basis can be reduced to one of three forms by holomorphic change of coordinates of the
space C4 (defined near the point Q):

1)

e4 : (1, 0, 0, 0),
e5 : (0, 1, 0, 0),
e6 : (0, 0, 1, 0),
e7 : (0, 0, 0, 1),

2)

(0, b4(z1), c4(z1), d4(z1)),
(0, 1, 0, 0),
(0, 0, 1, 0),
(0, 0, 0, 1),

3)

(0, 1, 0, 0),
(0, 0, c5(z1), d5(z1)),
(0, 0, 1, 0),
(0, 0, 0, 1).
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Remark 1. One can use the Abelian ideals mentioned above as Abelian subalgebras for the
studied families of Lie algebras (4)–(9).

Proof of Lemma 1. First, we note that the assertion being proved is a simple generalization
of Lemmas 3.1–3.4, formulated and proved in [4] for algebras of holomorphic vector fields in a
3-dimensional complex space. As in [1, 4], reduction the basis of the subalgebra to one of the
desired types is possible by a step-by-step procedure.

For example, in the space Cn of any dimension n, a separate holomorphic vector field can
be (locally) rectified, i.e. reduced by a holomorphic change of coordinates to differentiation with
respect to one of the variables. In the situation discussed in Lemma 1, we bring thus the field e7
to the form ∂/∂z4 = (0, 0, 0, 1).

For another basis field e6 of the subalgebra I4 we consider its components (a6, b6, c6, d6) in the
new coordinates. Firstly, due to the commutation of the fields e6 and e7, these components are
independent of the z4 variable. And secondly, the truncated set (a6, b6, c6) cannot be identically
zero, because a linear dependence over C (at each point of the surface M) of two fields e6 and
e7 would mean Levy degeneracy of the discussed orbit.

Then the "truncated" vector field (a6(z1, z2, z3), b6(z1, z2, z3), c6(z1, z2, z3)) can be (locally)
straightened by a holomorphic change of three variables z1, z2, z3. Accordingly, the field e6 will
take the form (0, 0, 1, d6(z1, z2, z3)), and the field e7 = (0, 0, 0, 1) will remain rectified. The
reduction of the field e6 to the rectified form is completed (with preservation of the rectified
field e7) by another holomorphic change of coordinates z∗4 = z4 +φ(z1, z2, z3), with an arbitrary
function φ(z1, z2, z3) satisfying the condition

∂φ/∂z3 = −d6(z1, z2, z3).

Further, when passing to the simplification of the field e5, several cases arise. A common
fact for all such cases is independence of e5 components of two variables z3, z4 (due to the
commutation of e5 with the fields e6, e7).

In the first case, with a nonzero "truncated" field (a5(z1, z2), b5(z1, z2)) it can be straightened
(just like the whole field e5) due to operations similar to those described when rectifying the field
e6. The basis of the algebra I4 takes then form

e4 : (a4(z1), b4(z1), c4(z1), d4(z1)),

e5 : (0, 1, 0, 0),

e6 : (0, 0, 1, 0),

e7 : (0, 0, 0, 1).

(12)

Note that the components of the field e4 in this situation can depend on no more than a
single complex variable z1 due to the commutation of all fields in I4.

The second case is also possible, in which (after straightening the fields e6, e7) the basis of
the subalgebra I4 has the following coordinate representation

e4 : (a4(z1, z2), b4(z1, z2), c4(z1, z2), d4(z1, z2)),

e5 : (0, 0, c5(z1, z2), d5(z1, z2)),

e6 : (0, 0, 1, 0),

e7 : (0, 0, 0, 1).

Note also that in the case of identically zero components a4, b4, the four fields e4, . . . , e7 turn
out to be linearly dependent over C at each point on the surface M , and the equation of the
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surface (due to the tangency conditions for these fields) get rid of the variables z1, z2. Because in
a Levy non-degenerate case this is impossible, the components a4, b4 cannot be both identically
zero.

Now, using the inequality (a4(z1, z2), b4(z1, z2)) ̸= (0, 0), we can, as in the discussion of the
field e6, straighten such a "truncated" field by a holomorphic change of two variables z1, z2.
Then the field e4 is rectified to the state (0, 1, 0, 0). The fields e5, e6 will retain under this their
rectified appearance.

In this case, the whole base tetrad of the subalgebra I4 acquires the third of the possible forms
indicated in the lemma that we are proving. The first two possibilities arise when completing
simplifications of a basis of the form (12).

If, for example, the coefficient a4(z1) is not identically zero, then turning it into unity and
after that straightening the field e1 using the procedures already described, we get the "fully"
rectified subalgebra I4, i.e. case 1) from the lemma being proved. If a4(z1) ≡ 0, we get the
form 2) for the basis of the algebra I4. Lemma 1 is completely proved. 2

Further, it is proposed to consider for each algebra three possible cases from this lemma.
Under this, one can significantly simplify such considerations using the following two statements.

Proposition 1. Suppose that a 7-dimensional real Lie algebra g has a basis e1, ..., e7 with the
following properties:

1) I4 =< e4, e5, e6, e7 > is an Abelian ideal in g;
2) for h =< e1, e2, e3 > and I4, the set of commutators [h, I4] is contained in the linear span

< e5, e6, e7 >;
3) [e1, e2] = e4.
Then a holomorphic realization of the algebra g in the space C4 with the "straightened" ideal

I4 is impossible.

Proof. Suppose, on the contrary, that in the space C4 there exists a holomorphic realization
of the algebra g with a "straightened" basis of the ideal I4, satisfying conditions 1)– 3).

Consider a nonzero element e1 of three-dimensional subspace h of the Lie algebra g. Due to
conditions 1)– 2) of the proposition under discussion, we have

[e1, e4] = 0 · e4 +A5e5 +A6e6 +A7e7 = (0, A5, A6, A7) (13)

with some real constants A5, A6, A7.

But for a rectified holomorphic vector field e4, the commutator [e1, e4] is equal to − ∂

∂z1
(e1).

This means that, by virtue of equality (13), the field e1 can be represented in coordinates in
the form

e1 = (a1(z2, z3, z4),−A5z1 + b1(z2, z3, z4),−A6z1 + c1(z2, z3, z4),−A7z1 + d1(z2, z3, z4)). (14)

Similarly to (13), the commutators [e1, e5], [e1, e6], [e1, e7], of the field e1 with differentiations
with respect to variables z2, z3, z4 also do not contain e4 in its expansions. This means that one
can refine the form of the four functional coefficients

(a1(z2, z3, z4), b1(z2, z3, z4), c1(z2, z3, z4), d1(z2, z3, z4))

in formula (14) and write the field e1 as follows:

e1 = (A1, L12(z1, z2, z3, z4) +B1, L13(z1, z2, z3, z4) + C1, L14(z1, z2, z3, z4) +D1). (15)
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Here, all linear forms L1k(z1, z2, z3, z4) (k = 2, 3, 4) have only real coefficients, and
A1, B1, C1, D1 are some complex constants.

It is clear that any vector field from the subspace h has the form (15). Consider in such a
situation a commutator of the field e1 with a similar field

e2 = (A2, L22(z1, z2, z3, z4) +B2, L23(z1, z2, z3, z4) + C2, L24(z1, z2, z3, z4) +D2).

It is clear that the z1-component of such a commutator is zero, which contradicts condition 3)
of the proposition under discussion. Consequently, this proposition is proved. 2

Proposition 2. For each of the discussed algebras of all six families (4)–(9) there are bases
satisfying conditions 1)–3) of Proposition 1.

Proof. The 1357M and 1357QRS1 families contain the ideal I4 =< e3, e5, e6, e7 >. Under
this decomposition [e1, I4], [e2, I4], [e4, I4] do not contain e3 component, and [e1, e2] = e3.

In the 1357N family with the same ideal I4 =< e3, e5, e6, e7 > the expansions [e1, I4], [e2, I4],
[e4, I4] do not contain e6 components, and [e1, e4] = e6.

Finally, the families 12457N , 123457I, 12457N2 have the same structure from the point
of view interesting to us: the 4-dimensional Abelian ideal in algebras from these families is
I4 =< e4, e5, e6, e7 >; decompositions of [e1, I4], [e2, I4], [e3, I4] do not contain e4-component
and at the same time [e1, e3] = e4. Proposition 2 is proved. 2

Recall that the main interest of the paper is related to Levi non-degenerate orbits of nilpotent
Lie algebras. Application of Propositions 1 and 2 to each of the six families of algebras (4)–(9)
(with the basis vectors ordering in 4-dimensional ideals corresponding to the Proposition 2)
allows in all cases to reduce the meaningful discussions to the points 2) and 3) of Lemma 1.

3. An analogy with the case of 5-dimensional algebras

Proposition 3. Realizations of the algebras 1357N , 12457N , 123457I, 12457N2 with the fixed
bases of their Abelian ideals simplified to types 2) or 3) can have only Levi-degenerate orbits in
the space C4.

Remark. We discuss Proposition 3 only for the 12457N -family described by the maximal num-
ber of nontrivial commutation relations. The three remaining families (with the corresponding
renumbering of the base fields) can be considered similarly.

Proof. Proposition 1 prohibits the existence of Levi-non-degenerate orbits for this family in
case 1) of Lemma 1. We show that the 21 commutation relations (10 of which are trivial) in the
7-dimensional Lie algebra of the 12457N -family also contradict cases 2) and 3) of this lemma.

In case 2) of Lemma 1 we have a triple of rectified fields

e5 = (0, 1, 0, 0), e6 = (0, 0, 1, 0), e7 = (0, 0, 0, 1) (16)

and the field e4 = (0, b4(z1), c4(z1), d4(z1)).

We note, first, that the six pairwise relations for the four basis fields of the ideal have already
been used (verified) for the obtaining a simplified form of the basis of the ideal I4. Second,
consideration of nine commutators of each of the triple rectified fields e5, e6, e7 with each of the
three fields e1, e2, e3 from the complement to the ideal I4 allows as to we get a simplified form

– 365 –



Alexander V. Loboda, Ripsime S.Akopyan, Vladislav V.Krutskikh On the Orbits of Nilpotent . . .

of these additional fields:

e1 = (a1(z1), b1(z1),−z2 + c1(z1),−z3 + d1(z1)),

e2 = (a2(z1), b2(z1), c2(z1),−z3 − λz2 + d2(z1)),

e3 = (a3(z1), b3(z1), c3(z1), z2 + d3(z1)).

(17)

Next, we move on to more "subtle" verification actions. For example, by coordinate-wise
writing the relation [e2, e4] = e6, we get

a2(0, b
′
4(z1), c

′
4(z1), d

′
4(z1))− (b4(0, 0, 0,−λ) + c4(0, 0, 0,−1)) = (0, 0, 1, 0).

The second and the third components of this vector equality have the form

a2(z1) · b′4(z1) = 0, a2(z1) · c′4(z1) = 1.

This means that a2(z1) is nonzero (near the origin). In this situation, one can use the
"linearization lemma" proved in [1] (see also [4], Remark 3.2). This lemma, applied to the field
e2, allows us to bring it after a holomorphic change of coordinates to the form

e2 = (1, 0, 0,−z3 − λz2)

instead of the more complicated form fixed in formulas (17). The rectified fields e5, e6, e7 will be
preserved; the fields e1, e3, e4 will also retain their simplified structure.

Considering further the equalities [e1, e4] = [e3, e4] = e7, one can obtain the next simplifica-
tions of the first four basis fields:

e1 =
(
1, b1(z1),−z2 + c1(z1),−z3 + d1(z1)

)
, e2 = (1, 0, 0,−z3 − λz2),

e3 =
(
0, b3(z1), c3(z1), z2 + d3(z1)

)
, e4 =

(
0,−1,

1− λ

2
,
1 + λ

2
z1 +D4

)
,

(18)

where D4 is a complex constant.
Finally, we check the remaining three commutation relations

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5. (19)

The last of them contains restrictions on the field e3, which now takes the form

e3 =
(
0, z1 +B3, C3, z2 −

λ

2
(z1 +B3)

2 + C3(z1 +B3) +D3

)
(20)

with arbitrary complex constants B3, C3, D3.
Then the first of relations (19) leads to a rather complicated form of the field

e1 =
(
1,−1

2
(z1 +B3)

2 +B1,−z2 + (−C3z1 + C1),−z3 −
λ

3
(z1 +B3)

3 −Nz1 +D1

)
, (21)

where N = (λB1 + C2B3 +D3 − C1), and B1, C1, D1 ∈ C are arbitrary constants.
Taking into account formulas (20), (21), the left-hand side of the second relations (19) can

be written in a form

[e1, e3] =

((
0, 1, 0,−λ(z1 +B3) + C3

)
+
(
− 1

2
(z1 +B3)

2 +B1

)
· (0, 0, 0, 1)

)
−

−
(
(z1 +B3) · (0, 0,−1, 0) + C3(0, 0, 0,−1)

)
.
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The second component of this vector field equals to 1, contrary to the fact that the equal
field e4 has −1 in the second component. Thus, in the second case of Lemma 1, algebras of the
family 123457N do not admit holomorphic realizations.

Now discussing case 3) of Lemma 1, we have:

e4 : ( 0 , 1 , 0, 0 )

e5 : ( 0, 0 , c5(z1), d5(z1))

e6 : ( 0, 0 , 1, 0 )

e7 : ( 0, 0 , 0, 1 )

. (22)

Using the nine commutation relations [e1, e4] = e7, [e1, e6] = e7, [e1, e7] = 0,

[e2, e4] = e6, [e2, e6] = e7, [e2, e7] = 0, [e3, e4] = e7, [e3, e6] = 0, [e3, e7] = 0,

we obtain formulas

e1 =
(
a1(z1), b1(z1), c1(z1),−z2 − z3 + d1(z1)

)
,

e2 =
(
a2(z1), b2(z1),−z2 + c2(z1),−z3 + d2(z1)

)
,

e3 =
(
a3(z1), b3(z1), c3(z1),−z2 + d3(z1)

)
,

(23)

similar to the collection (18) from the case 2.
We now note that in the case of identical vanishing of any two of the three coefficients

a1(z1), a2(z1), a3(z1) the six basic fields of the algebra under discussion turn out to be linearly
dependent over C. This leads to Levi degeneration of all orbits of the Lie algebra with a basis
of the form (22)–(23).

Therefore, the search for algebras with such bases admitting non-degenerate orbits can be
reduced to two subcases:

subcase 3.1. a3(z1) ̸= 0;
subcase 3.2. a3(z1) ≡ 0, a1(z1) ̸= 0.

Applying the linearization lemma in each of these subcases, we can, in addition to the rectified
triple of fields from (22), significantly simplify one another field. In subcase 3.1, we can regard
the field e3 having a simplified form e3 = (1, 0, 0,−z2), and in subcase 3.2 we have

e1 = (1, 0, 0,−z2 − z3), e3 =
(
0, b3(z1), c3(z1),−z2 + d3(z1)

)
. (24)

Given this simplification, we consider in subcase 3.1 three commutation relations [e1, e3] = 0,
[e2, e3] = e5, [e1, e2] = e3.

The first of these relations has the expanded form

b1(0, 0, 0,−1)− (a′1, b
′
1, c

′
1, d

′
1) = (0, 0, 0, 0).

It means that e1 = (A1, B1, C1,−z2 − z3 − B1z1 + D1) with some complex constants
A1, B1, C1, D1. Similarly, from [e2, e3] = e5 we get

e2 =
(
A2, B2,−z2 + c2(z1),−z3 + d2(z1)

)
, e5 =

(
0, 0,−c′2(z1),−d′2(z1)−B2

)
with complex constants A2, B2 and holomorphic functions c2(z1), d2(z1).

But taking into account the formulas obtained for the fields e1, e2, the first component of the
commutator

[e1, e2] =
(
A1(0, 0, c

′
2(z1), d

′
2(z1)) +B1(0, 0,−1, 0) + C1(0, 0, 0,−1)

)
−

−
(
A2(0, 0, 0,−B1) +B2(0, 0, 0− 1) + (−z2 + c2(z1))(0, 0, 0,−1)

)
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is zero, contrary to the fact that e3 = (1, 0, 0,−z2).
A similar contradiction also arises in subcase 3.2. Here, from the equality [e1, e3] = 0 we

obtain the formula
e3 =

(
0, B3, C3,−z2 − (B3 + C3)z1 +D3

)
.

Then a refined form of the field e2 is derived from the relation [e1, e2] = e3:

e2 =
(
A2, B3z1 +B2,−z2 + C3z1 + C2,−z3 + (B3 + C3)z

2
1 + (D3 −B2 − C2)z1 +D2

)
.

And the field e5, equal to the commutator of these two fields, will now take the form

e5 =
(
0, 0, B3,−B3z1 + (−C3 −B2 −A2B3 −A2C3)

)
. (25)

In this subcase, the last three commutation relations were not considered: [e1, e5] = e6, [e2, e5] =

= λe7, [e3, e5] = −e7.

Taking into account formulas (24) and (25), the first of them leads to a contradiction, since

[e1, e5] = (0, 0, 0,−B3)−B3(0, 0, 0,−1) = (0, 0, 0, 0) ̸= e6.

Proposition 3 for the family of Lie algebras 12457N is proved. 2

4. Integration of the 1357M and 1357QRS1 families

The technique of the previous section allows us to obtain similar conclusions in the study
of other algebras. The description of all possible holomorphic realizations of algebras from the
families 1357M and 1357QRS1 was received exactly in such manner. We omit here technical
details of reasonings (close to fragments of Section 3) and note only the following two points.

1) The descriptions of holomorphic realizations of the two families 1357M and 1357QRS1

almost coincide, because descriptions (4) and (8) of these families themselves have the only
difference: the trivial commutator [e2, e3] = 0 in the family 1357M is replaced by a nontrivial
relation [e2, e3] = −e6 for the 1357QRS1 family.

2) This description is connected with the ideal I ′4 =< e4, e5, e6, e7 >, which is most often
found in the six (and even in nine) algebra families under consideration, but not with the ideal
I4 =< e3, e5, e6, e7 > distinguished in Proposition 2. Thereby, all three cases of Lemma 1 were
directly verified, while Proposition 1 was not used.

Proposition 4. Holomorphic realizations of the families 1357M , 1357QRS1 connected with the
ideal I ′4 =< e4, e5, e6, e7 > and admitting Levi non-degenerate orbits are possible only in case 3)
of Lemma 1. The bases of such realizations have the form (ImB3 ̸= 0, ImC5 ̸= 0):

e1 : ( 1, 0, −z2, 0 ),

e2 : ( −λC5, B3z1 +B2, c2(z1, z2) d2(z1, z2, z3) ),

e3 : ( 0, B3, (C5 −B3)z1 + C3, z21/2 +D5z1 + (λ− 1)z2 +D3 ),

e4 : ( 0, 1, 0, 0 ),

e5 : ( 0, 0, C5, z1 +D5 ),

e6 : ( 0, 0, 1, 0 ),

e7 : ( 0, 0, 0, 1 ),

(26)
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where
c2(z1, z2) = (C5 − 2B3)z

2
1/2 + (C3 −B2)z1 − C5z2 + C2,

d2(z1, z2, z3) = z31/6 +D5z
2
1/2 +D3z1 − (z1 +D5)z2 − λz3 +D2.

Conditions for the 1357M family:

−λC5 + (λ+ 1)B3 = 0, −λC5D5 +B2(λ− 1) +B3D5 + C3λ = 0.

Conditions for the 1357QRS1 family:

−λC5(C5 −B3) +B3C5 = −1, −λC5D5 +B2(λ− 1) +B3D5 + C3λ = 0.

To complete the proof of Theorem 2, it remains to integrate the algebras of vector fields,
obtained in Proposition 5 and present non-degenerate nonspherical orbits of these algebras.

Recall that the defining function for the orbit of an arbitrary algebra of holomorphic vector
fields with basis e1, . . . , e7 in C4 is a solution to a system of seven partial differential equations
of the form (11) for k = 1, . . . , 7.

Given the presence in the realizations of all the algebras discussed, the triple of rectified
fields and being interested only in non-degenerate orbits, one can consider that each of them is
described by an equation of the form

y4 = F (x1, y1, y2, y3).

But even with such simplification the integration of the system of (only) four equations
presents, generally speaking, considerable technical difficulties.

Proposition 5. For λ ̸= −1 Levi non-degenerate orbits of algebras with bases (26) from the
family of 1357M are (up to local holomorphic transformations) only algebraic tubular surfaces
with affine-homogeneous bases

y4 = y1y3 +Ay22 +By21y2 + Cy41 , (27)

where
A =

1− λ

2(1 + λ)
, B =

1

1 + λ
, C =

1

4(1 + λ)
. (28)

Proof. We use another Abelian ideal I ′′4 =< e2, e3, e5, e7 > in the algebras of the 1357M

family. Coordinate description in C4 of the basis of this ideal (in the holomorphic realization
from Proposition 4) is upper triangular:

e2 : ( −λC5, B3z1 +B2, c2(z1, z2) d2(z1, z2, z3) ),

e3 : ( 0, B3, (C5 −B3)z1 + C3, z21/2 +D5z1 + (λ− 1)z2 +D3 ),

e5 : ( 0, 0, C5, z1 +D5 ),

e7 : ( 0, 0, 0, 1 ).

(29)

Moreover, ImB3 ̸= 0, ImC3 ̸= 0. Then after complex dilation of variables

z1 = −λC5z
∗
1 , z2 = B3z

∗
2 , z3 = C5z

∗
3

each of the four diagonal elements of the matrix (29) will be equal to unity.
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We apply to the fields (29) the sequential straightening procedure described in Section 2
above using the commutation of any pair of these fields. Then the basis of the 1357M family
will take much simpler affine form

e1 = i
∂

∂z1
− z1

∂

∂z2
− z2

∂

∂z3
− z3

∂

∂z4
, e2 =

∂

∂z1
, e3 =

∂

∂z2
,

e4 = −i(1 + λ)
∂

∂z2
+ z1

∂

∂z3
+ (1− λ)z2

∂

∂z4
,

e5 =
∂

∂z3
, e6 = −iλ

∂

∂z3
+ λz1

∂

∂z4
, e7 =

∂

∂z4
.

(30)

For λ ̸= −1, integration of an algebra with such a simplified basis leads precisely to equa-
tion (27) with coefficients of the form (28).

Note also that by dilation the variables

z∗1 = tz1, z∗2 = rt2, z∗3 = sz3, z∗4 = qz4

with real coefficients t, r, s, q the three nonzero coefficients (A,B,C) from equation (27) can be
transformed to the form (1, 1, AC/B2).

With this in mind, for λ ̸= 1, equation (27)–(28) can be reduced to

y4 = y1y3 + y22 + y21y2 +Dy41 , (31)

where D = CA/B2 = (1− λ)/8.

Concluding the proof of Proposition 5, we note that the quadratic form y1y3 + y22 from the
right-hand side of equation (31) turns in complex coordinates into indefinite nondegenerate Levi
form

H(z1, z2, z3) = z1z̄3 + z3z̄1 + |z2|2.
Therefore, for λ ̸= ±1 all the orbits of (4) are non-degenerate. Proposition 5 is proved. 2

Remark 1. For λ = −1, all orbits of such an algebra in the space C4 are affine equivalent to a
Levy degenerate hypersurface y1 = y22 .

Remark 2. According to [8], the surface with equation (4) is spherical, i.e. holomorphically
equivalent to the corresponding quadric

y4 = z1z̄3 + z3z̄1 + |z2|2,

only for A = 1/12, i.e. with λ = 1/3.
Thus, the first part of Theorem 2 is proved, and the family of surfaces (4) illustrates the

difference between the situation in C4 and the 3-dimensional case.
Remark 3. For λ = 1, the surface (27)–(28), i.e.

y4 = y1

(
y3 +

1

2
y1y2 +

1

8
y31

)
. (32)

is Levi degenerate.
Remark 4. Any surface from family (31) admits a consistent expansion of variables that pre-
serves both the surface and the origin of C4 lying on them. This means that an algebra with
basis (30) is a subalgebra of an 8-dimensional algebra, the additional basis field of which is

e8 = z1
∂

∂z1
+ 2z2

∂

∂z2
+ 3z3

∂

∂z3
+ 4z4

∂

∂z4
.

The following statement completes the proof of Theorem 2.
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Proposition 6. For arbitrary λ > 1 and for the following parameter values

B3 = C5 = i, D5 =
λ

λ− 1
, B2 = C3 = D3 = 0

the orbits of any algebra from the family 1357QRS1 with a basis of the form (26) are affinely
equivalent to the surfaces

y4 = y1y3 + y22 + x1y1y2 +
5

48(λ− 1)
y41 . (33)

Proof of Proposition 6. Let us consider a system of partial differential equations corresponding
to an algebra from family 1357QRS1. Due to the specified restrictions on the parameters four
meaningful equations for the determining function of the surface y4 = F (x1, y1, y2, y3) acquires
a relatively simple form:

∂F

∂x1
− y2

∂F

∂y3
=0,

∂F

∂y2
= x1y1 +

λ

λ− 1
y1 + (λ− 1)y2,

∂F

∂y3
= y1,

−λ
∂F

∂y1
+ x1

∂F

∂y2
+

(
−1

2
(x2

1 − y21)− x2

)
∂F

∂y3
=

=

(
1

2
x2
1y1 +

λ

λ− 1
x1y1 −

1

6
y31

)
−
((

x1 +
λ

λ− 1

)
y2 + y1x2

)
− λy3.

(34)

A step-by-step solution of the individual equations of this system leads to its final solution
of the form

F = y1y3 +
1

2
(λ− 1)y22 + y1y2(x1 + µ)− 5

24
y41 + C, C = const, µ =

λ

λ− 1
.

Due to affine transformations and, in particular, consistent coordinate expansion of the com-
plex space C4, the equations of the desired orbits in this case can be written in the form (3),
which is very close in form to (2). Proposition 6 and Theorem 2 are proved. 2

Remark 1. It is also possible to write out and integrate the equations corresponding to algebras
from the family 1357QRS1 with arbitrary parameter values (the authors did this using the Maple
package). The resulting equations of the orbits are very cumbersome, but in all non-degenerate
cases they are reduced by holomorphic transformations to equations (3).

Remark 2. Currently, the authors are not aware of the answer to the question of holomorphic
equivalence (or nonequivalence) for the surfaces (2) and (3). In multidimensional complex analy-
sis, the task of practical verification of holomorphic equivalence of specific varieties is often hard
enough to solve. Therefore, the study of the (possibly simple) question about the surfaces (2)
and (3) can be be considered as going beyond the scope of this article.

This work was supported by the Russian Foundation for Basic Research (projects no. 17-01-
00592, 20-01-00497).
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Об орбитах нильпотентных 7-мерных алгебр Ли
в 4-мерном комплексном пространстве
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Воронежский государственный технический университет

Воронеж, Российская Федерация
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Владислав В. Крутских
Воронежский государственный университет

Воронеж, Российская Федерация

Аннотация. В работе изучены однопараметрические семейства 7-мерных нильпотентных нераз-
ложимых алгебр Ли и орбиты голоморфных реализаций таких алгебр в 4-мерном комплексном
пространстве. Показано, что в отличие от орбит 5-мерных нильпотентных алгебр Ли в 3-мерном
пространстве два таких семейства (из имеющихся девяти) допускают орбиты, являющиеся невы-
рожденными по Леви (однородными) вещественными несферическими гиперповерхностями. С точ-
ностью до голоморфной эквивалентности все полученные невырожденные несферические орбиты
являются графиками многочленов 4-й степени.

Ключевые слова: алгебра Ли, комплексное пространство, векторное поле, голоморфная функ-
ция, однородное многообразие, вырождение по Леви.
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